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Abstract—We investigate the performance of dynamic proac-
tive caching in relay networks where an intermediate relay
station caches content for potential future use by end users.
A central base station proactively controls the cache allocation
such that cached content remains fresh for consumption for a
limited number of time slots called proactive service window. With
uncertain user demand over multiple data items and dynamically
changing wireless links, we consider the optimal allocation of
relay stations cache to minimize the time average expected service
cost. We characterize a fundamental lower bound on the cost
achieved by any proactive caching policy. Then we develop an
asymptotically optimal caching policy that attains the lower
bound as the proactive caching window size grows. Our analytical
findings are supported with numerical simulations to demonstrate
the efficiency of the proposed relay-caching.

I. INTRODUCTION

The tremendous increase in demand for spectrum-based

services has led end users to experience a major demand

and supply mismatch during the whole day. During peak

periods, the demand level is high and may reach the network

capacity causing congestion. However, during off-peak periods

the network resources are underutilized. Thus the concerns

of spectrum under-utilization have been raised due to the

spatial and temporal variations in the activity of wireless users

[1]. This study is also strengthened by the recent data traces

collected by major European operators in [2]. Thus, during

peak periods service providers incur excessive costs to provide

reliable delivery of the requested data, on the contrary at off-

peak periods.

It is predicted that mobile data traffic will see a nine-

fold increase by the end of 2020 compared to 2014 [3].

That is why networks should consider employing advanced

resource allocation techniques in order to balance the rapid

increase in the user demand. There has been extensive research

to tackle such a problem, some of which has employed

reactive resource allocation techniques where the user is served

when the request is initiated by the user. Under heavy traffic

conditions, reactive techniques suffer from huge penalty as

degrade network performance.

Predictability of a wireless user demand is supported by

a growing body of evidence that ranges from the launch of

Google Instant to the interesting findings on the predictable
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mobility patterns [4]. Also the user’s experienced channel

quality metrics (CQM) including received signal strength and

interference levels are predictable as well [5], [6].

However, one of the technologies for 5G wireless networks

is proactive resource allocation [7]. The main idea of proactive

resource allocation is to leverage the predictable characteristics

of the users demand to smooth out network traffic variations

across the peak and off-peak periods of the day so that

spectrum utilization is improved. When a predictive network

serves a request before its actual request time, the data is

stored in the cache memory of either the wireless device or

any intermediate node. Then at the actual time of demand, the

requesting application pulls the data directly from the memory

instead of accessing the wireless network. By this way the

user’s quality of experience (QoE) is enhanced.

In [8], the authors introduced a novel proactive resource

allocation paradigm by exploiting the predictability of the

user behavior. They provided a solid theoretical background

and explained significant spectral efficiency gains in differ-

ent scenarios. In [9], proactive resource allocation schemes

under time-invariant and time-varying demand statistics are

studied. The authors proposed fundamental lower bounds on

the achievable costs, and developed asymptotically optimal

policies that approach these bounds when the the window

of time slots over which predictable future demand can be

proactively served while being fresh for consumption called

proactive service window is increased. However, the utilization

of predicted CQM for proactive resource allocation is not

captured in proactive scheduling thus far. Authors in [10]

studied proactive resource allocation strategies that exploit

both the predictable data and channel demand characteristics,

with uncertainties. In [9] and [10] the authors assumed the

presence of a single file to be served to the end user implying

full certainty about the exact content to be requested, given a

request is sent. The authors in [9]- [13] assumed the proactive

caching to take place at the end user.

In this work, we study a proactive allocation scheme when

the cache is at intermediate node between the base station

(BS) and the end user. This caching technique improves our

performance metric which is the service cost. In addition it can

also improve other metrics, for instance battery and memory

consumption at the end users, compared to caching at end

user. Also 5G networks are going to enable relay stations (RS)

at the network edges, and these smart relays are equipped
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with storage capabilities that can proactively maintain relevant

content for network resource optimization [14]- [16].

We consider a network which consists of a single BS

connected to a single RS equipped with storage in order to

serve end users. We consider a time-invariant demand statistics

model in which all incoming requests from data networks are

statistically indistinguishable over time. We introduce in our

system model the uncertainty about the requested files which

is not addressed in previous work. We further consider time-

invariant channel statistics model in which user experiences

statistically indistinguishable channels over time.

Our main contributions in this work are as follows.

• We extend the work in [10] by considering the presence

of a set of multiple files or data items with different

popularity where the user can request any of which

every time slot. Thus incorporating an additional element

of uncertainty due to the randomness of the requested

content.

• We consider the effect of caching at an intermediate node

between BS and end user on the service cost.

• We characterize, analytically, a fundamental lower bound

on the average expected cost incurred by any proactive

caching policy.

