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Abstract—One of the goals of 5G wireless systems stated by
the NGMN alliance is to provide moderate rates (50+ Mbps)
everywhere and with very high reliability. We term this service
Ultra-Reliable Ubiquitous-Rate Communication (UR2C). This pa-
per investigates the role of frequency reuse in supporting UR2C
in the downlink. To this end, two frequency reuse schemes are
considered: user-specific frequency reuse (FRu) and BS-specific
frequency reuse (FRb). For a given unit frequency channel, FRu
reduces the number of serving user equipments (UEs), whereas
FRb directly decreases the number of interfering base stations
(BSs). This increases the distance from the interfering BSs and
the signal-to-interference ratio (SIR) attains ultra-reliability, e.g.
99% SIR coverage at a randomly picked UE. The ultra-reliability
is, however, achieved at the cost of the reduced frequency
allocation, which may degrade overall downlink rate. To fairly
capture this reliability-rate tradeoff, we propose ubiquitous rate
defined as the maximum downlink rate whose required SIR can
be achieved with ultra-reliability. By using stochastic geometry,
we derive closed-form ubiquitous rate as well as the optimal
frequency reuse rules for UR2C.

Index Terms—UR2C, ultra-reliability, ubiquitous rate, user-
specific frequency reuse, BS-specific frequency reuse, stochastic
geometry

I. MOTIVATION AND CONTRIBUTION

Two extremes of 5G wireless system designs are pur-
suing very high data rate, i.e. enhanced mobile broadband
(eMBB), and enabling ultra-reliable low-latency communi-
cation (URLLC) with very low data rate [1]–[3]. This pa-
per explores a missing piece between them, Ultra-Reliable
Ubiquitous-Rate Communication (UR2C), answering to the
question how much data rate can stably be achieved every-
where. For example, the NGMN Alliance suggests that a rate
of at least 50 Mbps should be supported practically everywhere
[1]. In this paper “practically” means that a randomly picked
user equipment (UE) can ubiquitously attain a predefined data
rate with 99% reliability, which is higher than the commonly
considered 95% reliability of the wireless coverage [1], [3].

An important enabler of UR2C is ultra-dense base station
(BS) deployment where BS/UE density ratio per communica-
tion resource exceeds 1 [4]. A larger density of BSs improves
signal-to-interference ratio (SIR) since it increases the number
of non-interfering BSs that have no serving UE within their
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Fig. 1. Illustrations of FRu and FRb when the number of channels M = 3:
(a) In FRb, a BS randomly selects a single channel for all associated UEs;
(b) In FRu, a BS randomly assigns a single channel to each associated UE.
At a typical UE (filled blue), both FRb and FRu thereby increase interfering
BS distance, compared to (c) the baseline’s when M = 1.

cells. This makes the desired received signal power grow faster
than the interference increase when deploying more BSs.

The effect of ultra-densification can also be achieved by
dividing the total bandwidth into frequency channels. It makes
interfering BSs located farther away, yielding SIR improve-
ment. This motivated us to reconsider the problem of frequency
reuse. In a downlink scenario, we fine-tune frequency reuse to
make it applicable for a randomly selected UE, i.e. a typical
UE. Thereby we aim at proposing an optimal frequency reuse
scheme that achieves our target ultra-reliability, 99% SIR cov-
erage. To this end, we suggest two frequency reuse techniques:
BS-specific frequency reuse (FRb) and user-specific frequency
reuse (FRu). When the entire frequency bandwidth is divided
into M number of channels, each BS in FRb uses only a single
channel that it selects randomly (see Fig. 1-a). In FRu, a BS
randomly assigns a single channel to each associated UE (Fig.
1-b). If all the assigned channels to UEs are not identical,
its corresponding BS utilizes multiple number of channels.
Nevertheless, average amount of FRu’s channel use is still
less than a baseline without frequency reuse, i.e. M = 1 (Fig.
1-c). As every scheme with M larger than 1, both FRb and
FRu introduce loss in the data rate as they are only partially
using the bandwidth.

