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Abstract—Mobile edge computing networks with energy con-
strained users, which do not have access to licensed spectrum,
might face difficulty in completing delay sensitive computational
tasks due to lack of proper offloading spectrum. This paper
considers a mobile edge computing scenario in the context of
cooperative communication, where an user (with no access to
licensed spectrum) relays a licensed spectrum holder’s data to get
access to the licensed spectrum for computation task offloading.
We consider the relay to have a heavy computational task to com-
plete by a given time duration. However, due to less computation
power, the relay might not be able to meet the timeline. In this
regard, the relay might offload partial computational task over
the licensed spectrum to a more computationally powerful node,
e.g., mobile edge computing server. The licensed spectrum holder
might be interested in maximizing the relaying rate; whereas, the
relay might want to minimize the total energy consumption for
the task computation. We consider the relay partially offloading
it’s computational task and formulate an optimization problem
capturing two different interests for the licensed spectrum holder
and the relay. In the optimization problem, we consider relevant
constraints to make it more general. The optimization problem is
observed to be non-convex. However, after analysis, we propose a
less complex iterative algorithm. We observe that joint optimiza-
tion provides a better trade-off between the relaying rate and
the energy consumption at the WU, which is not observed for
individual relaying rate maximization and energy consumption
minimization.

Keywords—Mobile edge computing, Relaying, Partial offload-
ing, Optimization

I. INTRODUCTION

Computational complexity of wireless users (WUs) is
rising day by day with the advent of different technologies,
such as, facial recognition, augmented reality, virtual reality,
highly interactive online gaming, internet of things (IoT), etc.
Most of these applications require low latency, which might
not be attained at WUs with limited computation capability.
WUs might take help of a centralized cloud computing facility
by offloading computation task for remote computation [1].
However, offloading to a distant cloud computing facility might
not be beneficial in terms of latency.

In recent years, mobile edge computing (MEC) has gained
significant attention as WUs might offload computation task to
the MEC servers in close proximity for remote computation,
which might reduce the latency substantially compared to
offloading for a distant cloud computing facility. MEC has
been proposed by Europeans Telecommunications Standards
Institute (ETSI) [2], which aims in improving WUs’ experience
with latency responses. In [3], we find two different types of

task offloading modes, i.e., binary and partial. WUs either
offload total computational task or do local computation in
binary offloading mode. In partial offloading mode, WUs
offload a fraction of computational task to the MEC server.
WUs of networks, e.g., adhoc, internet of things (IoT), which
do not have dedicated licensed spectrum, may offload their
computational tasks over unlicensed spectrum. However, WUs
might face uncontrolled interference during offloading over
unlicensed spectrum and hence might not satisfy the delay
requirement.

To avoid uncontrolled interference, WUs might get access
to licensed spectrum by spectrum sharing, which has gained
widespread attention in different communication networks like
5G [4], IoT [5], etc. In literature, we find different spectrum
sharing methods, e.g., opportunistic [6] and cooperative re-
laying [7]. In the context of MEC, spectrum sharing might
be relevant for wireless networks (e.g., adhoc, IoT), which
might not have any dedicated spectrum for computation task
offloading. We consider a MEC network in conjunction with
cooperative relaying based spectrum sharing in this paper. Re-
lated literature includes [7], where authors have considered two
separate optimization problems for finding relaying and MEC
parameters. Though authors of [8]–[11] have not considered
spectrum sharing, they have considered cooperative relaying
in the context of MEC. In [8], [9], authors have considered
energy minimization problem; whereas, authors of [10], [11]
have considered minimization of weighted sum of energy and
latency. Out of [7]–[11], authors of [10], [11] have considered
partial offloading in their work.

In this paper, we consider a WU with low computation
power and high computational task. The WU takes help of
a MEC server to complete the computational task by a firm
timeline. As has been discussed earlier, in order to reduce com-
putation latency, the WU shares a licensed spectrum. Typically,
the wireless network whose spectrum is shared, is denoted
by primary network in literature [7]. Following the same
convention, we denote the transmitter and the corresponding
receiver of the primary network by primary transmitter (PT)
and primary receiver (PR), respectively. The WU follows
decode and forward (DF) relaying principle while forwarding
the PT’s data to the PR to get access of the primary network’s
licensed spectrum. We optimize weighted sum of relaying rate
and the WU’s energy consumption. As spectrum sharing has
not been considered in [8]–[11], PT’s rate maximization is
not relevant there. Though authors of [7] have considered
spectrum sharing, they have not considered joint optimization
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of relaying rate and energy consumption. Precisely, we can
outline contributions of this paper as:

• We consider joint optimization of the PT’s rate and
the WU’s energy consumption in this paper while con-
sidering weighted sum of these two metrics. The PT
is guaranteed rate above some predefined threshold;
whereas, a hard timeline is considered in constraint to
capture latency sensitivity of the WU’s application. To
the best of our knowledge, this form of optimization
problem has not been considered earlier for MEC.