• We develop an asymptotically optimal policy that

achieves the fundamental lower bound as the proactive

window size grows to infinity.

• We show that our system considerably outperforms both

non-proactive schemes in terms of cost and the counter-

part proactive system with caching at end-user because it

exploits channel diversity.

The rest of the paper is organized as follows. In Section II,

we present our system model. The proposed lower bound and

policy are introduced in Section III. Numerical results are

presented in Section IV. The paper is concluded in Section V.

Notation: P[.] denotes the probability of a random variable

and E[.] denotes the expected value of a random variable.

II. SYSTEM MODEL

We consider a network model that comprises a BS serving

data demand from end users. A RS equipped with data storage

intermediates the connection between end users and BS, as

shown in Fig. 1. While in reality data demand is generated by

multiple end users, we focus on the service of single user

demand for the ease of exposition as a proof of concept.

Nevertheless, our analysis and technique directly generalize

to the multi-user scenario, which will be addressed in future

work [17].

Dynamic Data Content: The network is assumed to serve

data content from a finite set F = {1, · · · , F} of F disjoint

files or data items. Each file f ∈ F represents a different type

of dynamically changing content whose size is S data units.

We assume a time slotted operation where in every time slot

the content of each file is consistently updated such that the

content of any data item f at time t is no longer fresh for

consumption at time slot t+T , for some T ≥ 1. Examples on

 BS
RS

Cache

Fig. 1: Caching system at the RS for a single end user.

such dynamically changing content include news, On-Demand

Video services, traffic information, and social network updates.

User Demand Profile: We assume that the time slot size is

sufficient to serve only one data item request. We assume that

future requests are not perfectly anticipated. This means that

the user demand for files in the next T time slots is known only

statistically. We assume that file requests are independent and

identically distributed (i.i.d.) random variables across time. We

assume the presence of a set of requested files denoted by R.

We define a random variable r(t) ∈ R where R = {0, · · · , F}
to represent the index of the requested file at time slot t,

where r(t) = 0 indicates that no file is requested at time

slot t. The popularity of file f ∈ F is pf = P(r(t) = f) ∀t,
which is considered to be given and constant across time. The

probability of demand is denoted by p where p =
F
∑

f=1

pf . Also,

the user remains silent with probability q where, q = 1− p.

Let ρ(r(t)) ∈ {0, 1} be a random variable that represents

the presence of a request or not in time slot t where,

ρ(r(t)) =

{

1, for r(t) ≥ 1

0, for r(t) = 0
.

We assume that the files’ popularity is characterized by

a Zipf distribution with parameter ψ, which is commonly

used to model content popularity in data networks. Hence,

the popularity of file f is expressed as

pf = γ
1

fψ
.

where γ = 1
F∑

i=1

1

iψ

and f = 1, · · · , F .

The Zipf parameter ψ characterizes the distribution by

controlling the relative popularity of files. Larger values of

ψ imply steeper distribution and hence more certainty on

the exact file to be requested, whereas smaller values of ψ

indicate a more uniform distribution and less certainty about

the user preference. We assume that the BS knows the user

demand profile, which captures the statistical characteristics
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of the future demand.

Channel Model: We assume that the user experiences

in each time slot a channel gain gB, which represents the

wireless channel between the BS and the user. The channel

gain is one of NB discrete channel realizations from a set

GB = {g
(1)
B , · · · , g

(NB)
B } with corresponding probabilities

α = {α1, · · · , αNB
}, where

∑NB

n=1 αn = 1. Similarly, for

the link between the RS and the user, the user experiences a

channel gain gR which is one of NR possible discrete channel

states from a set GR = {g
(1)
R , · · · , g

(NR)
R } with corresponding

probabilities β = {β1, · · · , βNR
}, where

∑NR

n=1 βn = 1. We

assume that the channels on both links are independent of

each other and each channel realization is i.i.d. across different

time slots, yet remains constant over the time slot duration.

We assume that the channel between the BS and the RS

gB,R is fixed and independent across time slots, where it

could be a wired backhaul link or a line of sight microwave

link. All channel realizations are assumed to be non negative

and finite. We consider uncorrelated channels, especially we

consider a large timescale operation where a time slot lasts

for a few minutes, long enough to have independent channel

realizations.

III. PROBLEM FORMULATION

Operational Cost: We consider the total cost to serve the

user from both the BS and RS. We denote Cd(x), d ∈ {B,R}
as the cost function for serving x ≥ 0 data units in a time

slot. The cost function is assumed to be monotonically

increasing and strictly convex. Furthermore, the cost due to

communication over a channel with gain g ≥ 0 is η(g). We

can view that for example the cost to use the channel can

be related to the amount of power, where the power needed

to serve a certain content of size B bits over a channel with

gain g under noise variance N0 is
(2B−1)N0

g
. Thus the cost

decreases with 1
g

and vice-versa.

