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Abstract—We introduce a model of Poisson patterns of fixed
and mobile nodes on lines designed for urban wireless networks.
The pattern obeys to “Hyperfractal” rules of dimension larger
than 2. The hyperfractal pattern is best suitable for capturing the
traffic over the streets and highways in a city. We show that the
network capacity under ad hoc routing algorithms scales much
better than with the classic uniform Poisson shot model. The
scaling effect depends on the hyperfractal dimensions. We show
this results in two different routing models: nearest neighbor
routing with no collision, minimum delay routing model assuming
slotted Aloha and signal to interference ratio (SIR) capture
condition, power-path loss and Rayleigh fading. The novelty of
the model is that, in addition to capturing the irregularity and
variability of the node configuration, it exploits self-similarity, a
characteristic of urban wireless networks.

I. INTRODUCTION

Future networks require challenging and diverse commu-

nication scenarios with topologies designed to fit specific use-

cases [1], [2]. The explosion of the Internet of Things (IoT),

devices employing ad-hoc communication has brought back

in the attention the ad-hoc networks. Traditionally, for the

modeling of ad-hoc topologies, uniform Poisson spatial models

are employed. These models have been successfully applied

to analyze wireless networks that exhibit a high degree of

randomness. The characteristics and network metrics have

been extensively studied in scientific literature [3] and results

about the scaling laws are well-known [4].

Urban infrastructures display a certain degree of regularity

that has been modeled by the Manhattan grid [5], used as a

lattice with users positioned in its corners. In reality, users have

random positions on streets and the density of the users on

each street depends on the level of importance of the respective

street in the city road map (boulevard, street, alley, etc).

Recently, models of fractal repartition have been introduced

[6], [7] and have shown that environment displays self-

similarity characteristics. For example, a department has rural

areas, with low density of population, and urban areas, with

high density of population, namely cities and towns. The towns

are split in neighborhoods, each neighborhood is organized in

blocks separated by streets. Blocks are made of buildings that

are themselves split in apartments and so on. This description

is very close to a fractal object that is based on self-similarity.

Figure 1 represents Indianapolis downtown road map and

is a perfect illustration of a map exhibiting self-similarity

properties.

Figure 1: lndianapolis downtown road map

Results that exploit self-similarity are very promising. In [6],

the authors showed that a limit of the capacity in a network

with a non-collaborative protocol is inversely proportional to

the fractal dimension of the spatial repartition of terminals. In

their model the nodes have locations defined as a Poisson shot

inside a fractal subset, for example a cantor set.

By definition a fractal dimension is smaller than the Euc-

lidean dimension; it can be arbitrary smaller. In this work we

propose a new model, which we call “Hyperfractal”, for the

ad-hoc urban wireless networks. This model captures not only

the irregularity and variability of the node configuration but

the self-similarity of the topology as well. The hyperfractal

model is not a Poisson shot model in a fractal support but

rather is a Poisson shot model which has support a measure

which has scaling properties. It is a kind of generalization of

fractal Poisson shot models, and in some cases, in fact in every

case of our urban traffic models, it will have a dimension that

is larger than the Euclidean dimension and this dimension can

be arbitrarily large.

The radio model comprises urban-specific phenomenons

such as the “urban canyon” propagation effect which is the

most realistic in urban context.

Using insights from stochastic geometry and fractal geo-

metry, we derive scaling laws of information routing metrics

as well of throughput capacity and we prove by numerical

analysis and simulations the accuracy of our expressions.
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II. SYSTEM MODEL AND GEOMETRY

A. Urban Geometry: hierarchical grid street model

Let us assume that map is the unit square and it is divided

into a grid of streets, horizontal (or West-East oriented) streets

and vertical (or North-South oriented) streets, similar to a

Manhattan grid. The horizontal (resp vertical streets) streets

have abscissas (resp. ordinates) which are integer multiple of

inverse power of two. The number of binary digits after the

coma minus indicates the level of the street, starting with the

street with abscissas (resp ordinate) 1/2 being at level 0.