To make the proposed schemes applicable not only for
a cell-edge UE but also for a typical UE, it is therefore
important to examine how much data rate degrades in return
for reliability improvement. For this purpose, we propose
ubiquitous rate Rη defined as the maximum ergodic capacity

The 2017 International Workshop on Spatial Stochastic Models for Wireless Networks (SpaSWiN)

978-3-901882-90-6/17 ©2017 IFIP



that guarantees a target η SIR coverage probability for a given
SIR threshold t. For instance,R0.99 for unit resource allocation
is 0.99 · log2(1+ t) bps, where t is given by taking the inverse
function of SIR coverage probability to the target reliability
constraint equation Pr(SIR ≥ t) = 0.99.

In this respect, we utilize stochastic geometry, and provide
the closed-form downlink ubiquitous rate at a typical UE. Its
derivation follows in part from preceding works that provide
closed-form downlink SIR coverage at a typical UE in a
form of a hypergeometric function [5], [6]. However, inverting
a hypergeometric function to solve the reliable constraint
equation is not analytically viable. We instead propose novel
closed-form SIR bounds by using a hypergeometric function
transformation technique, and thereby derive the desired ubiq-
uitous rate in a closed form. Based on this result, we optimize
FRb and FRu with respect to M , and investigate how to
achieve the UR2C’s target 50 Mbps ubiquitous rate with 99%
reliability under different deployment density scenarios.

The contributions of this paper are summarized as follows.
• Optimized frequency reuse designs for UR2C are pro-

posed (see Proposition 3 with Figs. 3 and 4).
• Closed-form ubiquitous rates and SIR reliabilities under

the frequency reuse schemes are derived (Proposition 2).
• Closed-form SIR reliability approximation for UR2C as

well as closed-form SIR reliability bounds are provided
(Lemmas 2 and 3).

II. SYSTEM MODEL

In a downlink cellular network, BSs are uniformly dis-
tributed with density λb, resulting in a homogeneous Poisson
point process (PPP). Independently, UEs are also uniformly
distributed with density λ, leading to another homogeneous
PPP with density λ. Each UE associates with the nearest BS,
forming a Poisson-Voronoi tessellation [7].

The entire frequency bandwidth W is divided into Mi chan-
nels, where hereafter the subscript i ∈ {b, u, o}, respectively,
denotes FRb, FRu, and a baseline model. In FRb, each BS
randomly selects a single frequency channel, and serves its
associated UEs only via the selected channel. In FRu, a BS
randomly assigns a single channel to each of its associated
UE, and serves them respectively through the UEs’ assigned
channels. In the baseline, BSs neglect frequency reuse, and
serve their associated UEs by using the entire bandwidth, i.e.
Mo = 1. For all cases, multiple UEs using the same bandwidth
are served by the BS through an equal TDMA allocation.

A BS occupies each channel when at least a single UE is
served via the channel; otherwise, the channel remains void for
that BS and the BS is considered inactive. For λ density of UEs
served by a BS via a single channel, the BS’s corresponding
channel occupancy probability pc(λ) is given as pc(λ) ≈ 1−
(1 + λ/ [3.5λb])

−3.5 [8], which is a monotone increasing (or
decreasing) function of λ (or λb). In sparse networks λb/λ→
0, pc(λ) becomes 1, while for ultra-dense networks λb/λ →
∞, pc(λ) decreases towards 0 at the rate λ/λb [4].