Reactive Service Model: The reactive network is considered

to be our baseline system. Under reactive paradigm, user

requests are served only after they have been actually initiated

and they receive service in the same slot of initiation. Here,

there is no proactive caching and all requested files are

transmitted from the BS directly to the user. The amount of

load generated by the BS at time slot t for a reactive network

is described as follows,

Lre
B (t) = Sρ(r(t))η(gB(t)).

1 (1)

The superscript re indicates reactive operation. The time

average expected cost under the reactive model is as follows,

Cre = lim sup
t→∞

1

t

t−1
∑

l=0

E

[

CB

[

Lre
B (l)

]

]

= CB

[

Lre
B (1)

]

, (2)

1This is an application-layer optimization where service provider needs to
conduct measurements and define what the load is and what the cost is. For
instance, the load could be the power consumption in Watt in a given time
slot, and the cost is the money paid to supply this power.

since both r(t) and gB(t) are i.i.d. random variables across

time.

Proactive Service Model: We assume that both the BS

and the RS are aware of the statistics of both the user demand

profile and the channel realization across T time slot proactive

service window. We denote xtr(k) as the amount of proactive

download from file r ∈ R in time slot k for the future

request to be made in time slot t where t − T ≤ k ≤ t − 1.

The proactive download term cannot be negative and cannot

exceed the total file size S. The amount of load generated by

the BS at time slot t for the proactive network is given by

L
pro
B (t) =

(

S −
t−1
∑

k=t−T

xtr(k)

)

ρ(r(t))η(gB(t))

+
∑

f⊂F

t+T
∑

k=t+1

xkf (t)η(gB,R).

(3)

The superscript pro indicates proactive operation. The first

term represents the on-time service component resulting

from the non-proactively served part of the requested file

r, where
t−1
∑

k=t−T

xtr(k) is the past applied proactive caching.

The second term is the proactive service of future requests

in the upcoming T -slot interval, while the term
t+T
∑

k=t+1

xkf (t)

captures the proactive service to be applied over the next T

slots.

Similarly, the amount of load generated from the RS at time

slot t for proactive network is described as follows,

L
pro
R (t) =

t−1
∑

k=t−T

xtr(k)ρ(r(t))η(gR(t)). (4)

Problem statement: Our goal is to determine the optimal

proactive download to minimize the time average expected

cost for the system to deliver the user demand. Our optimiza-

tion problem is written as C
pro
T =

min
xtr(k)∀r,t,k

lim sup
t→∞

1

t

t−1
∑

l=0

E

[

CB

[

L
pro
B (l)

]

+ CR

[

L
pro
R (l)

]

]

subject to xkf (l) ≥ 0, ∀f, k, l,
t−1
∑

k=t−T

xtr(k) ≤ S, ∀r, t.

(5)

The exact solution of (5) is intractably complex due to the

infinite dimensionality of the problem. Instead, we aim to

develop efficient proactive caching policy that can efficiently

utilize statistical predictions and operate arbitrarily close to

optimal as prediction window size grows. Fortunately, our

analysis will also show that the performance of this policy, of

finite complexity, converges considerably fast to the optimal

as shown in simulations, thereby possesses close-to-optimal

performance even for moderate values of the prediction win-

dow.
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IV. LOWER BOUND AND PROPOSED POLICY

We begin our design by investigating the limiting behavior

of any proactive caching policy, which will inspire the dynam-

ics of our developed policy. We characterize a fundamental

lower bound on the minimum possible operational cost. Then

we develop our asymptotically optimal policy which operates

arbitrarily close to the bound as the proactive window size

grows.

Theorem 1. Under time-invariant demand and channel statis-

tics model, the optimal proactive scheduling cost of (5),

satisfies

C
pro
T ≥ Cb. (6)

where, Cb is represented as follows

Cb = min
∼

xf (gB,gR,r)∀r,gB,gR

∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB)P(gR)

P(r)× CB

[

(

S −
∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB)P(hR)P(d)

∼
xr(hB, hR, d)

)

η(gB)ρ(r)+
∑

f⊂F

∼
xf (gB, gR, r)η(gB,R)

]

+CR

[

∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB)P(hR)P(d)

∼
xr(hB, hR, d)η(gR)

]

subject to 0 ≤
∼
xf (gB, gR, r) ≤ S ∀ f, r, gB, gR.

(7)

Proof. Refer to Appendix A.