We assume that the streets of level 0 are the highways of

the city which support the most traffic, the level 1 are the

main streets, the other levels are secondary streets, the traffic

decreasing with level number.

The street grid can, of course, be based on on the powers of

a different number, for example 3 or 4. This particular model

is realistic for a modern US city. Figure 1 shows a map of

Indianapolis as an example. It could also model the pattern of

older cities in the ancient world. In this case, the model would

display a similar hierarchical street distribution but plugged

into a more chaotic geometric pattern instead that of the grid

pattern.

B. Hyperfractal Mobile nodes distribution

It is assumed that the density of mobiles on streets decays

as a decreasing function of the street. The process of assigning

points to the streets is performed recursively, in iterations,

similar to the process for obtaining the Cantor Dust [8].

We notice that the two streets of level 0 form a central cross

which splits the map in exactly 4 quadrants. Let us assume a

probability p′ and denote by q′ the complementary probability

1 − p′. A mobile node is dispatched on a street according to

the following procedure:

• with probability p′ the mobile node is located on the cross

according to a uniform distribution.

• otherwise, with probability q′/4, it is located in one the

four quadrants where the assignation procedure continues

recursively.

The procedure stops when the mobile node is assigned to a

cross of a level m ≥ 0. A cross of level m consists of two

intersecting segments of streets of level m. An example of a

decreasing density in the street assignment process performed

in L = 4 steps is given in Figure 2.

Taking the unit density for the initial map, the density of

mobile nodes in a quadrant is q′/4. Let µH be the density of

mobile nodes assigned on a street of level H . It satisfies:

µH = (p′/2)(q′/2)H (1)

The measure (understood in the Lebesgue meaning) which

represents the actual density of mobile nodes in the map

has strong scaling properties. The most important one is that

the map as a whole is identically reproduced in each of the

four quadrants but with a weight q′/4 instead of 1. Thus

the measure has a structure which recalls the structure of a

fractal set, such as the Cantor map. A crucial difference lies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Example of mobile density Map obtained in L = 4
iterations. The lines are thicker for the level obtained first and

become thinner with the increase of the level.

in the fact that its dimension, dm, is in fact greater than 2,

the Euclidean dimension. Indeed, considering the map in only

half of its length consists into considering the same map but

with a reduced weight by a factor q′/4. Thus, one obtains:

(

1

2

)dm

= q′/4 (2)

Thus

dm =
log( 4

q′ )

log 2
> 2 (3)

This property can only be explained via the concept of

measure. We coin here the term hyperfractal to refer to this

new kind of self scaling object in euclidean space. Notice that

when p′ → 0 then dm → 2 and the measure tends to the

uniform measure in the unit square.

One could extend the map in the whole quarter of the

plane. In this case the map is made of half infinite horizontal

and vertical streets. If a vertical (resp. horizontal) street

has level H , it contains mobile nodes with uniform density

µH = (p′/2)(q′/2)H .

C. Canyon effect and relays

Due to the presence of buildings, the radio wave can hardly

propagate beyond the streets borders. The buildings are made

of concrete, glass and steal which generate a formidable

obstacle for propagation. Therefore, we adopt the canyon

propagation model where the signal emitted by a mobile node

propagates only on the axis where it stands on. Considering

the given construction process, the probability that a mobile

node is placed in an intersection tends to zero and mobiles

positioned on two different streets will never be able to

communicate. Therefore, one needs to add relays in some

street crossings in oder to guarantee connectivity and packet

delivery.

A relay consists of two connected wireless devices: a first

one transmitting and receiving on the North-South axis, and

the second one, transmitting and receiving on West-East axis.