For each non-void channel, a BS allocates unity power, and
transmits signals. The transmitted signals experience path-loss

TABLE I
LIST OF NOTATIONS

Notation Meaning
FRb, FRu BS/User-centric frequency reuse

W Total frequency bandwidth
Mi # Channels where i ∈ {b, u, o} resp. for FRb, FRu and baseline

SIR(Mi) SIR under Mi number of channels
Ni # UEs sharing the same BS and channel with a typical UE

Pt(Mi) SIR reliability with SIR threshold t
η Target SIR reliability; e.g. 0.99 for 99% SIR reliability

Rt(Mi) Average rate, given as W/Mi · E [1/Ni] · log(1 + t)

Rη(Mi) Ubiquitous rate, maximum avgerage rate s.t. Pt(Mi) ≥ η
λb, λ BS and UE densities
pc(λ) Channel occupancy probability for serving UE density λ

attenuation with the exponent α > 2 and Rayleigh fading with
unit mean. Noise power is assumed to be much smaller than
interference, and is thus neglected as in [4]–[6].

III. PROBLEM FORMULATION: UBIQUITOUS RATE
MAXIMIZATION

At a typical UE, the reliability of SIR Pt(Mi) when there
are Mi channels is defined as:

Pt(Mi) := Pr
(
SIR(Mi) ≥ t

)
(1)

where SIR(Mi) is the SIR with Mi, elaborated in Section IV.
Note that Pt(Mi) is a monotone increasing function of Mi.
As Mi increases, interfering BSs become located farther away,
which thereby improves SIR(Mi) and so does Pt(Mi).

Increasing Mi, however, may decrease data rate since it
reduces per-UE resource allocation at least by Mi. Precisely,
the typical UE’s downlink rate Rt(Mi) is given as

Rt(Mi) :=
W

Mi
· E
[

1

Ni

]
︸ ︷︷ ︸
resource allocation

· log2(1 + t)︸ ︷︷ ︸
spectral efficiency

(2)

where Ni is the number of UEs served by the same BS via
the same channel as the typical UE’s.

The first term of resource allocation W/Mi in (2) indicates
the maximum resource allocation per UE when a BS serves
only a single UE, which is reduced by 1/Mi. The actual
resource allocation to a typical UE is E[1/Ni] portion of
W/Mi since the maximum amount is equally allocated to
the multiple UEs sharing the same channel and BS with the
typical UE’s. According to [8], the reciprocal of E[1/Ni] can
be calculated by multiplying (i) the density of common UEs
using the same channel as the typical UE’s and (ii) average
cell size of the BSs serving such common UEs. In FRb, each
BS utilizes only a single channel, so the entire UEs with
density λ become the common UEs. Next, the density of the
BSs serving the common UEs is pc(λ)λb. The average size
of cells having the common UEs then becomes 1/ (pc(λ)λb)
because the average cell size of BSs is the reciprocal of the BS
density [9]. As a result, E[1/Nb] = pc(λ)λb/λ. In the baseline,
common UE density is also λ, so the same calculation applies,
i.e. E[1/No] = E[1/Nb]. In FRu, common UE density is
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TABLE II
LIST OF RESOURCE ALLOCATION AND INTERFERER DENSITY

Scheme Resource Allocation Interferer Density
W/Mi E[1/Ni] λi

Baseline W pc(λ)λb/λ pc (λ)λb
FRb W/Mb pc(λ)λb/λ pc (λ)λb/Mb

FRu W/Mu pc(λ/Mu)λb/(λ/Mu) pc (λ/Mu)λb

reduced by 1/Mu, and this enlarges the average cell size by
replacing λ with λ/Mu, as summarized in Table II.

Consequently, in return for resource allocation reduction as
Mi increases, it improves SIR reliability in (1), and thereby
increases spectral efficiency in (2) for a fixed target reliability.
To achieve UR2C, we capture this reliability-rate tradeoff
between (1) and (2), and formulate our optimization problem.

(P0) maximize
Mi

Rt(Mi)

s.t. Pt(Mi) ≥ η

It is noted that Rt(Mi) and Pt(Mi) respectively are mono-
tone increasing and decreasing functions of the SIR threshold
t. Therefore Rt(Mi) is maximized when Pt(Mi) = η holds,
which is the reliability constraint equation. In this respect,
we define ubiquitous rate Rη(Mi) as the maximum rate
guaranteeing Pt(Mi) ≥ η.