The minimum of the above optimization problem exists and

is unique. Existence follows since the objective function is

convex; the composition in
∼
xf (gB, gR, r) is linear ∀f, r, gB, gR

and the sum of strictly convex functions is strictly convex,

thus the constraint set is compact. In the objective of (7),

the term
∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB) P(hR)P(d)
∼
xr(hB, hR, d)

corresponds to the average proactive service assigned to a

request from the user before it is actually realized. The term
∼
xf (gB, gR, r) is the total expected proactive service assigned

to all possible requests from the user when f is the current

requested file and the channel realizations gB and gR.

The theorem establishes that no proactive caching policy

can achieve a lower cost than the non-trivial bound Cb. We

note that the optimization of Cb is convex and yields a unique

solution by the strict convexity of Cd(x). Such optimization

is numerically tractable and its solution can be numerically

computed, e.g. through dual-based or interiorpoint methods.

Next, we develop a stationary policy π that asymptotically

achieves the lower bound Cb.

Definition 1. We consider a proactive policy π that observes

the requested file f and channel realizations gB for the link

between the BS and the user and gR for the channel between

the RS and the user each time slot t. The policy assigns

proactive controls xkr (t) =

∼
xf (gB, gR, r)

T
,∀f, k, 1 ≤ t ≤ T .

Policy π is a stationary policy that observes the current

demand and channel realizations, solves the optimization

problem in (7) and accordingly assigns proactive control value

xkr (t) =
∼

xf (gB,gR,r)
T

for all potential requests that may be

requested in the upcoming T slots. Then, we can develop the

asymptotic optimal policy π as follows.

Theorem 2. Denote the time average expected cost under the

policy π by CπT . Then the policy π is asymptotically optimal

in the sense that

lim sup
T→∞

| CπT − C
pro
T |= 0. (8)

Proof. Refer to Appendix B.

By using the strong law of large numbers, equal allocation

of proactive service throughout the prediction window of size

T , policy π achieves the global lower bound as T → ∞. Hav-

ing established the key characteristics of proactive scheduling

under demand and channel uncertainties, we next move on to

deeper insights on the system performance through numerical

simulations.

V. SIMULATION RESULTS

Throughout this section, we assume that the BS and the RS

are aware of the statistics of both the user demand and the

channel realizations, where the BS spends S = 1 data units

for each request.

We assume that the end user experiences one of two possible

channel realizations {g
(1)
B , g

(2)
B } on the link between the BS

and the user and also experiences one of two possible channel

realizations {g
(1)
R , g

(2)
R } on the link between the RS and the

user with probabilities {α1, α2} and {β1, β2} respectively ,

where α2 = 1 − α1 and β2 = 1 − β1. We consider g
(1)
B and

g
(1)
R to be the bad channel realizations while g

(2)
B and g

(2)
R to

be the good channel realizations.

We assume that the cost function of demand from BS or

RS are a polynomial function Cd(x) = x4 for d ∈ {B,R}.

For the channel cost function, it is inversely proportional to

the channel gain value, η(x) =
1

x
.

We consider the cost reduction gain as the main QoS

performance metric. It provides a measure of the percentage

change of the cost under the reactive model compared to the

proactive model. Cost reduction gain is described as follows,

γ =
| Cre − C

pro
T |

Cre
× 100%. (9)

A. Impact of number of files on the cost reduction gain

The impact of increasing the number of files in the system

on the cost reduction gain γ is shown in Fig. 2 and Fig. 3.

For this scenario, the channel realizations between the BS and

the user are set to g
(1)
B = 0.1 and g

(2)
B = 0.2 with probability

α1 = α2 = 0.5 and the channel realizations between the RS

and the user are set to g
(1)
R = 0.3, g

(2)
R = 0.4 with probability

β1 = β2 = 0.5 and for the channel between BS and RS is set

to gB,R = 1.

In Fig. 2 and Fig. 3, we plot the cost reduction gain γ

versus the number of files. The cost reduction gain decreases
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Fig. 2: The impact of number of files on the cost reduction gain under
different probability of demand.

with increasing the number of files under different demand

probabilities. This is attributed to the observation that when

the number of files increases, the uncertainty in the demand

of the files increases which leads to a decrease in γ.

In Fig. 2, we fix the Zipf parameter to ψ = 0.5. By

increasing the demand probability for the files, p, the cost

reduction gain decreases. This is a result of increasing the load

in the network which means less opportunities for proactive

service, thus cost increases which means that cost reduction

gain decreases.

In Fig. 3, we assume that the demand probability p = 0.9.

