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Department of Electrical Engineering
Stanford University

Email: {shaviv, aozgur}@stanford.edu

Abstract—We consider a general class of stochastic opti-
mization problems, in which the state represents a certain
level or amount which can be partly used and depleted, and
subsequently filled by a random amount. This is motivated
by energy harvesting applications, in which one manages the
amount of energy in a battery, but is also related to inventory
models and queuing models. We propose a simple policy that
requires minimal knowledge of the distribution of the stochastic
process involved, and show that it is a close approximation to
the optimal solution with bounded guarantees. Specifically, under
natural assumptions on the reward function, we provide constant
multiplicative and additive gaps to optimality, which do not
depend on the problem parameters. This allows us to obtain a
simple formula for approximating the long-term expected average
reward, which gives some insight on its qualitative behavior
as a function of the maximal state and the distribution of the
disturbance.

I. INTRODUCTION

We present a general class of Markov decision problems
(MDPs), motivated by energy harvesting applications, but
which also contains other problems of practical interest such
as inventory management and queue optimization. Roughly
speaking, the state represents an amount of a certain quantity,
for example amount of energy in a battery or amount of
product in an inventory. Each time slot, we can choose to
expend a portion of this amount to gain a certain reward,
which is typically increasing with the amount expended. At the
next time slot, the amount available is the amount left after
depletion of the amount expended, plus some new amount
which is determined by an exogenous stochastic i.i.d. process.
However, if the new amount exceeds some maximal quantity
(such as battery size or storage capacity, for example), the
excess amount is wasted.

We are interested in the long-term expected average reward
of this model, under an online policy, i.e. when the future
values of the disturbance are not known ahead of time. As
an MDP, this problem can be solved using dynamic program-
ming. However, this approach has several shortcomings. First,
usually the problem cannot be solved explicitly and must be
solved numerically. While there exist methods to numerically
find a solution which is arbitrarily close to optimal, such
as value iteration and policy iteration, these methods require
quantization of the state and action spaces to finite sets.
Specifically, the computational complexity of each iteration of

these algorithms grows as the cube of the number of quantized
states and/or actions. Second, the solution depends heavily on
the exact statistical distribution of the exogenous stochastic
process, which may be hard to obtain in practice. If this
distribution is estimated from measurements, it may require
recomputing the dynamic programming solution periodically
to track changes in the process. Finally, the numerical solution
does not provide much insight on the structure of the optimal
policy and the qualitative behavior of the resultant average
reward, namely how it varies with the parameters of the
problem. This kind of insight can be critical for design
considerations, such as choosing the size of the battery or
storage capacity.

In this work, we provide a simple suboptimal policy that
is provably close to optimal across all parameter regimes and
any disturbance distribution. In particular, we find a policy
that achieves the optimal long-term expected average reward
of the problem simultaneously within a constant multiplicative
factor of 2, also called a 2-approximation algorithm, and a
constant additive gap for all parameter values and disturbance
distributions. Moreover, this simple policy has minimal de-
pendence on the distribution of the disturbance, namely it
depends only on its mean. This enables one to apply it to
any given problem with arbitrary parameter values, without
even knowing the exact distribution of the exogenous process,
while she/he would be assured to achieve a performance
that is very close to the one achieved by an optimal policy
specifically optimized for the given problem, in particular the
exact distribution of the disturbance.

Our policy is based on previous work [1], in which a
similar result was derived for a specific example in this general
class of MDPs (namely ex. a in Section II). The policy can
be described as follows: at each time-slot, the policy uses
a constant fraction of the available amount (i.e. the state),
where the fraction is chosen as the ratio of the mean of the
disturbance and the maximal state. We show that it is naturally
motivated by the case where the disturbance is a binary random
variable, in which case the optimal policy can be explicitly
characterized. We then establish the near-optimality of this
policy for any i.i.d. disturbance. In particular, we show that
this policy achieves the optimal long-term average reward of
the system simultaneously within a constant multiplicative
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factor and a constant additive gap for all parameter values.
This implies that this policy can be applied under any i.i.d.
disturbance, without even knowing its statistical distribution.
The main ingredient of our proof is to show that for the
proposed policy, a binary disturbance is the worst disturbance.
Therefore, the performance of the scheme under a binary
disturbance provides a lower bound on its performance under
any i.i.d. disturbance. In this sense, our policy can be thought
of as building on the insights from the worst-case scenario,
hence performs well in the worst-case sense.

This result also leads to a simple approximation of the
optimal long-term expected average reward of this class of
models. In particular, we show that within a constant gap, the
average expected reward is given by

J∗ ≈ r (E[min(wt, x̄)]) , (1)

where r( · ) is the reward function, wt is the disturbance, and
x̄ is the maximal state.

