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Abstract—Today’s wireless devices can be simultaneously con-
nected to multiple communication networks based on different
radio access technologies (RATs) such as WiFi, 3G, and LTE.
Simultaneous aggregation of each client’s traffic across multiple
such RATs or the corresponding base stations (BSs) can sub-
stantially improve the quality of experience for each client and
improve the overall network utilization and efficiency.

Our goal in this paper is to design distributed resource
allocation algorithms that can be independently executed by each
BS and achieve alpha-fairness among the clients. In particular,
we derive a simple water filling based solution and study its
theoretical aspects such as convergence, optimality, evolution, and
convergence time. We also characterize its performance through
a comprehensive multi-RAT simulator, and show that it achieves
superior performance to alternative distributed solutions due to
its fast and low-overhead operation.

I. INTRODUCTION

The explosive growth in the number of wireless devices and
emerging bandwidth intensive applications (e.g., augmented
reality) has led the wireless industry to develop 5G New Radio
(NR) technologies for different parts of the wireless spectrum,
including sub-1 GHz, 1-6 GHz, and mmWave bands [1]. These
new wireless technologies will augment existing heteroge-
neous cellular networks (HetNets), which already leverage
a wide variety of RATs (e.g., 3G, LTE, and WiFi) to serve
their clients. In parallel, client device (e.g., smartphone) man-
ufacturers are also equipping their devices with an increasing
number of RATs. Simultaneous aggregation of each client’s
traffic across multiple such RATs can substantially enhance
the client performance, e.g., boost its capacity, increase its
resiliency when one RAT fails or becomes congested, and
enhance its mobile operation (e.g., a mobile client can continue
to receive traffic through LTE while switching its WiFi radio).

A. Related Work
To realize the performance gains associated with multi-RAT

HetNets, several standardization organizations have been de-
veloping multi-RAT integration solutions. For example, IETF
(Internet Engineering Task Force) Internet area working group
is developing a multi-access management protocol to support
multi-RAT combination on the core network side [2]. On a
parallel front, the 3GPP has already standardized several PHY
layer aggregation (e.g., LTE-U, LAA [3]) and MAC layer
aggregation (e.g., LWA [4]) techniques. More recently, the
3GPP is standardizing different methods to support 5G NR
access to unlicensed bands as well as mechanisms to support
MAC layer aggregation across any combination of RATs (e.g.,

3G, WiFi, LTE, and NR) [5]. These efforts in totality will
support multi-RAT traffic aggregation at different network
layers (including PHY, MAC, transport, and application layers)
with diverse performance tradeoffs.

We consider MAC-level aggregation as it is generally more
efficient than transport/application layer aggregation solutions
due to the availability of instantaneous channel information at
the MAC layer. It can also be applied to existing HetNets,
whereas majority of consumer and network side wireless
equipment do not yet support PHY layer aggregation.

In particular, our goal is to design a distributed resource
allocation algorithm for each base station (BS)1 such that
the total throughput achieved by each client across its RATs
satisfies ↵-fairness. Alpha-fairness [6] is a unifying mathemat-
ical formulation to achieve fair throughput assignment. The
degree of fairness is defined by a parameter ↵ 2 [0,1),
which controls the tradeoff between fairness and efficiency
(i.e., total throughput maximization). Several special cases of
↵ correspond to well-known fairness metrics, e.g., ↵ ! 1
corresponds to max-min fair allocation (which may be con-
sidered as the most fair allocation), ↵ = 2 corresponds to
delay minimization, ↵ ! 1 corresponds to proportional
fairness, ↵ = 1

2 corresponds to harmonic fairness, and ↵ = 0
corresponds to throughput maximization (without any fairness
consideration). Alpha-fairness has been applied to a wide
variety of networking problems, but this is the first paper to
propose algorithms that achieve it in HetNets.

Several research works have shown the performance gains
associated with multi-RAT traffic aggregation, e.g., in the
case of LTE-WiFi aggregation [7]. However, none of these
works has considered fairness among the clients. In our recent
work [8], we presented a water filling based algorithm that
can achieve proportional fairness. This paper builds on the
algorithm in [8] by showing that water filling-based algorithms
can also enforce generic ↵-fairness, presents the theoretical
underpinning of the water filling solution (Theorem 1) and its
connection to game theory, introduces new proof approaches
to analyze algorithm convergence, optimality, and speed, and
uses a comprehensive simulator (calibrated with 3GPP speci-
fications) to demonstrate its practical performance.

B. Research Contributions
Our key contributions can be summarized as follows:

1We use BS as a generic term that refers to NB in 3G, eNB in LTE,
AP in WiFi, and gNB in 5G.
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• Algorithm Design: We first study the best resource allo-
cation policy for each BS (assuming that other BSs do not
change their resources) to gain intuition for our problem. We
show that if a BS wants to unilaterally maximize the system
objective, it should allocate its resources according to an ↵-
dependent water filling operation [Theorem 1]. We use the
learnings from this observation to design a distributed water
filling algorithm (named “WFRA”) for generic HetNets.