When the Zipf parameter increases the cost reduction gain

increases as well. This is due to the fact that when the Zipf

parameter is equal to zero, the files popularity is uniform

which will lead to more cost as uniform popularity means max-

imum uncertainty which leads to highest chances of inaccurate

proactive service thus the BS in turn reduces its proactive

operation. On the other hand, when the Zipf parameter tends to

increase, the cost reduction gain increases. This is a result of

higher certainty and more accurate proactive service, that leads

to increasing the proactive operation of the BS. Thus, there

will be more losses in the scenario where ψ = 0 and these

losses decrease by increasing ψ. So the cost reduction gain ,γ,

significantly increases when the Zipf parameter increases.

B. Impact of Zipf parameter on cost reduction gain

In this scenario, the number of files is fixed to F = 10. We

set the channel realizations and their probabilities as follows,

g
(1)
B = 0.1 and g

(2)
B = 0.2 with probability α1 = α2 = 0.5

and g
(1)
R = 0.3, g

(2)
R = 0.4 with probability β1 = β2 = 0.5.

The channel between BS and RS is set to gB,R = 1.

Fig. 4 shows the effect of Zipf parameter on the cost

reduction gain as explained in Fig. 3 where the cost reduction

gain increases when the Zipf parameter increases. In addition,

it shows how the probability of demand affects γ, when

the probability of demand increases the cost reduction gain

decreases as illustrated in Fig. 2. The effect of the probability
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Fig. 3: The impact of the number of files on the cost reduction gain
under different Zipf parameter.
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Fig. 4: Cost reduction gain versus the Zipf parameters under different
probability of demand.

of demand on γ decreases by increasing the Zipf parameter

as the file popularity goes from uniform to biased popularity.

C. Comparison with caching at end user

We compare our system performance with the caching at

end user scheme which is primarily considered in [10]. In this

simulation setup, the channel realizations between the BS and

the user are set to g
(1)
B = 0.1 and g

(2)
B = 0.2 with probability

α1 = α2 = 0.5 and the channel realizations between the RS

and the user are set to g
(1)
R = 0.1, g

(2)
R = 0.2 with probability

β1 = β2 = 0.5 and for the channel between BS and RS is

set to gB,R = 1. The Zipf parameter is set to ψ = 0.5. We

assume that the number of files in our system to be F = 1 in

order to be able to compare it with the system model in [10],

which assumes a single data item service.

As shown in Fig. 5, our system performance outperforms

that in [10] when the probability of demand increases. This

is the effect of the RS. In [10] when the demand increases

the link between the BS and the end user needs to support

more data. While in our model, when the demand increases,
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Fig. 5: Cost reduction gain versus the probability of demand for the
user.
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Fig. 6: Cost reduction gain versus the BS- RS channel gain.

the content can reach the user via two links, BS user link and

RS user link. The two links in our model are better than the

single link in [10] where it increase the opportunity of serving

the user because this exploits channel diversity. As shown in

Fig. 5 at low demand probability, the cost reduction gain, γ,

increases. While at high demand probability, γ decreases for

the reasons mentioned above.

In Fig. 6, we use the Zipf parameter ψ = 0.5 and we fix

the probability of demand to be p = 0.9. We vary the quality

of the link between the BS and the RS. We assume that the

statistics for the channel between the RS and the end user are

the same as those for the link between the BS and the user,

g
(1)
B = g

(1)
R = 0.1 and g

(2)
B = g

(2)
R = 0.2 with probabilities

α1 = β1 = 0.5.

The cost reduction gain in [10] is constant for all BS- RS

channel gains, as in this model there is no RS thus the change

in this channel gain will not affect the cost reduction gain.

However, for our system when the channel gain between the

BS and the RS increases the cost reduction gain γ increases

as the cost for transmission will decrease as the channel gain

is better. The cost reduction gain begins to stay constant at
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Fig. 7: Impact of proactive window size on the average cost.

gB,R = 5, which means that at this channel γ reaches its

maximum, i.e. the cost decreases until it reaches its minimum

level to serve the demand of the user.

D. Impact of prediction window size on the expected cost

In Fig. 7, we plot the time average cost under policy π

against the prediction window size T . In this scenario, the

channel realizations between the BS and the user are set to

g
(1)
B = 0.1 and g

(2)
B = 0.2 with probability α1 = α2 = 0.5

and the channel realizations between the RS and the user are

set to g
(1)
R = 0.3, g

(2)
R = 0.4 with probability β1 = β2 = 0.5

and for the channel between BS and RS is set to gB,R =
1. We assume the Zipf parameter to be ψ = 0.5 where the

probability for the user demand is p = 0.9. As shown in Fig.

7, policy π converges to achieve the lower bound Cb rapidly

when the prediction window size grows. We see the impact

of the prediction window size for different number of files in

the system F = 1, 5, 10.