Our objective is to derive Rη(Mi) for each frequency
reuse scenario. To this end, we first derive a closed-form
Pt(Mi) approximation (Lemma 3), and thereby easily solve
the reliability constraint equation with respect to t. For this
given optimal t, we tractably optimize Rη(Mi) with respect
to Mi under an ultra-reliable regime, i.e. η ≈ 1.

IV. CLOSED-FORM RELIABILITY VIA NORMALIZED SIR

This section derives closed-form SIR reliability approx-
imation for UR2C (Lemma 3). This enables closed-form
ubiquitous rate expressions in the next section (Proposition
2). To this end, we consider the following two techniques.

Technique #1. SIR normalization. At a typical UE, let
S (λb) denote its received desired signal power when asso-
ciating with the nearest BS out of all BSs with density λb.
Similarly, Ir (λi) denotes aggregate interference where λi is
interferer density and r the typical UE’s association distance.
In the baseline utilizing the entire bandwidth, all the BSs
that have at least a single UE perform downlink transmissions
interfering with the typical UE. Therefore, λo = pc(λ)λb. In
FRb, 1/Mb portion of such non-void BSs become interferers,
and thus λb = pc(λ)λb/Mb. In FRu, only the BSs having at
least a single UE that is served through the same channel as
the typical UE’s with probability 1/Mu become interferers. It
leads to λ = pc(λ/Mu)λb, as summarized in Table II.

Next, we utilize a transformation between BS density λb and
received signal power S (λb) (or λi and Ir(λi)). According to
mapping theorem [7], P times transmission power increase
for all BSs is almost surely (a.s.) identical to P

2
α times BS

densification without their power increase, from the typical

UE’s received signal power point of view. By exploiting this
relationship, we can transform any SIR(Mi) = S (λb) /Ir (λi)

into its normalized value S̃IR = S(1)/Ir(1) specified in the
following lemma.

Lemma 1. (SIR normalization, Corollary 2.35 in [7]) SIR(Mi)

and its normalized S̃IR satisfy the following relationship.

SIR(Mi) =

(
λb
λi

)α
2

S̃IR a.s. (3)

This allows us to focus only on λi when examining the
proposed scheme’s impact on SIR.

Technique #2. Hypergeometric function transformation.
When λi = λb, it has been known that the baseline model’s
downlink SIR coverage at a typical UE is the reciprocal of a
Gauss-hypergeometric function [5], [6], given as

Pt(Mi) = 2F1

(
1,− 2

α
; 1− 2

α
;−t

)−1

(4)

where a Gauss hypergeometric function 2F1(a, b; c; z) :=∑∞
n=0

(a)n(b)n
(c)n

zn

n! and Pochhammer symbol (x)n is defined
as Γ(x+ n)/Γ(x) for the Gamma function Γ(x+ 1) := x!.

Applying Lemma 1 generalizes this result for an arbitrary
λi > 0 by using Lemma 1.

Pt(Mi) = Pr

(
S̃IR ≥

[
λi
λb

]α
2

t

)
(5)

= 2F1

(
1,− 2

α
; 1− 2

α
;−
[
λi
λb

]α
2

t

)−1

(6)

The last step follows from (4), which is also applicable for
S̃IR. Setting λi = λb = 1 while replacing t with (λi/λb)

α
2 t

yield such a result.
The result (6) is, however, still not applicable for analyti-

cally solving the reliability constraint equation Pt(Mi) = η
since the inverse function of (6) is unknown. We detour this
problem by utilizing Pfaff’s Gauss-hypergeometric function
transformation [10], specified in the following lemma.

Lemma 2. (Reliability Bounds) SIR reliability Pt(Mi) is
upper and lower bounded as follows.