• Theoretical Analysis: We study the theoretical aspects
of WFRA. We show that as BSs autonomously execute
it, the system converges to an equilibrium [Theorem 2].
We next characterize some of the useful properties of
the equilibria [Lemma 1] and prove that any outcome of
WFRA is globally optimal [Theorem 3]. We also show that
while the vector of optimal throughput allocations across
all the clients is unique, there could be infinitely many
resource allocations that can realize them [Proposition 1].
We finally derive tight bounds on WFRA’s convergence
time [Theorem 4] and show that while WFRA results in
an optimal allocation for any finite value of ↵, the resulting
outcome is not necessarily optimal as ↵ ! 1.

• Performance Evaluation. We use a comprehensive multi-
RAT simulator to quantify WFRA’s performance. We show
that our algorithm converges to the optimal solution within
a few iterations. We also compare its performance against
alternative distributed solutions and show that WFRA can
get very close to the ideal fair outcome even in the presence
of channel fluctuations and packet losses.
The paper is organized as follows. We formulate our prob-

lem and discuss the details of our algorithm in Section II. We
discuss the theoretical aspects of WFRA in Section III. We
present the results of our extensive simulations in Section IV.
Finally, we conclude the paper in Section V. Due to page
limitations, we (i) limit the discussion of related work, (ii)
omit proofs of all lemmas, and (iii) omit comparisons against
DComp, an alternative distributed algorithm based on well-
known dual decomposition techniques. These details are pro-
vided in the technical report [9].

II. SYSTEM MODEL

We first present our network model and problem formula-
tion. Next, we derive a theorem that provides us with necessary
intuition to design a distributed resource allocation algorithm
for each BS. Finally, we present the details of our algorithm.

A. Network Model

We consider a HetNet which is composed of a set of BSs
M = {1, ...,M}, and a set of clients N = {1, ..., N}. Each
BS has a limited transmission range and only serves the
clients within its range. Each client has a specific number
of RATs, and therefore has access to a subset of BSs2. We

2We model clients that can aggregate traffic across same technology
BSs with multiple such RATs. For example, the LTE Dual Connectivity
architecture allows an LTE client to connect to two eNBs that are on different
frequencies, and simultaneously utilize the radio resources that belong to both
of them. Thus, we model such a client with two LTE RATs.

Fig. 1. Each client is connected to a set of BSs (dotted lines) and can
split or aggregate its traffic across the corresponding BSs (RATs).

assume that clients split their traffic over their RATs and focus
on the traffic splitting problem for each client. It is itself a
challenging problem to associate each client’s RAT to one of
the corresponding BSs (e.g., choosing the optimal WiFi BS if
a client has a WiFi RAT). We assume there exists a rule to
pre-determine client RAT-BS association. The association rule
could be any load balancing algorithm (e.g., [10]), or based
on the received signal strength, among others.

Similar to [10], [11], we assume that the transmission in
one BS does not interfere with an adjacent BS. This can
be achieved by means of spectrum separation between BSs
that belong to different access networks, and frequency reuse
among same kind BSs. We consider a multi-rate system and
use Ri,j to denote the PHY rate of client i from BS j. Since
each BS generally serves more than one client, clients of the
same BS need to share resources such as time/frequency slots
(e.g. in 3/4G) or transmission opportunities (e.g. in WiFi). The
service rate experienced by client i from BS j thus depends on
the load of the BS and will therefore be a fraction of Ri,j . We
assume that each BS employs a TDMA throughput sharing
model and let �i,j denote the fraction of time allocated to
client i by BS j

3. Hence, the throughput achieved by client i
from BS j is equal to �i,jRi,j and its total throughput across
all its RATs (denote by ri) would be equal to

PM
j=1 �i,jRi,j .

B. Problem Formulation

Our objective is to design a distributed resource allocation
algorithm for each BS such that the vector of total throughput
values across all the clients (r1, r2, ..., rN ) satisfies ↵-fairness.
Specifically, in this paper we derive a generic algorithm and
analyze its performance assuming ↵ is a number between 0
and 1, or a number greater than 1. We discuss the theoretical
aspects of our algorithm for ↵ = 0,! 1, and ! 1 in Sec-
tion III-D. Mathematically, our problem can be formulated as

P1 : max f(�) =
PN

i=1 !iU↵(ri)

s.t. ri =
PM

j=1 �i,jRi,j 8i 2 N

U↵(ri) =
r1�↵
i
1�↵ 8i 2 N

PN
i=1 �i,j  1 8j 2 M

variables: �i,j � 0 8i 2 N, j 2 M

input: ↵ 2 (0, 1) or ↵ > 1

Here, !i is a positive number that denotes client i’s weight
or priority. The second constraint captures the definition of

3In Section IV, we discuss how we can extend our model and algorithm
to capture practical issues such as WiFi contention and channel dynamics.



↵-fairness and the third constraint ensures that the sum of
time fractions at each BS is less than 1. The feasible region
in problem P1 is convex. Since all the Ri,j and �i,j values
are non-negative and finite, it follows that the feasible region
is also bounded, and therefore compact. Since the objective
function is also concave, it follows that the ↵-fair allocation
vector (i.e., ropt = (r1, ..., rN )) exists and is unique.