• We also perform comparative study with two other
optimization scenarios, e.g., relaying rate maximiza-
tion and energy consumption reduction. We observe
that joint optimization provides better utility value
(i.e., total utility constructed by the relaying rate and
energy consumption) while providing nice trade-off
between the relaying rate and the energy consumption.
We observe that compared to other two optimization
scenarios, joint optimization helps in saving significant
amount of energy at the relay at the cost of negligible
loss in relaying rate.

II. SYSTEM MODEL

In Fig. 1, we show logical diagram of our system model,
where we consider that the WU has high comptational task
1 to complete by a given time duration. However, due to low
computation power, the WU might not be able to finish the task
by the given time duration. The WU offloads partial amount of
the task to the MEC server using the PT’s licensed spectrum.
The WU gets access to the licensed spectrum in remuneration
of relaying the PT’s data to the PR. The WU has two separate
hardware blocks for transceiver and computation, as shown
in Fig. 1. Channel gains between PT-PR, PT-WU, WU-PR,
and WU-MEC server are denoted by h1−4, respectively. We
consider partial offloading in this paper.

Fig. 1. Relaying based MEC network

We assume both the WU and the PT operate in a slotted
way over time and follow a synchronized slot structure. During
each slot, time frame duration is considered to be T . The
WU performs local computing throughout a frame duration,
which does not hamper in the relaying process due to separate
hardware blocks for computation and communication. We
assume the WU locally computes β(0 ≤ β ≤ 1) fraction of the
task. Based on activities at the PT, PR, WU, and MEC server

1We use the word ’task’ in place of ’computational task’

transcievers, we divide a frame duration into three phases,
which is shown in Fig. 2:

• Phase-1: The PT broadcasts data to the PR and the
WU for τr/2 duration.

• Phase-2: The WU relays the PT’s data to the PR for
τr/2 duration.2

• Phase-3: In Phase-3, three different activities take
place over the duration (T −τr), i.e., the WU offloads
(1 − β) fraction of the task to the MEC server. The
MEC server computes the data and feedbacks the
result to the WU.

Fig. 2. Different phases based on transceivers activities at the PT, PR, WU,
and MEC server

Possible application of the system model: We might
correspond the WU to a sensor node in a narrow band-
internet of things (NB-IoT) network, which might have a
heavy computational task to complete by a particular time
duration [12]. Due to the computational power limitation, the
WU takes help of a MEC server. The WU might share a
licensed spectrum with corresponding licensed users following
in-band operation [5], in return cooperating licensed users in
their communications. The WU communicates with the MEC
server using the licensed spectrum.

In following subsections, we discuss about primary net-
work’s rate and different relevant parameters related to both
local as well as remote computation.

A. PT’s rate
We consider DF relaying in this work. Following [13], [14],

we can write the PT’s rate as:

RP =
τrBw
2

log2 {1 + min(SNR1+3,SNR2)} (1)

where Bw is the bandwidth of the licensed spectrum and

SNR1+3 =
PPTh1d

−α
1

σ2
+
PWU,1h3d

−α
3

σ2
,SNR2 =

PPTh2d
−α
2

σ2
.

PPT and PWU,1 are the PT’s transmission and the WU’s relaying
powers, respectively. d1, d2, and d3 denote distances between
PT-PR, PT-WU, and WU-PR, respectively. α is the path loss
exponent and σ2 denotes total noise power at the receiver (we
consider identical noise power at all receivers). We consider
block fading in this paper, such that, h1−4 remains same
throughout a slot duration. We mainly focus on the case where
the PT gets advantage due to relaying compared to direct
transmission, i.e., h1d−α1 < h2d

−α
2 .

2Different time durations for Phase-1 and 2 might be considered, which
brings more variables in the optimization problem. We leave this for future
work.



B. Local computation
We characterize the WU by a positive parameter tuple

⟨Q,CWU, fWU, T ⟩, where Q denotes number of bits with which
the task at the WU is formed, CWU is the number of CPU
cycles required to compute a bit at the WU, fWU is the
WU’s CPU frequency (CPU cycles/second), and T is the time
duration by which the WU needs to finish its task. We assume
that the WU adopts dynamic frequency and voltage scaling
(DVFS) technique to step up or down the CPU frequency. The
WU’s computation capability is limited by a maximum value
for CPU frequency fmax

WU . We discuss about local computation
time and energy consumption below.

1) Associated time: The WU might not be able to com-
plete the task by stipulated time duration due to computation
capability limitation. We assume the WU chooses to compute
β fraction of the task, such that, the required time to complete
the task becomes:

t
(c)
WU =

βQCWU

fWU
. (2)

2) Associated energy consumption: Due to the computation
procedure, the WU depletes energy. Total energy consump-
tion due to computation has three different factors [15], i.e.,
dynamic, short circuit, and leakage energy consumption. As
dynamic energy consumption dominates over the other two
factors, we do our further analysis based on the dynamic
energy consumption during computation. According to [16],
we can write the energy consmption at the WU due to
computation as:

E(c)
WU = kWUβQCWUf

2
WU (3)

where kWU is a constant which is related to the hardware
architeture at the WU.