α

2π csc
(
2π
α

) (1 + [λi
λb

]α
2

t

)− 2
α

≤ Pt(Mi) ≤

(
1 +

[
λi
λb

]α
2

t

)− 2
α

(7)

Proof: Consider Pfaff’s transformation [10] given as follows.

2F1

(
c− a, b; c; [1− 1/z]−1) = (1− z)−b 2F1(a, b; c; z) (8)

Setting x = t(λI/λS)
α
2 and applying a = b = − 2

α , c = 1− 2
α ,

and z = (1 + 1/x)
−1 yields Pt(Mi) = c0 (1 + x)

− 2
α where

c0 :=2 F1

(
− 2
α ,−

2
α ; 1− 2

α ; 1
1+x

)
is a monotonically decreas-

ing function of x, having maximum 2π
α csc

(
2π
α

)
and minimum

1 respectively when x approaches 0 and ∞. Applying these
inequalities provides the desired result. �

As shown in Fig. 2, the lower bound in Lemma 2 is only
accurate for low SIR reliability when t → ∞, so is not
applicable for UR2C design. On the contrary, the upper bound
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Fig. 2. Reliability bounds in Lemmas 2 and 3 (λi = λb, α = 4).

has potential for the use in an ultra-reliable regime. This
motivates us to further improve the upper bound.

With this end, we modify the upper bound so that it can
asymptotically converge to the exact curve in the ultra-reliable
regime, i.e. t→ 0. This only requires replacing the outermost
exponent 2/α with 2/(α−2), leading to another lower bound.

Lemma 3. (Closed-Form Ultra-Reliability) SIR reliability
Pt(Mi) is lower bounded as follows.

Pt(Mi) ≥

(
1 +

[
λi
λb

]α
2

t

)− 2
α−2

(9)

where the equality holds when (λi/λb)
α
2 t→ 0

Proof: See Appendix. �

As Fig. 2 shows, Lemma 3 lower bound is accurate in an
ultra-reliable regime. In the following we therefore utilize this

as an approximation, i.e. Pt(Mi) ≈
(

1 + [λi/λb]
α
2 t
)− 2

α−2

.

V. UBIQUITOUS RATE WITH FREQUENCY REUSE

In the first subsection, closed-form ubiquitous rates for FRb
and FRb are derived. Based on this result, FRb and FRu are
optimized in the second subsection.

A. Closed-Form Ubiquitous Rate

Applying Lemma 3 with λi summarized in Table II yields
the closed-form reliabilities for FRb, FRu, and the baseline.

Proposition 1. (Reliability) For η ≈ 1, the reliabilities of FRb,
FRu, and the baseline for SIR threshold t are given as follows.

FRb : Pt(Mb) ≈

[
1 +

(
pc (λ)

Mb

)α
2

t

]− 2
α−2

(10)

FRu : Pt(Mu) ≈

[
1 + pc

(
λ

Mu

)α
2

t

]− 2
α−2

(11)

Baseline : Pt(1) ≈
[
1 + pc (λ)

α
2 t
]− 2

α−2 (12)

The closed-form representations makes it possible to invert
the reliability constraint equation Pt(Mi) = η with respect

to t. Applying this t to the rate Rt(Mi) in (2) leads to the
following closed-form ubiquitous rates.

Proposition 2. (Ubiquitous Rate) For η ≈ 1, ubiquitous rates
of FRb, FRu, and the baseline are given as follows.

FRb : Rη(Mb) ≈
ηWpc (λ)λb

Mbλ
log2

(
1 +

cηMb
α
2

pc (λ)
α
2

)
(13)

FRu : Rη(Mu) ≈
ηWpc

(
λ
Mu

)
λb

λ
log2

1 +
cη

pc
(

λ
Mu

)α
2

 (14)

Baseline : Rη(1) ≈
ηWpc (λ)λb

λ
log2

(
1 +

cη

pc (λ)
α
2

)
(15)

where cη :=
(
α
2 − 1

)
(1− η)

Proof: See Appendix. �

This result specifies the impacts of frequency reuse and
ultra-densification on ubiquitous rate as below.