We again make use of a hyperfractal process to select the

intersections which will contain a relay.
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Figure 3: Relays placement process

Denote by p a fixed probability and q = 1 − p the com-

plementary probability. A run for selecting a street crossing

requires two processes: the in-quadrant process and the in-

segment process. The selection starts with the in-quadrant

process as follows:

• with probability p2, the selection is the central crossing

of the two streets of level 0;

• with probability p(q/2), the relay is placed in one of

the four street segments of level 0 starting at this point:

North, South, West or East, and the process continues on

the segment with the in-segment process

• with probability (q/2)2, the relay is placed in one of the

four quadrants delimited by the central cross and the in-

quadrant process continues recursively.

The process of placing the relays is illustrated in Fig. 3. We

perform M independent runs of selection. If one crossing is

selected several times (e.g. the central crossing), only one relay

will be installed in the respective crossing. This reduction will

mean that the number of actually placed relays will be much

smaller than M .

Following a reasoning similar to the mobile placement, the

relay placement is hyperfractal with a hyperfractal dimension

dr:

dr = 2
log(2/q)

log 2
. (4)

Let p(H,V ) be the probability that the run selects a crossing

of two streets, one horizontal street of level H and one vertical

street of level V . There are 2H+V of such crossings. We have:

p(H,V ) = p2(q/2)H+V . (5)

Thus the probability that such crossing is selected to host a

relay is 1−(1− p(H,V ))
M

. When M is large, the probability

is approximately 1 − exp(−Mp(H,V )). If the number of

crossing selection run is a Poisson random variable of mean

ρ, then the probability that a crossing hosts a relay is exactly

1−exp(−Mp(H,V )). The relay Poisson model is interesting

as it generates independent crossings. For this reason, we keep

the relay Poisson model from now on.

The average number of relays on a streets of level H is

denoted by LH(ρ) and satisfies the identity:

LH(ρ) =
∑

V≥0

2V (1− exp(−p(H,V )ρ)) . (6)

We notice that LH(ρ) = L0((q/2)
Hρ) and that L0(ρ) satisfies

the functional equation:

L0(ρ) = 1− exp(−p2ρ) + 2L0((q/2)ρ). (7)
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Figure 4: Hyperfractal map of level 10 with mobiles and

relays, dm = 3, dr = 3

It is known from [9], [10] that this classic equation has a

solution such as L0(ρ) = O(ρ2/dr ).
The average total number of relays in the city, R(ρ), has

the expression:

R(ρ) =
∑

H,V≥0

2H+V (1− exp(−p(H,V )ρ)) (8)

and satisfies the functional equation

R(ρ) = 1− exp(−p2ρ)+ 4L0(p(q/2)ρ)+ 4R((q/2)2ρ). (9)

From the same reference, [9], [10], one gets

R(ρ) = O(ρ2/dr log ρ) (10)

Since 2/dr < 1 the number of relays is much smaller than

ρ. In the following we will take ρ = O(N). Due to lack of

space, complete proofs will be given in a extended version of

the paper.

Given the process of construction, the probability of ex-

istence of mobile nodes is independent of the probability of

existence of relays. Furthermore, the propagation limited to

the axes does not ensure full connectivity. The connectivity

graph presents a giant component. A complete Hyperfractal

map containing both mobile nodes and relays is presented in

Fig. 4.

III. ROUTING AND CAPACITY

Here it is considered that the nodes in the network, both

mobile nodes and relays, communicate like in a mobile ad hoc

network where packets are routed forward from their sources

to their destinations. We consider a table driven routing where

each nodes looks into a routing table to determine the next

relay to send the packet. The distributed protocols needed to

construct the routing tables in every node is not taken into

account. To simplify, we consider that the routing tables are

built by a central entity which has a full knowledge of the

topology of the network as well as the precise locations of the

nodes.

The routing table will be computed according to a minimum

cost path over a cost matrix [tij ] where tij represents the cost

of directly transmitting a packet from node i to node j. The

min cost path from node i to node j which optimizes the
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relaying nodes (either mobile nodes or fixed relays) is denoted

mij and satisfies:

mij = min
k

{mik + tkj} , ∀(i, j), (11)

Due to the canyon effect some nodes can be disconnected

from the rest of the network, several connected components

may appear and some routes may not exist. In the case node

i and node j cannot communicate mij = ∞. We restrict our

analysis to the giant component of the network which contains

the central node [ 12 ,
1
2 ]. We know that the size of this giant

component is strictly of order N .