A. Related Work

MDPs of this type have been studied mostly in the context
of power control for energy harvesting communication [1]–
[23]. While the problem can be solved numerically using
dynamic programming [5]–[11], there has been significant
effort in the recent literature to develop simple heuristic online
policies [14]–[23]. However, these policies come either with
no guarantees or only asymptotic guarantees on optimality.

II. MODEL

We consider an MDP with state xt ∈ [0, x̄] for some fixed
x̄ > 0. The action is a non-negative real number ut, which
must be less than or equal to the state xt. Therefore the
action space is U(xt) = [0, xt]. There is a disturbance process
wt ∈ W , which is assumed to be non-negative, and distributed
i.i.d. independently of the state and action according to some
distribution Pw. The state dynamics are

xt+1 = min
(
xt − ut + wt, x̄

)
. (2)

Note that without loss of generality, we can assume W ⊆
[0, x̄], since if wt ≥ x̄ the next state will be xt+1 = x̄ re-
gardless of the value of wt. This explains the term min(wt, x̄)
in (1); the process wt can be equivalently replaced by the
process min(wt, x̄). The reward at time t is r(ut), where
r( · ) is a non-negative, non-decreasing, and concave utility
function. We assume r(0) = 0; otherwise we can take
r̃(x) = r(x) − r(0) to be the reward function. A policy π
is a set of mappings µt : [0, B̄] → R+, t = 1, 2, . . . , such
that µt(xt) ∈ [0, xt]. The goal is to maximize the long-term
average expected reward:

J∗ = sup
π

lim inf
N→∞

1

N

N∑
t=1

E[r(µt(xt))]. (3)

Many problems fall under this class of MDPs. We bring
here a few examples:

a) Throughput maximization for energy harvesting
nodes: Consider a point-to-point communication channel with
additive white Gaussian noise (AWGN), in which the trans-
mitter harvests random energy from the environment. By
allocation power ut at time t, the instantaneous rate is given
by the AWGN capacity formula r(u) = 1

2 log(1 + ut

σ2 ), where
σ2 is the noise variance. The state xt is the amount of energy
in the transmitter’s battery, which is non-negative and must be
less than x̄, the battery size. The disturbance wt is the amount
of energy harvested at time t.

b) Source distortion minimization for energy harvesting
nodes: Suppose a sensor node observes an i.i.d. Gaussian
source with mean zero and variance σ2, and transmits a
compressed version of the source over an AWGN channel with
noise variance 1. Assume the node harvests random energy
wt each time slot, and has a battery of size x̄ as before. By
allocating power ut at time t, the node can transmit at rate
R = 1

2 log(1 +ut). The rate-distortion function of a Gaussian
source is R(D) = 1

2 log(σ2/D), hence the instantaneous
distortion incurred by transmitting at rate R is

D = σ22−2R

= σ22−2· 12 log(1+ut)

=
σ2

1 + ut
.

We are interested in finding the policy that minimizes the long-
term average distortion, so to put it in the reward maximization
framework we define the reward function as r(u) = − σ2

1+u .
c) Supplier inventory management: Consider a supplier

of a certain product, that produces or harvests a random
amount wt every period. The supplier stores the product in a
storage facility that can hold at most x̄ amount of the product.
Let xt be the amount of product in storage at period t. Each
period, the supplier can decide to sell an amount ut of the
product available in storage. Thus 0 ≤ ut ≤ xt. The amount
that will be available in the inventory at the next period is given
by xt+1 = min(xt − ut + wt, x̄), since if the storage facility
is full, the excess product is discarded. For selling amount u,
the supplier earns revenue r(u). It is assumed that the supplier
provides a discount of the price per unit when selling larger
quantities; hence the increase in revenue generated by selling
one more unit of product will get smaller as u grows larger.
This suggests that the reward function r(u) should be concave,
in addition to the natural assumptions of non-negative and non-
decreasing. The problem of maximizing the average revenue
generated per period falls under the model proposed here.

d) Queue optimization: Suppose a service provider or a
retailer attends a queue of customers. The amount of customers
in the queue is represented by the state xt. At each time period,
the retailer can choose to service ut customers, and at the same
time a random amount of wt new customers arrives into the
queue. The queue is assumed to have a maximum capacity of
x̄; customers arriving when the queue is full will leave. The
state evolution function is given as before. The retailer receives
a reward r(u) for servicing u customers, however there is a
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loss incurred by servicing too many customers. Hence, as in
the previous example, it is natural to assume that r(u) is non-
decreasing and concave.

In general, the optimal policy can be found via dynamic
programming, by solving the Bellman equation.