Thus, problem P1 can be solved optimally in a cen-
tralized manner by using solvers such as CVX [12] in
O(max(N3

, N
2
M)) computational complexity. However, a

centralized solution requires information regarding the entire
topology (i.e., Ri,js and �i,js between every BS and its
clients) for every scheduling interval in order to solve the
problem. This significantly increases the problem complexity
(particularly as the network size increases) and also introduces
significant communication overhead between every BS and the
central entity. Further, HetNet operators use a wide variety of
backhauling technologies with diverse delay and capacity char-
acteristics between different BSs and the central entity. The
backhauling constraints limit the amount and freshness of the
information that can be passed between the BSs and the central
entity. The backhauling delay (e.g., roundtrip latencies of 28
ms in cable and 62 ms in DSL [13]) also make the centralized
solution not adaptable to system dynamics. These challenges
in HetNets necessitate design of distributed resource allocation
algorithms that can be independently executed by each BS.

C. Theoretical Underpinnings of the Water Filling Operation
There are two approaches to design a distributed resource

allocation algorithm for problem P1 that can be autonomously
executed by each BS. One approach, is to use dual decom-
position [14] to derive a distributed algorithm4. The result-
ing algorithm converges to the optimal solution; however, it
cannot be easily implemented in practice, and it incurs long
convergence time and significant over-the-air (OTA) message
passing overhead between every BS and its clients [9]. The
second approach, is to study the optimal action by each BS
in isolation to gain intuition for distributed algorithm design5.
In particular, in our first theorem we show that if a single BS
(e.g., j) wants to unilaterally maximize f(�) (i.e., the objective
function in P1), then it must allocate its resources according to
a water filling strategy. We use the intuition gained from this
result to design a distributed resource allocation algorithm for
HetNets in Section II-D. We show that the resulting algorithm

4Dual decomposition is a standard optimization theory technique, which
is based on decomposing the Lagrangian dual problem [14]. The method is
appropriate to solve P1, because as the constraints are relaxed through the
dual formulation, the problem decouples into several subproblems, which can
be solved distributedly by the clients and BSs.

5This approach to solve the problem and derive a fast and low-overhead
distributed algorithm is inspired by game theory. In fact, we can model
the resource allocation problem in P1 as a game, with BSs as its players.
Identifying the best resource allocation at a BS (assuming other BSs
do not make a change), is referred to as the “best response strategy”
in the game theory literature. Interestingly, we show later in the paper
that by using the best response strategy, the system will converge to a
globally optimal equilibrium (which is also a Nash equilibrium). While
we highlighted the connection to game theory here, we do not discuss
the issue any further in order to not confuse the reader.

TABLE I
MAIN NOTATION

N and N : Set and number of all clients in the network
M and M : Set and number of all BSs in the network
Ri,j : PHY rate of client i to BS j
Rmax (Rmin): Maximum (non-zero minimum) Ri,j across all i, j
�i,j : Fraction of time allocated to client i by BS j
�: Vector of �i,js across all clients and BSs
ri: Total throughput of client i across all its RATs
!i: A positive number that represents client i’s weight or priority
!max (!min): Maximum (non-zero minimum) !i across all clients
✓j : Water fill level at BS j

still converges to the optimal outcome (Section III-B), but
much faster and with far less OTA overhead than the dual
decomposition based solution [9]. Our first theorem shows this
water filling operation:

Theorem 1 Let nj = {1, ..., n} denote the set of clients
with non-zero PHY rate to BS j (i.e., 8i 2 nj , Ri,j > 0).
Let r0i denote the total throughput of client i from all BSs
other than j. Then, if BS j wants to unilaterally maxi-
mize f(�) through allocation of its time resources (i.e.,
assuming no other BS changes its �i,js), it must choose
its �i,js such that the following conditions are satisfied:

A 8i 2 nj | �i,j > 0, then r0i+�i,jRi,j

(!iRi,j)
1
↵

= ✓j

B 8i0 2 nj | �i0,j = 0, then ✓j 
r0i0

(!i0Ri0,j)
1
↵

C
Pn

i=1 �i,j = 1, �i,j � 0 8i, j

Here, ✓j is the water fill level at BS j. Condition A
implies that every client that receives time resources
from j should reach the same water fill level at the
BS. Condition B implies that any client (e.g., i0) that
does not get any time resources from j, should have
a higher ri0

(!i0Ri0,j)
1
↵

than the water fill level at j (i.e.,
✓j). Fig. 2 shows this water filling operation.

Proof: Let �
⇤
1,j ,�

⇤
2,j , ...,�

⇤
n,j denote the optimal time

fractions at BS j that maximize f(�), assuming no other BS
changes its time fractions. Now, if �

⇤
i,j > 0, then for any

i
0 2 nj we must have

f(�)
���
�⇤
1,j ,...,�

⇤
i,j ,...,�

⇤
i0,j ,...