Remark 1. (Impact of Mi) A larger Mi decreases resource
allocation, and yet increases spectral efficiency. Therefore,
optimizing Mi is required.

For FRu, the foregoing remark comes from the fact that
pc(λ/Mu) is a monotone decreasing function of Mu.

Remark 2. (Impact of Densification) BS densification im-
proves both spectral efficiency and resource allocation.

By the definition pc(λ) decreases with λb, and asymptot-
ically converges toward 0 at the rate of λ/λb. This makes
the density of the BSs occupying a single channel is upper
bounded by the entire UE density, i.e. pc(λ)λb ≤ λ. Until
reaching this bound, BS densification at least provides a
marginal gain in resource allocation. Deploying more BSs also
increases spectral efficiency by improving SIR reliability as
specified in Lemma 3, leading to the above remark.

Remark 3. (Indistinguishable Condition) The ubiquitous rates
of FRb and FRu are indistinguishable if Mb and Mu satisfy
pc (λ/Mu) = pc(λ)/Mb, which is not always ensured since
Mu and Mb are integers no smaller than 1.

It straightforwardly follows from comparing (13) and (14).
This remark predicts that the optimal ubiquitous rates of FRb
and FRu are not always identical yet very close to each other,
to be verified by simulation in the next section.

Remark 4. (Identically Optimal Condition) For the optimal
M∗i maximizing its ubiquitous rate, the optimal ubiquitous
rates Rη(M∗b ) and Rη(M∗u) become identical when both
M∗b ,M

∗
u → 1 or λb →∞.

The case M∗i → 1 makes FRb and FRu converge to the
baseline having Mo = 1. For λb → ∞, indistinguishable
condition in Remark 3 is always satisfied since pc(λ) and
pc(λ/Mu) converge to 0.

B. Optimal Frequency Reuse Design
The optimal M∗i maximizing the ubiquitous rate is found

as follows.
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Fig. 3. Maximized ubiquitous rates of FRb and FRu (W = 100 MHz).

Proposition 3. (Optimal M∗i ) For η ≈ 1, the optimal M∗i
maximizing Rη(Mi) is given as below.

M∗b ≈ argmin
Mb

∣∣∣∣∣
(
1 +

pc (λ)
α
2

cηMb
α
2

)
log2

(
1 +

cηMb
α
2

pc (λ)
α
2

)
− α

2

∣∣∣∣∣ (16)

M∗u ≈ argmin
Mu

∣∣∣∣∣∣∣
[
cη + pc

(
λ

Mu

)α
2

]
log2

1 +
cη

pc
(

λ
Mu

)α
2

− αcη
2

∣∣∣∣∣∣∣
(17)

Proof: See Appendix. �

For λb → 0 or ∞, the optimal M∗i ’s converge as follows.

Corollary 1. (Asymptotically Optimal M∗i ) For η ≈ 1, the
asymptotic behavior of the optimal M∗i with respect to BS
density λb is given as follows.

M∗b = M∗u =

{
∞ if (1− η)λb

α
2 → 0

1 if (1− η)λb
α
2 →∞ (18)

In the first diverging M∗i , we can notice that the increase in
M∗i comes from a higher reliability requirement η and/or lower
BS density. This implies exploiting frequency reuse becomes
more effective for the UR2C design in sparse networks. The
second converging M∗i to unity follows from the fact that BS
ultra-densification can solely provide the target ultra-reliability
while no longer relying on frequency reuse.

VI. NUMERICAL EVALUATION

Default system parameters in this section are given as
follows: η = 0.99, α = 4, and W = 100 MHz [2]. Applying
Proposition 3 to Proposition 2 via numerical simulation yields
the following frequency reuse design guideline for UR2C.