Proposition 1 (Bellman Equation [24, Theorem 6.1]). If there
exists a scalar λ ∈ R+ and a bounded function h : [0, x̄] →
R+ that satisfy

λ+ h(x) = max
0≤u≤x

[
r(u) + E

[
h
(

min(x− u+ w, x̄)
)]]

(4)

for all 0 ≤ x ≤ x̄, then the maximal average expected reward
is J∗ = λ. Additionally, if u∗(x) achieves the maximum in (4)
then the optimal policy is stationary (i.e. it does not depend
on t) and is given by µ∗t (xt) = u∗(xt).

The functional equation (4) is hard to solve explicitly, and
requires an exact model for the statistical distribution of the
disturbance w, which may be hard to obtain in practical
scenarios. The equation can be solved numerically using value
iteration [25], but this can be computationally demanding,
especially when the state and actions need to be quantized,
and the numerical solution cannot provide insight as to the
structure of the optimal policy and the qualitative behavior
of the optimal throughput, namely how it varies with the
parameters of the problem.

In the sequel, we propose an explicit policy and show that
it is within a constant gap to optimality for all disturbance
distributions. This policy depends on the disturbance distribu-
tion only through its mean E[w]. It also leads to a simple and
insightful approximation of the optimal average reward. We
first discuss a special case in which the optimal solution can
be explicitly found. This inspires the approximately optimal
policy for general disturbance distributions.

III. BINARY DISTURBANCE

We consider a special case, in which the disturbance is
binary: wt ∈ {0, x̄} and Pr(wt = x̄) = p. That is, the state
evolves according to the following transitions:

xt+1 =

{
x̄ w.p. p,
xt − ut w.p. 1− p.

(5)

This special case can be solved explicitly, as detailed in the
following theorem and proved in Appendix A.

Theorem 1. Let jt be the last time in which the state was x̄,
i.e.

jt = {sup τ ≤ t : xτ = x̄}.

If the reward function r(u) is differentiable and strictly con-
cave, then the optimal policy is given by

µ∗t (x1, . . . , xt) = (r′)−1

(
ν

p(1− p)t−jt

)
,

where (r′)−1(u) is the inverse function of the derivative of
r(u), i.e. (r′)−1(r′(u)) = u. The parameter ν is the solution
to the equation

x̄ =

Ñ(ν)∑
i=1

(r′)−1

(
ν

p(1− p)i−1

)
,

where

Ñ(ν) =

⌊
1 +

log ν − log(pr′(0))

log(1− p)

⌋
.

Remark. While the optimal policy is stated as a function of
all the past states x1, . . . , xt, it is shown in Appendix A that
this is equivalent to a stationary policy, i.e. µ∗t can be written
as a time-invariant function of only the current state xt.

For the purpose of extending this policy to general i.i.d.
disturbances in the next section, it is useful to simplify it to
the following form by preserving its exponentially decaying
structure:

µt(x1, . . . , xt) = x̄p(1− p)t−jt , (6)

where jt is the time of the last positive disturbance, as defined
above. With this simplified policy, the action decreases exactly
exponentially with the time elapsed since the last time the state
was x̄. Note that the factor x̄p was chosen so that the sum∑∞
k=jt

x̄p(1−p)k−jt is x̄, which ensures this is an admissible
policy. Another way to view this policy is that we always use
p fraction of the state, i.e.

µ(xt) = pxt, (7)

where xt is the state given by xt = (1− p)t−jt x̄. Hence, it is
a stationary policy.

This simplified policy can be intuitively motivated as fol-
lows: for the binary disturbance wt, the inter-arrival time is
a geometric random variable with parameter p. Because the
geometric random variable is memoryless and has mean 1/p,
at each time step the expected time to the next energy arrival
is 1/p. Since r(u) is a concave function, uniform allocation
of the actions maximizes the reward, i.e. if the current state
is xt and we knew that the next time the state would be x̄ is
in exactly m time slots, allocating xt/m to each of the next
m time slots would maximize the total reward. For the online
case of interest here, we can instead use the expected time:
since at each time slot, the expected time to the next positive
disturbance is 1/p, we always allocate a fraction p of the state.
Fig. 1 illustrates this policy.

This policy is clearly suboptimal, however in what follows
we will show that it is within constant multiplicative and
additive gaps to optimality, for all values of x̄ and p. Before
we state these results, we present the following simple upper
bound on the maximal expected average reward, which is
true for any disturbance distribution (not just the binary case
discussed in this section).

Proposition 2. The optimal average reward is upper bounded
by

J∗ ≤ r(E[wt]).
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Fig. 1. The approximately-optimal policy for binary disturbance.