� f(�)
���
�⇤
1,j ,...,�

⇤
i,j�✏,...,�⇤

i0,j+✏,...

where ✏ is a small positive number. Leveraging the definition
of f(�) from P1 (i.e., f(�) =

PN
i=1 !iU(ri)) in the above

inequality and canceling the common terms we have

!iU(r0i + �
⇤
i,jRi,j) + !i0U(r0i0 + �

⇤
i0,jRi0,j) �

!iU(r0i + (�⇤
i,j � ✏)Ri,j) + !i0U(r0i0 + (�⇤

i0,j + ✏)Ri0,j)

Therefore, if ✏ ! 0 we would have

!i
@U(r0i + �Ri,j)

@�

���
�=�⇤

i,j

� !i0
@U(r0i0 + �Ri0,j)

@�

���
�=�⇤

i0,j



) !iRi,j(r
0
i + �

⇤
i,jRi,j)

(�↵) � !i0Ri0,j(r
0
i0 + �

⇤
i0,jRi0,j)

(�↵)

=)
r
0
i + �

⇤
i,jRi,j

(!iRi,j)
1
↵


r
0
i0 + �

⇤
i0,jRi0,j

(!i0Ri0,j)
1
↵

(1)

If we also have that �⇤
i0,j > 0, then we would have

r
0
i0 + �

⇤
i0,jRi0,j

(!i0Ri0,j)
1
↵


r
0
i + �

⇤
i,jRi,j

(!iRi,j)
1
↵

(2)

and hence, from Eqs. (1) and (2) we would have

r
0
i + �i,jRi,j

(!iRi,j)
1
↵

=
r
0
i0 + �i0,jRi0,j

(!0iRi0,j)
1
↵

= ✓j (3)

On the other hand, if �⇤
i0,j = 0, from Eq. (1) we would have

r
0
i + �

⇤
i,jRi,j

(!iRi,j)
1
↵

= ✓j 
r
0
i0 + �

⇤
i0,jRi0,j

(!i0Ri0,j)
1
↵

=
r
0
i0

(!i0Ri0,j)
1
↵

(4)

Finally, property C is because BS j can always increase
f(�) by giving its unused time resources to its clients. Note
that a client RAT is at most associated to one BS. Hence, even
a single associated client can use all the BS’s resources.

Fig. 2. Water filling with three clients. BS j allocates its �i,js such that
clients that receive time resources reach the same water fill level (✓j ).
Clients that do not receive time resources would have a higher ri divided
by (!iRi,j)1/↵ than ✓j . Here, client 2 is one such example (�2,j = 0).

D. Distributed Resource Allocation in HetNets

We extend the water filling observation in Theorem 1 to de-
sign an autonomous resource allocation algorithm in HetNets.
Algorithm WFRA depicted in Fig. 3 summarizes the steps that
are executed by each BS (e.g., j). There are three main steps
in the algorithm: (i) clients are first sorted based on their total
throughput from all BSs other than j (Line 3); (ii) the BS
finds the water fill level and the corresponding �i,js for each
client associated with it; and (iii) a randomization parameter
(pj) is introduced to limit concurrent resource adaptation of a
single client by multiple BSs (Line 5).

The key computational complexity of the algorithm arises
from the sorting of the clients, which can be implemented
in O(n log(n)) complexity (n denotes the number of clients
associated to BS j). Finding the water fill level and the corre-
sponding �i,js can be achieved in O(n log(n)) complexity [8].
Thus, the total algorithm complexity is O(n log(n)).

The only OTA overhead introduced by the algorithm is that
each client announces to its associated BSs its total throughput
(across all its RATs), whenever there is a change in that.

Fig. 3. Resource allocation algorithm autonomously run by each BS j.

III. CONVERGENCE, OPTIMALITY, AND SPEED OF WFRA
In this section, we investigate the convergence properties

of WFRA. We first show that as BSs autonomously execute
WFRA, the system converges to an equilibrium. Next, we
prove that this equilibrium is optimal. Finally, we derive tight
upper bounds on WFRA’s convergence time.

A. Convergence to an Equilibrium
We first present a formal definition of an equilibrium.

Definition 1 Equilibrium: The vector of time fractions across
all the BSs and clients is an equilibrium outcome if none of the
BSs can increase its water fill level through unilateral change
of its time resource allocations.

Our next theorem guarantees the convergence of WFRA.

Theorem 2 Let each BS autonomously execute WFRA.
Then, the system converges to an equilibrium.

Proof: Consider f(�) as defined in problem P1. Let at
each time slot a single BS execute the water filling algorithm.
From Theorem 1, it follows that each time a BS makes a
change to its resource allocations it increases f(�). Since the
number of clients, BSs, and all the PHY rates (Ri,js) are all
finite numbers, f(�) would be upper bounded. Since at each
time slot f(�) increases and it is a bounded function, the
value of f(�) must converge. Let rt = (rt1, ..., r

t
N ) denote the

clients’ throughput sequence corresponding to the evolution
of f over time. We will later show in Theorem 3 that any
equilibrium outcome of WFRA converges to the same point.
Hence, any converging subsequence of r converges to the
same point. Now, leveraging the fact that f(.) is a continuous
function, all ris are bounded, and r is compact, this results
in the convergence of the rt sequence to an equilibrium i.e.,
rt ! req = (req1 , ..., r

eq
N ). Since 8i 2 N, ri converges to an

equilibrium (reqi ), and we allow only one of the BSs change
its �i,js, therefore the changes on �i,js must converge to zero,
i.e., �i,j ! �

eq
i,j . This also results in the convergence of the

water fill levels at each BS, i.e., ✓j ! ✓
eq
j .