For the scenario with F = 1, F = 5 and F = 10 the policy

converges to the lower bound at T = 25, T = 60 and T = 150,

respectively. As suggested by intuition, when the number of

files increases the uncertainty and randomness increases thus

the system needs larger service window to realize sufficient

numbers of randomness elements and achieve the law of large

numbers and converge to the lower bound.

VI. CONCLUSION

We proposed and investigated the performance of dynamic

proactive caching in relay networks. We studied the impact

of demand and channel uncertainties on the design of a

proactive scheduler, where an intermediate RS caches content

for potential future use by end users under time-invariant

demand over multiple data items and channel statistics mod-

els. We have established fundamental lower bound on the

achievable cost through proactive scheduling, we developed

asymptotically optimal policy that attains the lower bound

rapidly as the proactive scheduling window size increases.

Our numerical results demonstrate the performance gain of

proactive caching at the RS, compared to a reactive content
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retrieval baseline scheme as well as a proactive caching at the

end user introduced earlier in [10].

APPENDIX A

PROOF OF THEOREM 1

The objective of our optimization problem is

C
pro
T = lim sup

t→∞

1

t

t−1
∑

l=0

E

[

CB

[

L
pro
B (l)

]

+CR

[

L
pro
R (l)

]

]

. (10)

By conditioning on all random variables: requested files and

all possible channel realizations, we can write C
pro
T as follows,

C
pro
T = lim sup

t→∞

1

t

t−1
∑

l=0

∑

gB∈GB

∑

gB∈GR

∑

r∈R

P(gB(l) = gB,

gR(l) = gR, r(l) = r)× E
[

CB

[

L
pro
B (l)

]

+

CR

[

L
pro
R (l)

]

| gB(l) = gB, gR(l) = gR, r(l) = r
]

.
(11)

Due to statistical independence,

P(gB(l)=gB, gR(l)=gR, r(l)=r) = P(gB(l)=gB)

P(gR(l)=gR)P(r(l) = r) and (11) can be written as

C
pro
T = lim sup

t→∞

1

t

t−1
∑

l=0

∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB(l) = gB)

P(gR(l) = gR)P(r(l) = r)× E
[

CB

[

L
pro
B (l)

]

+

CR

[

L
pro
R (l)

]

| gB(l) = gB, gR(l) = gR, r(l) = r
]

.
(12)

By using (3) and (4) and substituting in (12), we can write

the cost as follows,

C
pro
T = lim sup

t→∞

1

t

t−1
∑

l=0

∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB(l) = gB)

P(gR(l) = gR)P(r(l) = r)×
(

E

[

CB
[

(

S −
l−1
∑

k=l−T

xlr(k)
)

η(gB(l))ρ(r(l)) +
∑

f⊂F

l+T
∑

k=l+1

xkf (l)η(gB,R) |gB(l)=gB, gR(l)=gR, r(l)=r
]

]

+

E

[

CR
[

l−1
∑

k=l−T

xlr(k)η(gR(l))ρ(r(l)) |gB(l)=gB,

gR(l)=gR, r(l)=r
]

])

.

(13)

Since channel realizations for both the BS and the RS as well

as the requested files are i.i.d., we have

C
pro
T = lim sup

t→∞

1

t

t−1
∑

l=0

∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB)P(gR)P(r)

×E

[

CB
[(

S −
l−1
∑

k=l−T

xlr(k)
)

η(gB)ρ(r)

+
∑

f⊂F

l+T
∑

k=l+1

xkf (l)η(gB,R) | gB, gR, r
]

]

+E

[

CR
[

l−1
∑

k=l−T

xlr(k)η(gR)ρ(r) | gB, gR, r
]

]

.

(14)

We apply Jensen’s inequality in (14), as Cd(x) is assumed to

be strictly convex. Both the requested file r(l) and the channel

realizations gB(l) and gR(l) are independent of
l−1
∑

k=l−T

xlr(k),

as the current requested file and channel realizations will not

affect the past services. However, they will affect the future

service as the future services are dependent on the requested

file and the channel realizations in the current time slot. We

can then write the bound as follows,

C
pro
T ≥ lim sup

t→∞

1

t

t−1
∑

l=0

∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB)P(gR)P(r)

×CB

[

(

S − E
[

l−1
∑

k=l−T

xlr(k) | gB, gR, r
]

η(gB)ρ(r)

+E
[
∑

f⊂F

l+T
∑

k=l+1

xkf (l) | gB, gR, r
]

η(gB,R)
]

+CR

[

E
[

l−1
∑

k=l−T

xlr(k)η(gR)ρ(r)
]

.