The proof follows from a simple application of (2) and
Jensen’s inequality, and hence will be omitted.

Denote by Jπ the expected average reward obtained by our
simplified policy. Next, we lower bound Jπ in terms of this
upper bound.

Proposition 3. The expected average reward of the suggested
policy Jπ under the binary disturbance in (5) is bounded below
by

Jπ ≥
1

2
r(E[wt]). (8)

This is proved in Section V-A. This multiplicative gap
means that using our simple policy incurs at most 50% loss in
performance relative to the optimal policy. This is sometimes
referred to as a 2-approximation algorithm.

In what follows, under an extra assumption on the reward
function, we provide a lower bound in the form of an additive
gap to optimality, which is especially useful when the maximal
state x̄ is very large.

Assumption 1 (Sub-logarithmic differences). There exists a
positive constant η such that for every x ≤ y:

r(y)− r(x) ≤ η log
y

x
.

Note that this holds for the throughput maximization reward
function discussed in Section II with η = 1

2 :

r(y) =
1

2
log(1 + y)

≤ 1

2
log
(y
x

+ y
)

=
1

2
log

y

x
+

1

2
log(1 + x)

=
1

2
log

y

x
+ r(x).

In general, if the reward function r(u) is differentiable and
the derivative satisfies r′(u) ≤ c

u for some c ≥ 0, we have:

r(y)− r(x) =

∫ y

x

r′(u)du

≤
∫ y

x

c

u
du

=
c

log e
log

y

x
.

The source distortion minimization reward function from Sec-
tion II, for example, satisfies

r′(u) =
σ2

(1 + u)2
≤ σ2

u
.

Proposition 4. If Assumption 1 holds and the disturbance is
binary as in (5), then the expected average reward obtained
by the suggested policy Jπ is bounded by

Jπ ≥ r(E[wt])− η log e (9)

See Section V-B for the proof. This proposition, along
with the upper bound in Proposition 2, suggests that the
approximate policy is within η log e of optimality, regardless
of x̄ and the distribution of wt, while the parameter η depends
only on the reward function r(u).

IV. APPROXIMATELY OPTIMAL POLICY FOR GENERAL
DISTURBANCE

We now assume that wt is an i.i.d. process with an arbitrary
distribution Pw. As discussed in Section II, finding the optimal
solution for this general case is a hard problem. In this section,
we present a natural extension of the approximately optimal
policy (7) in the binary disturbance case and show that it is
approximately optimal for any disturbance distribution. The
policy reduces to (7) when the disturbance is binary.

The Fixed Fraction Policy: Let q , E[wt]/x̄. Note that
E[wt] ∈ [0, x̄] so q ∈ [0, 1]. We will use q here instead of the
parameter p in the binary case. Notice that in that case, we
also have E[wt] = px̄, hence this is a natural definition. The
Fixed Fraction Policy is defined as follows:

µ(xt) = qxt. (10)

Inspired by (7), at each time slot, this policy allocates a
fraction q of the currently available amount (i.e. the state).
Clearly this is an admissible policy, since q ≤ 1.

The main result of this paper is that the Fixed Fraction
Policy achieves the upper bound in Proposition 2 within a
constant multiplicative factor and a constant additive gap for
any i.i.d. disturbance process. We prove this result by showing
that under this policy, the binary disturbance process yields the
worst performance compared to all other i.i.d. disturbances
with the same mean. This implies that the lower bounds
obtained for the expected average reward achieved under the
binary disturbance of (5) apply also to any disturbance with
the same mean, giving the following theorem.

Theorem 2. Let wt be an i.i.d. non-negative process with
bounded support [0, x̄], and let π be the Fixed Fraction
Policy (10). Then, the long-term expected average reward
achieved by π is bounded by

Jπ ≥
1

2
r(E[wt]). (11)
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Furthermore, if Assumption 1 holds for the reward function
r(u), then the expected average reward is also bounded by

Jπ ≥ r(E[wt])− η log e. (12)

The proof of this theorem is given in Section V-C. The
following approximation for the optimal expected average
reward is an immediate corollary of the above theorem and
proposition 2.

Corollary 1. The optimal long-term expected average reward
J∗ under any i.i.d. disturbance process wt is bounded by

1

2
≤ J∗

r(E[wt])
≤ 1,

and if in addition Assumption 1 holds, then

r(E[wt])− η log e ≤ J∗ ≤ r(E[wt]).

This corollary gives a simple approximation of how the
optimal average reward depends on the disturbance wt and
the maximal state x̄.