B. Optimality and Other Properties of the Equilibria

In Theorem 2, we proved that as BSs autonomously execute
WFRA, the system converges to an equilibrium. In this section,
we first derive some useful properties of the equilibria and
prove that the optimal solution (ropt) is also an equilibrium.
Next we prove that any equilibrium outcome (req) is also
optimal. Finally, we show that while ropt is unique, there could
be infinitely many resource allocations (i.e., �i,js) that can
realize it. We start by analyzing the equilibria properties.

Lemma 1 Consider an equilibrium outcome of WFRA.
Let reqi , ✓eqj , and �

eq
i,j , denote the corresponding through-

put of client i, water fill level at BS j, and the fraction
of time allocated to client i by BS j, respectively. Then

I !iRi,j

(reqi )↵  1
(✓eq

j )↵ 8i 2 N, j 2 M

II
PN

i=1 �
eq
i,j = 1 8j 2 M

III
PN

i=1 !i(r
eq
i )1�↵ =

PM
j=1

1
(✓eq

j )↵

IV The optimal outcome is also an equilibrium. Hence,

we can re-write properties I - III by replacing all
r
eq
i , ✓

eq
j , and �

eq
i,j with r

opt
i , ✓

opt
j , and �

opt
i,j , respectively.

Proof: We use the properties in Theorem 1 as well as
contradiction methods to derive all the properties [9].

In our next theorem, we prove that any equilibrium is the
unique optimal solution to problem P1.

Theorem 3 Let req = (req1 , ..., r
eq
N ) be an equilibrium

and ropt = (ropt1 , ..., r
opt
N ) be an optimal solution to

problem P1. Then, req = ropt.

Proof: Leveraging Lemma 1 we can write:
left sidez }| {

X

i

!ir
eq
i

(ropti )↵
=

X

i,j

!iRi,j�
eq
i,j

(ropti )↵

I


X

i,j

�eq
i,j

(✓optj )↵
=

X

j

X

i

�eq
i,j

(✓optj )↵

II
=

X

j

1

(✓optj )↵

III
=

right sidez }| {X

i

!i(r
opt
i )(1�↵) (5)

By taking similar steps to Eq. (5) and replacing all equilibrium
variables with optimal ones and vice versa, we have

left sidez }| {
X

i

!ir
opt
i

(reqi )↵
=

X

i,j

!iRi,j�
opt
i,j

(reqi )↵

I
 ... =

rigth sidez }| {X

i

!i(r
eq
i )(1�↵) (6)

By multiplying the right sides and left sides of Eqs. (5) and
(6), and subtracting the left side from the right side we have
X

i

!i(r
opt
i )1�↵

X

i

!i(r
eq
i )1�↵ �

X

i

!ir
eq
i

(ropti )↵

X

i

!ir
opt
i

(reqi )↵
� 0

=)
X

k,l

!k!l

h
(roptk )1�↵(reql )1�↵ + (roptl )1�↵(reqk )1�↵�

r
eq
l

(roptl )↵
⇥

r
opt
k

(reqk )↵
�

r
opt
l

(reql )↵
⇥

r
eq
k

(roptk )↵

i
� 0 =)

X

k,l

⇣
!k!l

h
Product of these two parentheses is always  0z }| {

(roptk r
eq
l � r

opt
l r

eq
k )(

1

(roptk r
eq
l )↵

� 1

(roptl r
eq
k )↵

)
i⌘

� 0 (7)

From linear algebra, if a and b are two positive numbers,
then (a � b) ⇥ ( 1

a↵ � 1
b↵ ) (where ↵ is > 0) is always  0,

with equality happening when a = b. Since !k and !l in
Eq. (7) are two positive numbers, it follows that each of the
multiplications of the parentheses in Eq. (7) is zero, i.e.,

8k, l 2 N r
opt
k r

eq
l = r

opt
l r

eq
k =)

r
opt
k

r
eq
k

=
r
opt
l

r
eq
l

= � (8)

Since the inequality in Eq. (7) turns into equality to zero,
it follows that inequalities in both Eqs. (5) and (6) are also
equalities. By taking one of these (e.g., Eq. (5)) we have

left side of Eq. (5)z }| {
X

i

!ir
eq
i

(ropti )↵

Eq. (8): reqi = ropti /�z }| {

=
X

i

!ir
opt
i

�(ropti )↵
=

right side of Eq. (5)z }| {X

i

!i(r
opt
i )1�↵ ) � = 1

In other words (using Eq. (8)), 8i 2 N r
eq
i = r

opt
i .

Finally, while ropt is unique, we prove that there could be
infinitely many resource allocations (�i,js) to realize it.

Proposition 1 Consider problem P1 and let ropt denote
the unique optimal outcome. Then, there could be in-
finitely many possible resource allocations to realize ropt.

Proof: Our proof is based on an example. Consider a
HetNet topology with two BSs and two clients. Let !i = 1 8i
and Ri,j = 1 8i, j. Then, �1,1 = �2,2 = � and �1,2 = �2,1 =
1� � results in the optimal allocation (i.e., r1 = r2 = 1) for
any value of � 2 [0, 1] and any desired ↵.