In this paper two routing strategies are considered:

• the nearest neighbor routing;

• the minimum delay routing.

To simplify, it is assumed that the channel is noiseless, i.e.

every node is reachable given it is aligned (i.e. on direction

North-South or West-East) regardless of the distance towards

the transmitter. However, due to interference from other

transmitters, the quality of the connection may significantly

drop with respect to the relative distance between the nodes.

1) The nearest neighbor routing: In this strategy the next

relay is always a next neighbor on an axis, i.e. there exist no

other nodes between the transmitter and the receiver. Thus










tij = 1 if nodes i and j are aligned

and ∄k such that d(i, j) = d(i, k) + d(k, j)

tij = ∞ otherwise

This formula implies that, although the farther nodes on the

axis might be reachable, the interference created by the nearest

neighbors gives the farther node an infinite cost.

2) The minimum delay routing: In this model, the un-

derlying medium access control is slotted Aloha with per

slot and per node transmission probability pA. Considering

interference, required SIR, and attenuation factors, we denote

pij the probability that node j correctly receives a packet

transmission from node i at a given slot. Clearly, pij ≤
pA(1−pA), since a required condition is that node i transmits

and node j does not. Therefore, the average delay required

for node i to successfully transmit a packet to node j is

tij = 1/pij . The quantity mij will be the cost of the minimum

average path delay .

One should notice that the alternative strategy where we

consider the minimum average number of retransmission on

the path to the destination will provide the same shortest path.

Indeed it will consist into multiplying the coefficients tij and

mij by the factor pA.

A. Capacity

In this section a known result [11] for the throughput

capacity of the ad-hoc networks is reminded and extended.

Let us remind the following notations and results. For the

hyperfractal distribution of nodes we assume N mobile nodes

and that the relay nodes distribution satisfies ρ = N . It is

already known that R(N) = o(N). Denote by GN the giant

component of the network, its size |GN | is Θ(N).

Let ζ(N) be the throughput capacity, defined as the expec-

ted number of packets delivered to their destinations per slot.

It is a metric that depends on the number of nodes, N , SIR

threshold, K, attenuation coefficient. α, the medium access

scheme parameters and the expected transmission rate of each

node, Ωi(N).

Theorem 1. The throughput capacity of random wireless

networks is of order [11] :

ζ(N) = Θ

(

N2
∑

i∈GN
Ωi(N)

∑

i,j∈GN
mij

)

. (12)

We intentionally keep vague the question whether or not

the relay nodes should be mentioned or not in the giant

component or if those relays generate traffic or limit their

action to forwarding packets generated by mobile nodes. In

any case this does not change the order of magnitude of the

global throughput estimate.

One can notice that the quantity:

DN =

∑

i,j∈GN
mij

|GN |(|GN − 1)
(13)

is the average path cost in the giant component.

In the nearest neighbor routing it is assumed that all nodes

require the same quantity of bandwidth β: ∀i : Ωi = β. With

Aloha and with the min path cost we have exactly ∀i : Ωi =
pA slot bandwidth per node. To simplify we, it is assumed

that the nodes transmit something even if they have no packet

in their buffer. A complete proof of this results can be found

in [11].

B. Average path cost and capacity estimate

In the context of nearest neighbor routing strategy, we prove

the following result:

Theorem 2. The average number of hops in a Hyperfractal

is:

DN = O
(

N1− 2
(1+1/dm)dr

)

(14)

where N is the number of mobile nodes and dm and dr are

respectively the hyperfractal dimensions of mobile nodes and

relays.

We conjecture (supported by the simulations) that with the

minimum delay routing strategy using Aloha we have the same

scaling.