V. LOWER BOUNDS ON THE AVERAGE REWARD

A. Multiplicative Gap for Binary Disturbance: Proof of
Proposition 3

Before establishing the approximate optimality of the sug-
gested policy, we provide a few definitions and results from
renewal theory.

Definition 1. A stochastic process {Xt}∞t=1 is called a non-
delayed regenerative process if there exists a random time τ >
0 such that the process {Xτ+t}∞t=1 has the same distribution
as {Xt}∞t=1 and is independent of the past (τ,Xτ ).

Observe that a regenerative process is composed of i.i.d.
“cycles” or epochs, which have i.i.d. durations τ1, τ2, . . .. At
the beginning of each epoch, the process “regenerates” and all
memory of the past is essentially erased. The following lemma
establishes an important time-average property of regenerative
processes.

Lemma 1 (LLN for Regenerative Processes). Let {Xt}∞t=1,
Xt ∈ X , be a non-delayed regenerative process with associ-
ated epoch duration τ , and let f : X → R. If Eτ < ∞ and
E[
∑τ
t=1 |f(Xt)|] <∞ then:

lim
N→∞

1

N

N∑
t=1

f(Xt) =
1

Eτ
E

[
τ∑
t=1

f(Xt)

]
a.s.

This is an immediate consequence of Theorem 3.1 in [26,
Ch. VI] or of the renewal reward theorem [27, Prop. 7.3].

Going back to our MDP with binary disturbance, denote
by L the random time between two consecutive positive
disturbances, i.e. the time between consecutive occurrences
of the state xt = x̄. This is called an epoch. Evidently,
L ∼ Geometric(p). That is,

Pr(L = k) = p(1− p)k−1 , k = 1, 2, . . .

Since the optimal long-term average reward does not depend
on the initial state x1, we assume without loss of generality
that x1 = x̄.

Equipped with Lemma 1, we consider the policy (6) (or
equivalently (7)). Observe that ut = µ(xt) = pxt is a non-
delayed regenerative process with epoch duration L. We apply
Lemma 1 with f(x) = r(x). Note that EL = 1/p < ∞ and
E[
∑L
t=1 |r(ut)|] ≤ E[L · r(x̄))] <∞, so the conditions of the

lemma are satisfied. We obtain

lim
N→∞

1

N
r(ut) =

1

E[L]
E

[
L∑
t=1

r(ut)

]
a.s. (13)

We proceed to lower bound the expected average reward
obtained by our suggested policy:

Jπ = lim inf
N→∞

1

N

N∑
t=1

E[r(ut)]

(i)
≥ E

[
lim inf
N→∞

1

N

N∑
t=1

r(ut)

]
(ii)
= E

[
1

E[L]
E

[
L∑
t=1

r(ut)

]]

=
1

E[L]
E

[
L∑
t=1

r(ut)

]
(iii)
=

1

E[L]
E

[
L∑
t=1

r(x̄p(1− p)t−1)

]

= p

∞∑
k=1

p(1− p)k−1
k∑
t=1

r(x̄p(1− p)t−1)

(iv)
=

∞∑
i=1

p(1− p)i−1r(x̄p(1− p)i−1) (14)

(v)
≥
∞∑
i=1

p(1− p)i−1 · (1− p)i−1r(x̄p)

= r(x̄p)
∞∑
i=1

p(1− p)2i−2

=
r(x̄p)

2− p
(vi)
≥ 1

2
r(x̄p)

=
1

2
r(E[wt]), (15)

where (i) is by Fatou’s lemma [28, Theorem 1.5.4]; (ii) is
due to (13); (iii) is by definition of the policy (6); (iv) is by
changing the order of summations and evaluating the sum over
k; (v) is because concavity of r(u) along with the fact that
r(0) = 0 imply r(αu) ≥ αr(u) for any 0 ≤ α ≤ 1; and (vi)
is because p ≥ 0.
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B. Additive Gap for Binary Disturbance: Proof of Proposi-
tion 4

By Assumption 1, we have the inequality

r(x̄p(1− p)i−1) ≥ r(x̄p)− η log(1− p)−(i−1).

Substituting in (14) from the previous section:

Jπ ≥
∞∑
i=1

p(1− p)i−1
(
r(x̄p) + (i− 1)η log(1− p)

)
= r(x̄p) + η

1− p
p

log(1− p)

≥ r(x̄p)− η log e

= r(E[wt])− η log e, (16)

where the last inequality is because 1−p
p log(1− p) attains its

minimum in the interval [0, 1] at p = 0.

C. General Disturbance: Proof of Theorem 2

We will now use the result of the previous sections to
lower bound the expected average reward of the Fixed Fraction
Policy for general i.i.d. disturbances. We will show that under
all distributions of wt with the same mean, the lowest expected
average reward is obtained when wt is a binary random
variable, taking the values 0 or x̄.