C. Bounds on the Objective Function and Convergence Time
In this section, we analyze the objective function (f(�))

of problem P1. We first derive upper and lower bounds
on f(�). The bounds are useful for various purposes, e.g.,
a HetNet operator could use these bounds and the current
state of the network to estimate the gap from optimality and
optimize network operation as needed (e.g., aggregate some
of calculations across BSs with better backhauling between
them). We can also use these bounds to derive upper bounds
on WFRA’s convergence time. We start by analyzing f(�):

Lemma 2 Let f(�) be P1’s objective function. Then,

f(�) 

8
<

:

!maxR
1�↵
max

1�↵ ⇥N
↵ ⇥M

1�↵ 0 < ↵ < 1

!↵
min!

1�↵
max R1�↵

max
1�↵ ⇥N

↵ ⇥M
1�↵

↵ > 1

f(�) �

8
><

>:

N↵!min
1�↵ ⇥

⇣
Rmin

R1�↵
max

⌘ 1�↵
↵

0 < ↵ < 1

N↵!max
1�↵ ⇥R

1�↵
min ↵ > 1



Proof: We use the properties in Theorem 1 and Lemma 1,
and Jensen inequality [15] to bound f(�) [9].

We next proceed to bound WFRA’s convergence time.
However, before that we need to define a discretization factor
on the time fractions (i.e., �i,js). This is due to the fact that
�i,js in our model are continuous variables, which can cause
some BSs to continuously make infinitesimal adjustments to
them. These adjustments converge to 0 as time goes to infinity.

In practice, operations always happen in discretized levels.
For example, consider the following discretization policy:

Definition 2 Discretization Policy: During water fill calcula-
tion by a BS j in WFRA, the time fraction allocated to the client
with minimum ri

!iRi,j
should increase by at least ✏. Otherwise,

the BS would not update its time fractions.
Leveraging Lemma 2 and the above discretization policy,

we can derive the following bound on WFRA’s speed.

Theorem 4 Consider a HetNet with N clients and M BSs.
Let Rmax and Rmin denote the maximum and non-zero
minimum PHY rates across all the clients and BSs. Then,
WFRA’s convergence time is upper bounded by

8
<

:

1
↵(1�↵)✏ ⇥

M2

N ⇥ !max
!min

⇥ (Rmax
Rmin

)2 0 < ↵ < 1

1
(↵�1)↵✏ ⇥

M↵+1

N ⇥
⇣

Rmax
Rmin

⌘↵
↵ > 1

Proof: Consider f(�) as defined in P1. From Theorem 1,
each time a BS adjusts its water fill level, f increases. The
key idea to bound the convergence time, is to find a lower
bound on f ’s increments. Let � denote the lower bound on
f ’s increments. The convergence time is then upper bounded
by the difference between maximum and minimum values of
f , divided by �. Since we have already derived upper and
lower bounds on f (Lemma 2), the key remaining step is to
find �. To derive that, we use the following lemma:

Lemma 3 Let U(x) = x1�↵

1�↵ with x > 0 and ↵ > 0. Let
✏ be a small positive number. Then

D U(x)� U(x� ✏) � ✏ U
0(x)� ✏2

2 U
00(x)

E U(x)� U(x+ ✏) � �✏ U
0(x)� ✏2

2 U
00(x+ ✏)

Here, U 0 and U
00 denote the 1st and 2nd derivative of U .

We use the Taylor theorem [16] and our objective function
properties to derive the lemma properties [9].

We now proceed to derive a lower bound on f ’s increments
(i.e., �). With abuse of notation, let {1, 2, ..., k} denote the
set of clients with non-zero PHY rates to BS j. Let client 1
be the one with minimum ri

(!iRi,j)
1
↵

across all these clients.
Hence, as BS j executes WFRA (by choosing a new � vector),
it increases the throughput of client 1 and we would have

r1 + ✏1R1,j

(!1R1,j)
1
↵

 r2 � ✏2R2,j

(!2R2,j)
1
↵

, ...,
rk � ✏kRk,j

(!kRk,j)
1
↵

(9)

In Eq. (9), ✏1 is a positive number equal to ✏2+ ...+✏k. The
above inequality is because as j executes WFRA, the level of
the water fill at client 1 cannot exceed other clients’ level.
Further, since ✏1 =

Pk
i=2 ✏i, from Eq. (9) we would have

8i 2 {2, ..., k} !1R1,j

(r1 + ✏1R1,j)↵
� !iRi,j

(ri � ✏iRi,j)↵

=) ✏1
!1R1,j

(r1 + ✏1R1,j)↵
�

kX

i=2

✏i
!iRi,j

(ri � ✏iRi,j)↵
(10)

We derive a lower bound on f ’s increments through:

f(�)new � f(�) =

!1(U(r1 + ✏1R1,j)� U(r1)) +
kX

i=2

!i

⇣
U(ri � ✏iRi,j)� U(ri)

⌘

D , E

� !1

h
✏1R1,jU

0(r1 + ✏1R1,j)�
(✏1R1,j)