FRb and FRu increases ubiquitous rate, further improved
by higher η and α. Fig. 3 shows the maximized ubiquitous
rates with FRb and FRu based on Proposition 3 (see yellow
dotted and blue solid curves) outperform the baseline result
without frequency reuse (black dash-dotted). The gain in
ubiquitous rate, Rη(M∗i )/Rη(1), increases for higher η as
it makes frequency reuse more effective to cope with the

BS/UE Density Ratio
0 1 2 3 4 5 6 7 8 9 10

O
pt

im
al

 N
um

be
r o

f C
ha

nn
el

s

0

5

10

15

20

25

30

35

FRu, Proposition 3
FRb, Proposition 4

Baseline

BS/UE Density Ratio
0 5 10 15 20 25 30

O
pt

im
al

 N
um

be
r o

f C
ha

nn
el

s

0

2

4

6

8

10

12

14

16

18

20

⌘ = 0.999, ↵ = 4
⌘ = 0.999, ↵ = 4

⌘ = 0.99, ↵ = 4
⌘ = 0.99, ↵ = 4

⌘ = 0.99, ↵ = 6
⌘ = 0.99, ↵ = 6

for �b/�u = 0.01M⇤
u = 935

M⇤
u = 3098

M⇤
u = 541

⇢
M⇤

u = 935 M⇤
u = 935
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target reliability requirement. Compared to the baseline, the
maximum gain with η = 0.999 is 3.15 times larger than the
gain with η = 0.99. For higher α, the gain also increases since
SIR grows along with α under an interference-limited regime
[4]–[6], amplifying the effect of frequency reuse in ubiquitous
rate improvement. When α becomes 6 from 4, it increases the
gain by 2.03 times. For a given target ubiquitous rate 50 Mbps,
both FRb and FRu improve ubiquitous rate for all considered
scenarios, while not converging to the baseline. This leads to
reducing the required BS densification by up to 46%.
FRb mostly performs better while FRu sometimes out-

performs for large BS density. Overall, the maximized
ubiquitous rates of FRb and FRu keep crossing as BS density
increases, but have no significant gap. As predicted in Remark
3, the reason follows from the fact that Mi’s are integers no
smaller than 1. These coarse unit changes cannot effectively
minimize the objective argument functions in Proposition 3, so
constantly lead to peaky crossings as well as the gap between
the results from Proposition 3 and a full search algorithm in
Fig. 3, until FRb and FRu converge to the baseline. While
having similar ubiquitous rates, FRb requires less number of
channels as shown in Fig. 4, so is more preferable than FRu,
especially for small BS density where M∗u is unrealistically
large. For moderate BS density, FRu sometimes provides up to
28% higher ubiquitous rate than FRb, and it is thus important
to compare them in this regime for UR2C design. For large
BS density, frequency reuse gain in ubiquitous rate disappears
as also anticipated in Remark 4 and Corollary 1.

Optimal FRb and FRu provides similar per-UE resource
allocations and spectral efficiencies. Fig. 5 illustrates that
FRb’s maximum per-UE allocation W/M∗b is larger but its
actual allocation fraction E[1/N∗b ] within the maximum value
due to multiple access is smaller. These two factors cancelled
out each other, resulting in almost the same resource allocation
as FRu’s. Fig. 6 visualizes FRb’s maximized spectral efficiency
keeps crossing but becomes clearly larger under a small BS/UE
density environment. This originates from the fact that FRb
more aggressively reduces interference by forcing to use only a
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single channel (see Fig. 1-a). It is effective under small BS/UE
density where SIR is low, yielding FRb’s smaller interferer
density normalized by BS density λ∗i /λb. Note also that non-
smooth FRb and FRu curves in Figs. 5 and 6 are because Mb

and Mu are integers as elaborated in Remark 3.