We begin with a few notations and definitions. Recall that
the Fixed Fraction Policy is given by µ(xt) = qxt, where
q = E[wt]/x̄. Under this policy:

xt+1 = min
(
(1− q)xt + wt, x̄

)
, t = 1, 2, . . . ,

where, as in the previous sections, we assume x1 = x̄.
In what follows, we consider the performance of this policy

under different disturbance distributions and different initial
states. Therefore, we define the expected N -horizon total
reward for initial state x ∈ [0, x̄] under the disturbance wt:

JπN (x) ,
N∑
t=1

E[r(qxt) |x1 = x].

Note that the long-term expected average reward is given by
Jπ = lim infN→∞

1
N J

π
N (x̄).

Let ŵt be i.i.d. binary random variables, specifically ŵt ∈
{0, x̄} and Pr(ŵt = x̄) = q. Note that

E[ŵt] = E[wt].

Define the N -horizon total reward for initial state x ∈ [0, x̄]
under the disturbance ŵt:

ĴπN (x) ,
N∑
t=1

E[r(qx̂t) | x̂1 = x],

where x̂t is the state evolved following the disturbance ŵt,
that is

x̂t+1 = min
(
(1− q)x̂t + ŵt, x̄

)
, t = 1, 2, . . .

In the following proposition, we claim that the N -horizon
expected total reward for any disturbance distribution is always

better than the expected total reward obtained for binary
disturbance with the same mean, for any N and any initial
state x.

Proposition 5. For any x ∈ [0, x̄] and any integer N ≥ 1:

JπN (x) ≥ ĴπN (x).

In the proof of this proposition, we will make use of the
following lemma from [1]:

Lemma 2. Let f(z) be a concave function defined on the
interval [0, x̄], and let Z be a random variable confined to the
same interval, i.e. 0 ≤ Z ≤ x̄. Let Ẑ ∈ {0, x̄} be a binary
valued random variable with Pr(Ẑ = x̄) = E[Z]/x̄. Then

E[f(Z)] ≥ E[f(Ẑ)].

Proof of Proposition 5. We will give a proof by induction.
Clearly for N = 1 we have

Jπ1 (x) = Ĵπ1 (x) = r(qx).

Observe that this is a non-decreasing concave function of x.
This will in fact be true for every ĴπN (x), N ≥ 1, and we will
use this in the induction step.

Assume that JπN−1(x) ≥ ĴπN−1(x) for all x ∈ [0, x̄], and
also that ĴπN−1(x) is monotone non-decreasing and concave
in x.

For the induction step, observe that:

JπN (x) = r(qx) + E[JπN−1(x2)],

where the expectation is over the RV x2 = min{(1 −
q)x + w2, x̄}. This is due to the process xt being a time-
homogeneous Markov chain. By the induction hypothesis, we
have:

JπN (x) ≥ r(qx) + E[ĴπN−1(x2)], (17)

where still x2 = min
(
(1− q)x+ w2, x̄

)
. Now,

ĴπN−1(x2) = ĴπN−1

(
min((1− q)x+ w2, x̄)

)
= min

(
ĴπN−1((1− q)x+ w2), ĴπN−1(x̄)

)
where the second equality is because ĴπN−1( · ) is non-
decreasing, due to the induction hypothesis. Next, we claim
that the function f1(z) , ĴπN−1((1 − q)x + z) is concave.
This is true again by the induction hypothesis that ĴπN−1( · )
is concave. Therefore, since ĴπN−1(x̄) is simply a constant, the
function f2(z) , ĴπN−1

(
min((1− q)x+ z, x̄)

)
is a minimum

of two concave functions, hence it is itself concave. We can
now apply Lemma 2 to obtain:

E[ĴπN−1(x2)] = E[f2(w2)]

≥ E[f2(ŵ2)]

= E[ĴπN−1(x̂2)],

where x̂2 = min
(
(1−q)x+ŵ2, x̄

)
. Substituting this into (17):

JπN (x) ≥ r(qx) + E[ĴπN−1(x̂2)]

= ĴπN (x).
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It is left to verify that ĴπN (x) is concave and non-decreasing
in x. Writing it explicitly:

ĴπN (x) = r(qx) + qĴπN−1(x̄) + (1− q)ĴπN−1((1− q)x),

we see that it is a sum of non-decreasing concave functions
of x, hence it is a non-decreasing concave function of x.