(15)

Since 1
t

l−1
∑

l=0

1=1,
∑

gB∈GB

P(gB)=1 and
∑

gB∈GB

P(gB)=1 we can ap-

ply Jensen’s inequality again and by using lim sup
t→∞

(−f(t)) =

− lim inf
t→∞

(f(t)), (15) can be written as,

C
pro
T ≥

∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB)P(gR)P(r)× CB

[

(

S − lim inf
t→∞

1

t

t−1
∑

l=0

E
[

l−1
∑

k=l−T

xlr(k) | gB, gR, r
])

η(gB)ρ(r) + lim sup
t→∞

1

t

t−1
∑

l=0

E
[
∑

f⊂F

l+T
∑

k=l+1

xkf (l)

| gB, gR, r
]

η(gB,R)
]

+ CR

[

lim sup
t→∞

1

t

t−1
∑

l=0

E
[
∑l−1
k=l−T x

l
r(k)

]

η(gR)ρ(r)
]

.

(16)

By replacing lim sup
t→∞

by lim inf
t→∞

as CB(x) and CR(x) are

monotonically increasing in x this yields,

C
pro
T ≥

∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB)P(gR)P(r)× CB

[

(

S − lim inf
t→∞

1

t

t−1
∑

l=0

l−1
∑

k=l−T

E
[

xlr(k) | gB, gR, r
])

η(gB)ρ(r) + lim inf
t→∞

1

t

t−1
∑

l=0

∑

f⊂F

l+T
∑

k=l+1

E
[

xkf (l)

| gB, gR, r
]

η(gB,R)
]

+ CR

[

lim inf
t→∞

1

t

t−1
∑

l=0

l−1
∑

k=l−T

E
[

xlr(k)
]

η(gR)ρ(r)
]

.

(17)

By letting
∼
xf (gB, gR, r) = lim inf

t→∞

1

t

t−1
∑

l=0

l+T
∑

k=l+1

E
[

xkf (l) |

gB, gR, r
]

, we can write lim inf
t→∞

1

t

t−1
∑

l=0

l−1
∑

k=l−T

E
[

xlr(k)
]

as fol-

lows,

lim inf
t→∞

1

t

t−1
∑

l=0

l−1
∑

k=l−T

E
[

xlr(k)
]
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= lim inf
t→∞

1

t

t−1
∑

l=0

∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB)P(hR)P(d)

l−1
∑

k=l−T

E
[

xlr(k) | hB, hR, d
]

=
∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB)P(hR)P(d)
∼
xr(hB, hR, d).

(18)

Thus, we can write our bound as follows

C
pro
T ≥

∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB)P(gR)P(r)× CB

[

(

S −
∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB)P(hR)P(d)

∼
xr(hB, hR, d)

)

η(gB)ρ(r) +
∑

f⊂F

∼
xf (gB, gR, r)

η(gB,R)
]

+ CR

[

∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB)P(hR)P(d)

∼
xr(hB, hR, d)η(gR)ρ(r)

]

.

(19)

The constraints of the optimization problem in (5) imply that

0 ≤
∼
xf (gB, gR, r) ≤ S ∀ r, d, gB, gR. By minimizing the right-

hand-side of the previous equation over all feasible choices of
∼
xr(gB, gR, d), our theorem is proved.

APPENDIX B

PROOF OF THEOREM 2

It suffices to prove that lim sup
T→∞

CπT = lim inf
T→∞

CπT . We start

by lim sup
T→∞

C
pro
T . Since the policy CTπ is a stationary policy

that depends only on the current demand realization, the cost

under this policy can be written as follows,

CTπ =
∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB(t) = gB)P(gR(t) = gR)

P(r(t) = r)× E

[

CB
[(

S −
t−1
∑

k=t−T

xtr(k)
)

η(gB(t))

ρ(r(t)) +
∑

f⊂F

t+T
∑

k=t+1

xkf (t)η(gB,R)
]

| gB, gR, r
]

+E

[

CR
[

t−1
∑

k=t−T

xtr(k)η(gR(t))ρ(r(t))
]

| gB, gR, r
]

.

(20)

The sum
t−1
∑

k=t−T

xtr(k) is independent of both demand and

channel realizations. Define a random variable Q(hB, hR, d)
which counts the number of occurrences of the joint realization

of r,gB and gR. Thus,
t−1
∑

k=t−T

xtr(k) =
∑

hB∈GB

∑

hR∈GR

∑

d∈R

∼
xr(hB, hR, d)Q(hB, hR, d)

T
.

(21)

The strong law of large numbers implies that (21) can be

written as follows,

lim sup
T→∞

∑

hB∈GB

∑

hR∈GR

∑

d∈R

∼
xr(hB, hR, d)Q(gB, gR, d)

T

= P(hB)P(hR)P(d)
∼
xr(hB, hR, d), w.p.1.