Conjecture 2.1. The average path cost in minimum delay

routing in a Hyperfractal scales as:

DN = O
(

N1− 2
(1+1/dm)dr

)

(15)

Notice that when dr → 2 (i.e. when the relay distribution

tends to be uniform Poisson) then DN tends to be in N
1

1+dm

which is o(N1/3) much smaller than the average cost with

uniform Poisson shot model, where the average path cost is

O(N1/2) in the plane [4]. In fact N1/3 would be the order of

magnitude of the average path length in uniform Poisson in

a cube. The estimate DN = o(N1/(1+dm)) suggests the idea

The 2017 International Workshop on Spatial Stochastic Models for Wireless Networks (SpaSWiN)



that the hyperfractal distribution operates as if the distribution

of mobile nodes was a uniform distribution in an hypercube

of dimension 1 + dm.

Corollary 2.1. The capacity in a Hyperfractal with N mobile

nodes scales as:

ζ(N) = Θ
(

N
2

(1+1/dm)dr

)

(16)

In consequence, when dr → 2 and dm → ∞ the capacity

tends to scale linearly.

IV. PROOFS OF THEOREM 14

Proof. The proof will be left sketchy due to the lack of room.

Mobile node mH situated on a line of level H wants to send

a packet to its destination, mV , situated on a line of level

V . The largest order of magnitude for path cost occurs when

mV and mH are on non parallel streets as illustrated in Figure

5,a). Furthermore, the dominant case is V = H = 0, the other

cases will just introduce extra factors which will not change

the obtained orders of magnitude.

Given that the densities of the population on the support

street of mobile nodes are high, the game will consist into

diverting the packet by following a vertical line of level

x > 0 with a much lower density. A similar phenomenon

happens towards mobile mV , the packet will return on the

support street of mV as “close” as possible to node mV ,

after following an horizontal street of level y > 0. Since it is

considered V = H , by symmetry we will only consider that

x = y.

V

mH

mV

x

y

mH

mV

y

a) b)

Figure 5: Routing in a Hyperfractal a) intermediate levels x

and y, b)extra intermediate levels
In order for the packet to change direction in its route, it

is mandatory that a relay exists at the crossing. Let L(x, y)
be the average distance between a random mobile node on a

street of level y to the first relay to a street of level x. Every

crossing between streets of level x and y is independent and

holds a relay with probability 1− exp(−ρp(x, y)). Since such

crossings are regularly spaced by interval 2−x we get:

L(x, y) ≤
2−x

1− exp(−ρp(x, y))
. (17)

Our aim is now to count the number of nodes traversed by

the packet on its route. There is no room to prove that the

main contribution in the count comes from the number of

traversed mobile nodes. It is first assumed that the two streets

of level x have a relay at their intersection. In this case,

the average number of traversed nodes is upper bounded by

2Nµ0L(x, 0) + 2Nµx.

If x = α log ρ
log(2/q) for 1/2 < α < 1, then

L(x, 0) =
ρ−2α/dr

1− exp(−p2ρ1−α)
= O(ρ−2α/dr ). (18)

We also have µx = O(ρ−α
log(2/q′)
log(2/q) ) = o(ρ−2α/dr ). The

probability that there exists a valid relay at level x street

intersection is 1− exp(−ρp(x, x))) which tends to zero when

α > 1/2 since ρp(x, x) = p2ρ1−2α. Let us assume this holds

(to be verified afterward).

Following this observation, an intermediate level, 0 < y <
x, is added to the route with:

y = β
log ρ

log(2/q)
(19)

with β = 1− α. We consider the first relays on the streets of

level y counted from the intersection of the streets, they are at

average distance L(y, x). The probability that the intersection

two streets of level y has a relay is 1− exp(−ρp(y, y)) which

tends to 1 when ρ → ∞ since ρp(y, y) = p2ρ1−2β .