As an immediate result of Proposition 5, we obtain

lim inf
N→∞

1

N
JπN (x̄) ≥ lim inf

N→∞

1

N
ĴπN (x̄). (18)

Now we can apply the results of the previous section. From
(15) we have

lim inf
N→∞

1

N
ĴπN (x̄) ≥ 1

2
r(E[ŵt])

=
1

2
r(E[wt]),

and if Assumption 1 holds we have from (16):

lim inf
N→∞

1

N
ĴπN (x̄) ≥ r(E[ŵt])− η log e

= r(E[wt])− η log e.

Substituting in (18) completes the proof of Theorem 2.

VI. CONCLUSION

We proposed a policy for a general class of MDPs with
concave reward function, and proved that it is within constant
additive and multiplicative gaps to optimality for any distur-
bance distribution and any state space size x̄. This allowed
us to develop a simple and insightful approximation for the
optimal expected average reward.

An important step in our proof was to show that binary
disturbance constitute the worst case for our proposed policy
among all i.i.d. disturbance processes with the same mean, i.e.
the expected average reward achieved by our proposed policy
is smallest when the process is a binary random variable.
Whether i.i.d. binary disturbances are also the worst case in
terms of the optimal average reward is an interesting question.

APPENDIX A
OPTIMAL POLICY FOR BINARY DISTURBANCE: PROOF OF

THEOREM 1

It can be argued [24, Theorem 6.4] that the there exists a
stationary policy, i.e. there exists a function µ∗(x), satisfying
0 ≤ µ∗(x) ≤ x for 0 ≤ x ≤ x̄, s.t. the optimal average
reward is given by J∗ = lim infn→∞

1
n

∑n
t=1 E[r(µ∗(xt))].

Under such a stationary policy, the state xt is a regenerative
process (see Definition 1). The regeneration times {T (n)}∞n=0

are the times in which wt = x̄, i.e. wT (n) = x̄, or equivalently
xT (n) = x̄. Applying Lemma 1 from Section V-A, we obtain:

J∗ =
1

EL
E

[
L∑
t=1

r(mu∗(xt))

]
,

where L = T (1)−T (0) is a Geometric(p) RV, which follows
from the fact that wt are i.i.d. Bernoulli(p). Observe that for

2 ≤ t ≤ L the disturbance is wt = 0 by definition of L.
Hence, we have the following deterministic recursive relation:

x1 = x̄,

xt = xt−1 − µ∗(xt−1) , t = 2, . . . , L.
(19)

Since L can take any positive integer, this defines a sequence
{γ∗i }∞i=1 such that µ∗(xi) = γ∗i . We can therefore write

J∗ =
1

EL
E

[
L∑
i=1

r(γ∗i )

]

= p
∞∑
k=1

p(1− p)k−1
k∑
i=1

r(γ∗i )

=
∞∑
i=1

p(1− p)i−1r(γ∗i ).

Moreover, by the constraint µ∗(xt) ≤ xt and the recursive
relation (19), we must have

∑∞
i=1 γ

∗
i ≤ x̄, in addition to

γ∗i ≥ 0 for all i ≥ 1.
To find {γ?i }∞i=1 we need to solve the following infinite-

dimensional optimization problem:

maximize
∞∑
i=1

p(1− p)i−1r(γi)

subject to γi ≥ 0, i = 1, 2, . . . ,
∞∑
i=1

γi ≤ x̄.

(20)

Let {γ∗i }∞i=1 and J∗ be the optimal sequence and optimal
objective, respectively, of (20). We will show that (20) can be
solved by the limit as N →∞ of the following N -dimensional
optimization problem:

maximize
N∑
i=1

p(1− p)i−1r(γi)

subject to γi ≥ 0, i = 1, 2, . . . , N,
N∑
i=1

γi ≤ x̄.

(21)

Denote by JN the optimal objective of (21). Clearly JN is
non-decreasing and JN ≤ J∗. Observe that the first N values
of the infinite-dimensional solution, {γ∗i }Ni=1, are a feasible
solution for (21). Therefore,

JN ≥
N∑
i=1

p(1− p)i−1r(γ∗i )

= J∗ −
∞∑

i=N+1

p(1− p)i−1r(γ∗i )

(∗)
≥ J∗ −

∞∑
i=N+1

p(1− p)i−1r(x̄)

= J∗ − (1− p)Nr(x̄),
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where (∗) is because γ∗i ≤ x̄ and r(u) is non-decreasing.
Along with the inequality JN ≤ J∗, this implies

J∗ = lim
N→∞

JN .

We continue with the explicit solution of (21). We write the
Lagrangian and solve using KKT conditions:

L =
N∑
i=1

p(1− p)i−1r(γi) +
N∑
i=1

λiγi − ν

(
N∑
i=1

γi − x̄

)
.