2

2
U 00(r1 + ✏1R1,j)

i
�

kX

i=2

!i

h
✏iRi,jU

0(ri � ✏iRi,j) +
(✏iRi,j)

2

2
U 00(ri)

i
=

✏1!1R1,jU
0(r1 + ✏1R1,j)�

kX

i=2

✏i!iRi,jU
0(ri � ✏iRi,j)�

!1(✏1R1,j)
2

2
U 00(r1 + ✏1R1,j)�

kX

i=2

!i
(✏iRi,j)

2

2
U 00(ri) =

from Eq. (10) this term is �0z }| {

✏1
!1R1,j

(r1 + ✏1R1,j)↵
�

kX

i=2

✏i
!iRi,j

(ri � ✏iRi,j)↵
+

kX

i=2

↵!i(✏iRi,j)
2

2

r�↵
i

ri

+
↵!1(✏1R1,j)

2

2
(r1 + ✏1R1,j)

�↵�1 >
↵!1(✏1R1,j)

2

2
r�↵�1
min

F
�

↵!1(✏1R1,j)
2

2

⇣ N
MRmax

⌘↵+1
� ↵!min✏

2R2
min

2⇥R↵+1
max

⇣N
M

⌘↵+1
= �

In F we use the property that the minimum throughput
(ri) that a client can get is  MRmax

N . This is because
Nrmin 

P
ri  MRmax. The upper bound on convergence

time follows by dividing the difference between maximum and
minimum values of f by �. To simplify the presentation of
results, we assume that for ↵ > 1 the upper bound on f is zero
(note that for these ↵ values, f is always a negative function).
Similarly, for 0 < ↵ < 1 we assume that the lower bound on f

is zero (for these ↵ values, f is always positive). We can then
derive the bounds in Theorem 4 by making these simplifying
assumptions and leveraging �, and Lemma 2.

D. Algorithm Performance for ↵ = 0, 1, and 1
Case 1: ↵ = 0. This value of ↵ corresponds to throughput

maximization without any fairness constraint. Here, U(ri) =
ri and problem P1 can be optimally solved in a single step
if each BS j gives all of its time resources to the associated
client with maximum !iRi,j . However, the optimal solution
is not necessarily unique. For example, consider a single BS
with two associated clients, each with rate R to the BS and
unit weight. There are infinitely many optimal allocations, e.g.,
(r1 = r2 = R

2 ), (r1 = R, r2 = 0), and (r1 = 0, r2 = R).



Case 2: ↵ ! 1. This value of ↵ corresponds to proportional
fairness. In particular, for ↵ = 1 the utility function definition
in P1 is commonly changed to U(ri) = log(ri). We prove the
convergence and optimality of WFRA (with ↵ = 1) in [8].

Case 3: ↵ ! 1. Here, the objective function in P1 is
commonly changed to a max-min function. In [17], we studied
the max-min fair resource allocation problem and presented
a slightly different water filling algorithm that converges
to an equilibrium. However, we proved that the resulting
equilibrium is not necessarily optimal. We can apply the same
methodology to prove the convergence of WFRA (as ↵ ! 1),
however, the outcome is still not necessarily optimal. For
instance, consider the example given in [17]: Assume 2 clients
with !i = 1, and 2 BSs. Let R1,1 = 1, R1,2 = 2, R2,1 = 4,
and R2,2 = 3. Then, �1,1 = 1, �1,2 = 0.4, �2,1 = 0, and
�2,2 = 0.6 is an equilibrium, which results in r1 = r2 = 1.8.
However, the optimal outcome is r1 = r2 = 2.4, which can be
achieved by �1,1 = 0.4, �1,2 = 1, �2,1 = 0.6, and �2,2 = 0.

IV. PERFORMANCE EVALUATION

In this section, we present the results of extensive simula-
tions to characterize the performance of WFRA. Discussion
and comparison against DComp (an alternative distributed
algorithm based on dual decomposition) are presented in [9].

Simulation Setup. We used a comprehensive multi-RAT
system level simulator to conduct simulations with three access
technologies: (i) LTE, (ii) WiFi, and (iii) 5G New Radio (NR).
Each RAT is calibrated with industrial benchmarks [18] to
ensure its conformance to the 3GPP standard specifications.
Fig. 4 summarizes some of the key simulator parameters.

Fig. 5(a) shows our simulation topology, which consists
of 7 LTE macrocells each with three sectors. We randomly
drop a single WiFi, a single 5G NR small cell, and a varying
number of clients in each sector. Each of our clients has a
weight (!i) of 1 and has three RATs (WiFi, LTE, and 5G
NR). We associate each client’s RAT to the corresponding BS
that provides the highest downlink SNR. We generate channels
between each client and all the BSs according to the 3GPP
specifications [18]. Channel variations in our simulator are
captured through a Doppler mobility parameter, which creates
slow variation (fading) around an average R

avg
i,j between every

client and BS. Each of our data points is an average of 100
simulation trials. We implement the following algorithms:

Conv. This scheme combines traffic across multiple RATs
without changing the Conventional scheduling algorithm on
each BS. In particular, we use a round-robin (RR) queuing
mechanism at the WiFi BSs and a proportional fair sched-
uler [8] at the LTE/NR BSs. In the RR scheduler, the BS
maintains a different queue for each client and sequentially
serves a single packet from each queue at every round.