(22)

From here, we can say that the cost of demand under the

policy achieve our bound when prediction window increases.

lim sup
T→∞

CπT =
∑

gB∈GB

∑

gR∈GR

∑

r∈R

P(gB)P(gR)P(r)CB

[

(

S −
∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB)P(hR)P(d)

∼
xr(hB, hR, d)

)

η(gB)ρ(r) + CR

[

∑

hB∈GB

∑

hR∈GR

∑

d∈R

P(hB)P(hR)P(d)
∼
xr(hB, hR, d)η(gR)ρ(r)

]

.

(23)

By noting that the right-hand-side of (23) is identical to Cb,

then lim sup
T→∞

CπT ≤ lim inf
T→∞

CπT . By the definition of CπT it

follows that lim sup
T→∞

CπT = lim inf
T→∞

CπT .

REFERENCES

[1] FCC. Spectrum policy task force report, FCC 02-155. Nov. 2002.
[2] M. Feknous T. Houdoin, B. Le Guyader, J. De Biasio, A. Gravey, and

J.A. Torrijos Gijon, “Internet traffic analysis: A case study from two
major European operators,” in 2014 IEEE Symposium on Computers and

Communication (ISCC) , vol., no., pp.1,7, 23-26 June 2014.
[3] “Ericsson mobility report,” http://www.ericsson.com/res/docs/2015/ericsson-

mobility-report-june-2015.pdf, June 2015.
[4] C. Song, Z. Qu, N. Blumm, A. Barabas, “Limits of Predictability in

Human Mobility”, Science, vol. 327, no. 5968, pp. 1018-1021, Feb. 2010.
[5] R. Di Taranto, L. S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and

H. Wymeersch, “Location-aware communications for 5G networks” IEEE

Signal Processing Magazine , vol. 31, no. 6, pp. 102112, Nov. 2014.
[6] M. Malmirchegini and Y. Mostofi, “On the spatial predictability of com-

munication channels,” IEEE Transactions on Wireless Communications,
vol. 11, no. 3, pp. 964978, 2012.

[7] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 7480, 2014.

[8] J. Tadrous, A. Eryilmaz, and H. El Gamal, “Proactive resource allocation:
Harnessing the diversity and multicast gains” in IEEE Transactions on

Information Theory, vol. 59, no. 8, pp. 48334854, 2013.
[9] J. Tadrous and A. Eryilmaz, “On optimal proactive caching for mobile

networks with demand uncertainties,” in IEEE/ACM Transactions on

Networking, vol. 24, no. 5, pp. 2715 - 2727, Sep. 2015.
[10] L. S.Muppirisetty, J. Tadrous, A. Eryilmaz, and H. Wymeersch, “ On

proactive caching with demand and channel uncertainties,” in 2015 53rd

Annual Allerton Conference on Communication, Control, and Computing

(Allerton) , vol., no., pp. 1174-1181, Sep. 2015.
[11] E. Batu, M. Bennis, and M. Debbah, “ Social and spatial proactive

caching for mobile data offloading,” in 2014 IEEE International Confer-

ence on Communication Workshops (ICC) , vol., no., pp. 581-586, June
2014.

[12] E. Batu, M. Bennis, and M. Debbah, “ Living on the edge: The role
of proactive caching in 5G wireless networks,” in IEEE Communications

Magazine , vol. 52, no. 8, pp. 82-89, Aug. 2014.
[13] J. Tadrous, and A. Eryilmaz, “ On Optimal Proactive Caching for Mobile

Networks with Demand Uncertainties,” in IEEE/ACM Transactions on

Networking , vol. 24, no. 5, pp. 2715-2727, Oct. 2016.
[14] E. Batu, M. Bennis, and M. Debbah, “ Think before reacting: Proactive

caching in 5G small cell networks,” in 1st KuVS workshop on Anticipa-

tory Networks , vol., no., pp., Sep. 2014.
[15] E. Batu, M. Bennis, and M. Debbah, “ A transfer learning approach for

cache-enabled wireless networks,” in 2015 13th International Symposium

on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt), vol., no., pp. 161-166, May 2015.
[16] E. Batu, M. Bennis, and M. Debbah, “ Edge Caching for Cover-

age and Capacity-aided Heterogeneous Networks,” in arXiv preprint

arXiv:1605.00319, vol., no., pp., May 2016.
[17] R. Hassan, A. Mohamed, J. Tadrous, M. Nafie, T. ElBatt and F. Digham,

“ Dynamic Proactive Caching for Multiusers in Relay Networks,” to be

submitted.

2017 The 2nd Content Caching and Delivery in Wireless Networks Workshop (CCDWN)