Taking derivative:

∂L

∂γi
= p(1− p)i−1r′(γi) + λi − ν = 0,

along with complementary slackness conditions λiγi = 0 and
ν(
∑N
i=1 γi− B̄) = 0. For non-zero γi we have λi = 0, which

gives ν = p(1−p)i−1r′(γi) for all i. The reward function r(u)
is non-decreasing and strictly concave, hence r′(u) is strictly
decreasing and therefore invertible. We get

γi = (r′)−1

(
ν

p(1− p)i−1

)
.

Since (r′)−1( · ) is decreasing, the sequence γi is decreasing.
Applying the function r′( · ) on both sides of the inequality
γi ≥ 0, using the monotonicity of r′(u):

r′(γi) ≤ r′(0),
ν

p(1− p)i−1
≤ r′(0),

i ≤ 1 +
log ν − log(pr′(0))

log(1− p)
,

where the last inequality holds for all i for which γi > 0.
Denoting Ñ = min

(⌊
1 + log ν−log(pU ′(0))

log(1−p)

⌋
, N
)

, we get that

γi > 0 for i = 1, . . . , Ñ and γi = 0 otherwise. Along with
the fact that the second constraint must hold with equality,
i.e.

∑∞
i=1 γi = x̄, since increasing γi can only increase the

reward, we obtain the following equation for ν:

x̄ =
Ñ∑
i=1

(r′)−1

(
ν

p(1− p)i−1

)
.

Taking N →∞ completes the proof.
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[13] Y. Dong, F. Farnia, and A. Özgür, “Near optimal energy control and
approximate capacity of energy harvesting communication,” IEEE J. Sel.
Areas Commun., vol. 33, no. 3, pp. 540–557, 2015.

[14] M. B. Khuzani and P. Mitran, “On online energy harvesting in multiple
access communication systems,” IEEE Trans. Inf. Theory, vol. 60, no. 3,
pp. 1883–1898, 2014.

[15] C. M. Vigorito, D. Ganesan, and A. G. Barto, “Adaptive control of duty
cycling in energy-harvesting wireless sensor networks,” in 4th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON’07), 2007, pp. 21–30.

[16] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy
management policies for energy harvesting sensor nodes,” IEEE Trans.
Wireless Commun., vol. 9, no. 4, pp. 1326–1336, 2010.

[17] R. Rajesh, V. Sharma, and P. Viswanath, “Capacity of fading Gaussian
channel with an energy harvesting sensor node,” in IEEE Global
Telecommunications Conference (GLOBECOM 2011), 2011, pp. 1–6.

[18] R. Srivastava and C. E. Koksal, “Basic performance limits and tradeoffs
in energy-harvesting sensor nodes with finite data and energy storage,”
IEEE/ACM Transactions on Networking (TON), vol. 21, no. 4, pp. 1049–
1062, 2013.

[19] Q. Wang and M. Liu, “When simplicity meets optimality: Efficient
transmission power control with stochastic energy harvesting,” in Proc.
IEEE INFOCOM, 2013, pp. 580–584.

[20] F. Amirnavaei and M. Dong, “Online power control strategy for wireless
transmission with energy harvesting,” in 2015 IEEE 16th International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2015, pp. 6–10.

[21] J. Xu and R. Zhang, “Throughput optimal policies for energy harvesting
wireless transmitters with non-ideal circuit power,” IEEE J. Sel. Areas
Commun., vol. 32, no. 2, pp. 322–332, 2014.

[22] B. T. Bacinoglu, E. Uysal-Biyikoglu, and C. E. Koksal.
(2017) Finite horizon energy-efficient scheduling with energy
harvesting transmitters over fading channels. [Online]. Available:
https://arxiv.org/abs/1702.06390

[23] S. Satpathi, R. Nagda, and R. Vaze, “Optimal offline and competitive
online strategies for transmitter–receiver energy harvesting,” IEEE Trans.
Inf. Theory, vol. 62, no. 8, pp. 4674–4695, 2016.

[24] A. Arapostathis, V. S. Borkar, E. Fernández-Gaucherand, M. K. Ghosh,
and S. I. Marcus, “Discrete-time controlled Markov processes with
average cost criterion: a survey,” SIAM J. Control Optim., vol. 31, no. 2,
pp. 282–344, 1993.

[25] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Athena Scientific, 2001, vol. 2.

[26] S. Asmussen, Applied probability and queues. Springer Science &
Business Media, 2008, vol. 51.

[27] S. M. Ross, Introduction to probability models. Academic press, 2014.
[28] R. Durrett, Probability: theory and examples. Cambridge university

press, 2010.

The 2017 International Workshop on Service-oriented Optimization of Green Mobile Networks (GREENNET)