VII. CONCLUSION

In this paper we derive closed-form ubiquitous rate, and
investigate two frequency reuse schemes FRb and FRu so that
they can ubiquitously achieve the UR2C’s target 50 Mbps data
rate with 99% SIR reliability. Both of their optimal designs
provide higher ubiquitous rates compared to the baseline with-
out frequency reuse. This result is different from traditional
network design guidelines that prefer not to use frequency
reuse for only maximizing data rate without guaranteeing
reliability. To enable UR2C, it would also be interesting to
revisit other reliability achieving schemes such as double
associations for attaining diversity gain [11].

APPENDIX

Proof of Lemma 3: Let f(x) = 2F1

(
1,− 2

α
; 1− 2

α
;−x

)−1. By the
Gauss-hypergeometric function definition,

f(x) =

[ ∞∑
n=0

(1)n
(
− 2
α

)
n(

1− 2
α

)
n

(−x)n

n!

]−1

= 1−
2x

α− 2
+O(x2) (19)

The last step follows from Taylor’s expansion for x → 0. This indicates
limx→0 f ′(x) = −2/(α− 2).

Consider g(x) := (1 + x)
− 2
α−2 , having the same slope as f ′(x) as

x→ 0. To verify g(x) ≤ f(x), we consider the first and second derivatives
of f(x) and g(x) for x > 0 as follows:

f ′(x) = −
2
[
f(x)− (1 + x)−1 f(x)2

]
αx

; (20)

f ′′(x) =
2(2 + α) + (1 + x)−2 [8− 2(α+ 6 + 6x+ 2αx)f(x)]

(ax)2f(x)
; (21)

g′(x) = −
2(1 + x)

−
(
1+ α

α−2

)
α− 2

; g′′(x) =
2α(1 + x)

−2
(
1+ 2

α−2

)
(α− 2)2

. (22)

Firstly, f ′(x), g′(x) < 0, f ′′(x) > 0, and g′′(x) ≥ 0 for all x > 0
where the equality holds when x → ∞ and/or α → ∞. Secondly,
limx→0 f ′(x)/g′(x) = 1 and limx→∞ f ′(x)/g′(x) ≤ 1 where the equality
holds when α → ∞. Lastly, f(0)/g(0) = 1 and limx→∞ f(x)/g(x) = 1
due to their original coverage probability definitions. As x increases, these
conclude that f(x) and g(x) are monotonically decreasing, starting identically
from unity while the decreasing slope of g(x) is steeper than that of f(x) due
to f ′(x)/g′(x) ≤ 1 for all x > 0. This concludes the proof of f(x) ≥ g(x)
for all x. �

Proof of Proposition 2: Let ai denote pc(λb)/Mb, pc(λ/Mu), and pc(λ)
respectively for FRb, FRu and the baseline. By applying Proposition 1, the
reliability constraint equation Pt(Mi) = η is rephrased with respect to t as

t = ai
−α

2

[
η−(

α
2
−1) − 1

]
= ai

−α
2

[
[1− (1− η)]−(

α
2
−1) − 1

]
(23)

In (23), applying Taylor expansion for η ≈ 1 makes
[1− (1− η)]−(

α
2
−1) become 1 + cη . Applying this with Table II

and a typical UE’s reliability η to (2) provides the desired result. �
Proof of Proposition 3: According to Karush-Kuhn-Tucker (KKT) first

and second order conditions, the local maximum of Rη(Mb) in (13)
is the global maximum. Likewise, the local maximum of Rη(Mu) in
(14) becomes its global maximum. Therefore, Mb and Mu can maximize
Rη(Mb) andRη(Mu) when respectively satisfying the first order conditions
dRη(Mb)/dMb = 0 and dRη(Mu)/dMu = 0. Now that Mb and Mu are
integers no smaller than 1, the values minimizing the LHS of the first order
conditions provide the optimal numbers of channels, finalizing the proof. �
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