The average distance between the intersection (x, x) with

the routes of levels y which have a valid relay at their

intersection is
L(y,x)

1−exp(−ρp(y,y)) = O(ρ−2β/dr ).
Level y adds a number of hops of an average quantity

2Nµy
L(x,y)

1−exp(−ρp(y,y)) thus the number of extra hops if of

order: O(Nρ−2β dm
dr ). The total number of hops is now

O(Nρ−2α/dr ) + O(Nρ−2β dm
dr ). This quantity is minimized

for α = dm

1+dm
and β = 1

1+dm
. We confirm that α > 1/2

The minimized value of the number of hops is, thus:

DN = O(Nρ−
2

(1+1/dm)dr ) (20)

V. NUMERICAL RESULTS

A. Aloha model with Rayleigh fading

We consider slotted, synchronized Aloha scheme and that

all nodes are backlogged. Each transmitting node uses the

same nominal transmit power. Path-loss between node i and

node j is modeled by the power-law function l(i, j) = (Ar)α,

when the two nodes i and j are aligned, where A,α are

some constants and r is the distance between transmitter

and receiver, otherwise l(i, j) = 0. The reception undergoes

Rayleigh fading Fij independent over nodes and time, the

signal received by receiver j from transmitter i at time slot n
becomes Fij l(i, j).

By assuming the background noise power negligible, and

that node i is in transmit mode, the successful reception of a

signal transmitted from node i to a node j at a given time slot

occurs when:

Fij l(i, j) > K
∑

k∈B−{i}

Fkj l(k, j) (21)
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Figure 6: Average number of equipped intersections for the

two configurations, a)dm = dr = 3, b)dm = 3, dr = 2.2

where K is the SIR threshold related to the bit-rate when a

particular modulation plus coding scheme is considered. B is

the subset of nodes transmitting at the considered time slot. In

the particular case of a relay we have to separate the signals

coming from the vertical street with the signals received from

the horizontal streets

In order to avoid computational expensive and time-

consuming simulations of ALOHA protocol, we use the

following results for computing the probabilities of successful

reception, pij when independent Rayleigh fading is applied:

pij = pA(1− pA)
∏

k 6=i,j

wkj (K/l(i, j)) . (22)

where wkj(θ) is the Laplace transform of the signal produced

by node k over node j, these quantities are simple rational

functions of θ. We will take α = 4 and K = 1.

Now that we have this result on the probability of successful

reception, we apply Dijkstra algorithm on the cost matrix tij =
1/pij . Two configurations are studied, one where the fractal

dimension of mobiles is equal to the ones of relays, dm = dr
and the second one, where the two values differ, dm > dr.

B. Simulation results

Figure 6 validates the scaling law for the average number

of equipped intersection introduced in equation (10) for

both evaluation setups. Figure 7 validates the Conjecture 2.1

by simulations and computation using minimum path cost

algorithm. In fact it shows that the proposed scaling law is

rather pessimistic, offering improvement for future work.

Another simulation is performed on the throughout capacity.

Thanks to the given closed form expressions, computations can

be done fast and conveniently. We compute the throughput ca-

pacity using Theorem 1 where the quantities mi,j are obtained

by using a minimum path cost computation algorithm, where

the values in the cost matrix are the inverse of the expression

[22].

Figure 8 illustrates the results of this computation. Again,

the conjectured scaling law is pessimistic.

VI. CONCLUSION

This work introduced a new model, which called “Hyper-

fractal”, for the ad hoc urban wireless networks. The model

Figure 7: Average path cost scaling for the two configurations,

a)dm = dr = 3, b)dm = 3, dr = 2.2

Figure 8: Throughput capacity scaling for the two configura-

tions, a)dm = dr = 3, b)dm = 3, dr = 2.2

captures the irregularity and variability of the node configur-

ation and, in addition to previous works, the self-similarity of

the topology. The hyperfractal model is a Poisson shot model

which has support a measure with scaling properties. We

showed here the scaling of metrics of interest like throughput

capacity and the number of hops and path cost under two

routing algorithms. The results show that the scaling is much

better than with the classic Poisson shot model.
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