OMMA. Opportunistic Multi-MAC aggregation [19] is a
delay-equalizing resource allocation algorithm, which splits
traffic across multiple RATs so as to equalize the packet delay
across the RATs, and hence minimize the maximum delay per
client. OMMA does not account for fairness among the clients,
but similar to WFRA only uses local information at each BS.

Fig. 4. Some of the key simulation paramaters.

WFRA. We use our algorithm to determine the number of
packets that should be served from each queue in WiFi and
the time resources that should be dedicated to each queue
(client) in LTE/NR. We let each BS change its parameters
every 10 ms with 0.5 probability (i.e., 8j pj = 0.5). We
also set the discretization factor (✏) equal to 0.05. For the
initial allocation, each BS randomly allocates its time to its
clients. Note that WFRA as presented in Section II-D does not
account for various types of overhead (e.g., WiFi contention).
To address the issue, we introduce the notion of effective rate
(Reff) and replace all Ri,js in WFRA with R

eff
i,js. To calculate

R
eff
i,j , each BS keeps track of the total time spent in successfully

transmitting the last 5 packets of each client. It then divides
the total number of data bytes across these packets by the total
time spent in sending them, to derive R

eff
i,j . We average over 5

packets to take into account the impact of channel fluctuations.
Throughput-Fairness Characteristics. Figs. 5(b) and 5(c)

depict the median and cell-edge clients’ throughput across
all the schemes. Cell-edge client is defined as the client that
is at the 5th percentile of the throughput CDF (Cumulative
Distribution Function) across all the clients. For WFRA, we
conduct simulations for three different ↵ values: 0.5, 0.9,
and 2. Note that Conv and OMMA do not depend on ↵.
We observe that WFRA provides different throughput-fairness
tradeoffs that depend on ↵. For example, WFRA’s median
and cell-edge throughput are 48 and 6 Mbps for ↵ = 0.5,
39 and 15 Mbps for ↵ = 0.9, and 34 and 18 Mbps for ↵ = 2,
respectively. For larger values of ↵, WFRA approaches the
max-min fairness, which allocates resources so that clients
achieve a more equal throughput. In contrast, for smaller
values of ↵, WFRA approaches a throughput maximization
objective, with less emphasis on fairness.

We next quantify the closeness of each algorithm’s outcome
to an ideal ↵-fair allocation. We take the following steps to
identify the ideal throughput (rideal

i ) for each client i and for
a desired value of ↵. We set the Doppler to 0 and let WFRA
converge to the optimal ideal allocation. With Doppler set



Fig. 5. (a): Simulation topology. A wrap around implementation ensures that the distribution of BS distances to clients remains the same across all
the clients; (b): Median (middle) client total throughput; (c): Cell-edge (5th percentile) client total throughput; (d): Distance to the ideal fairness.

to 0, there would be no channel variations or packet losses
(i.e., ideal conditions). We next set the Doppler to 3 km/hr
and measure the vector of throughput values (r) across all the
clients for each scheme. Finally, we calculate

PN
i=1

rscheme
i

rideal
i

and
divide it by N (total number of clients) to quantify the distance
of each scheme to the ideal ↵-fair allocation. This metric
allows us to compare two n-dimensional vectors. A value
close to 1 means an outcome is close to the ideal outcome.
Fig. 5(d) depicts the distance of each scheme to the ideal
↵-fair allocations with 15 clients/sector (we observed similar
results with 5/10 clients). We observe that even with channel
dynamics, WFRA gets very close to the ideal allocations.

Fig. 6. WFRA’s convergence time (a) and evolution (b) properties.

Convergence Time. Figs. 6(a) and 6(b) depict WFRA’s
convergence time properties. Here, we set the Doppler to 0
to avoid channel dynamics. Note that if channel conditions
are continuously changing, WFRA would not converge as
it would continuously adapt to system dynamics. Fig. 6(a)
shows the average number of required steps for WFRA to
converge. There are two observations: (i): WFRA converges
in a small number of steps, and (ii) there is a small change
in the convergence time for different client numbers. This is
due to WFRA’s water filling operation, in which a BS finds
the �i,js to all of its clients in one shot and also because
irrespective of the number of clients, half of the BSs adjust
their �i,j at each scheduling interval (pj = 0.5).

Fig. 6(b) shows sample evolutions of the previously defined
distance metric (

�P
i

rti
ropt
i

�
/N ) as function of step number t

(i.e., scheduling interval) in WFRA. The samples correspond
to simulation realizations with 15 clients per sector. We
observe that irrespective of the value of ↵, the distance metric
is more than 0.8 within 4 steps, which shows that WFRA can
get very close to the optimal outcome within a few iterations.

V. CONCLUSION

We studied the theoretical aspects of generic ↵-fair through-
put aggregation in HetNets. We showed that if a BS wants to
unilaterally maximize the system objective, it should allocate
its resources according to a water filling operation. We used
this observation to design a distributed algorithm that achieves
↵-fairness. We analyzed several theoretical aspects of the
algorithm and showed that our algorithm can quickly adapt
to system dynamics and realize the desired fairness outcome.
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