C. Remote computation
The WU offloads (1 − β) fraction of the task to the

MEC server for remote computation. We characterize the MEC
server by ⟨CMEC, fMEC⟩, where CMEC is the number of CPU
cycles to compute a bit at the MEC server and fMEC is the
MEC server’s CPU frequency. Following, we discuss about
time duration and energy consumption associated with the
remote computation procedure.

1) Associated time: We consider the total time duration,
i.e., the instant of data offloading from the WU to the instant
of receiving feedback at the WU from the MEC, to compute
the total time duration for remote computation procedure. The
WU offloads task to the MEC server for duration:

t(o)
WU =

(1− β)Q

Bw log2

{
1 +

PWU,2h4d
−α
4

σ2

} , (4)

where PWU,2 is the transmission power at the WU during
offloading. h4 and d4 are channel gain and distance between
WU-MEC, respectively. The MEC server computes (1− β)Q
bits for following time duration:

t(o)
MEC =

(1− β)QCMEC

fMEC
. (5)

We assume that the MEC outputs γ(γ < 1) fraction of input
data, such that, under the assumption of reciprocal channel

gains between WU-MEC and MEC-WU, we can write the
feedback time duration as:

t(o)
f =

γQ(1− β)

Bw log2

{
1 +

PMECh4d
−α
4

σ2

} . (6)

We can write the total time duration to get back the remotely
computed data at the WU as:

t(o)
r = t(o)

WU + t(o)
MEC + t(o)

f . (7)

2) Associated energy consumption: Like the time calcula-
tion, we calculate associated energy consumption at the WU
for the remote computation procedure, which is mainly for
data offloading:

E(o)
WU = PWU,2t

(o)
WU. (8)

Under the assumption of small amount of feedback data from
the MEC server after computation, we neglect the energy
associated with the reception of feedback at the WU [9].

III. SYSTEM OPTIMIZATION

In our system model, there are two different networks,
that have two different interests. For the primary network,
the PT will try to maximize the relaying rate; whereas, in
the other network, the WU will try to complete it’s task
by stipulated time while minimizing required resource, e.g.,
consumed energy. Two different optimization problems emerge
for two networks. In this paper, we consider single weighted
objective function which considers both primary network’s
relaying rate and other network’s energy consumption into
account, i.e.,

U(β, τr, fWU, PWU,1, PWU,2)

= Rp − ψ
[
PWU,1

τr
2

+ E(c)
WU + E(o)

WU

]
, (9)

where ψ(ψ > 0) (in bits/Joule) is a weight to make the
objective function’s unit in bits. It can be observed from
(9) that we consider the energy consumption at the WU for
relaying the PT’s data.

Please note that none of [7]–[11] has considered such
weighted objective function. We write our optimization prob-
lem as follows:

P1 : maximize
β,τr,fWU,PWU,1,PWU,2

U(β, τr, fWU, PWU,1, PWU,2)

subject to: Rp ≥ RL (10a)

t(c)
WU ≤ T (10b)

τr + t(o)
r ≤ T (10c)

0 ≤ PWU,1 ≤ Pmax (10d)
0 ≤ PWU,2 ≤ Pmax (10e)

PWU,1 + PWU,2 ≤ Pavg (10f)
0 ≤ fWU ≤ fmax

WU (10g)
0 ≤ β ≤ 1. (10h)

We consider a constraint on minimun required relaying rate
for the primary network in (10a). The WU locally computes
β fraction of the task, which should be completed by the time
duration T as has been given in (10b). Task offloading, remote
computation at the MEC server, and feedback from the MEC
server to the WU should be completed by the time duration
T , which is represented in (10c). The WU’s instantaneous



transmission power constraints are taken into account in (10d)
and (10e); whereas, (10f) is for the power budget constraint
at the WU. (10g) and (10h) are constraints on the WU’s CPU
frequency and fraction of the computed task at the WU.

A. Feasibility check for the optimization problem P1

We observe that the optimization problem P1 might not
be feasible all time for given values of different system
parameters. From (10b), we get maximum value for β as:

βmax = min

{
TfmaxWU

QCWU
, 1

}
. (11)

We put β = βmax as received in (11), and maximum value
for PWU,2, i.e., PWU,2 = Pmax, in (10c), to get highest possible
value for τr as:

τmax
r = T − tr(β = βmax, PWU,2 = Pmax), (12)

where tr(β = βmax, PWU,2 = Pmax) denotes the value for tr
considering β = βmax and PWU,2 = Pmax.

In a similar way, we can evaluate lowest possible value
for τr from (10a). For that, we consider PWU,1 = Pmax while
evaluating SNR1+3 in (1), such that:

τmin
r =

2RL
Bw log2 [1 + min {SNR1+3(PWU,1 = Pmax),SNR2}]

.

(13)

From (12) and (13), we can conclude that the optimization
problem becomes infeasible for τmin

r > τmax
r .

B. Solution process for the optimization problem P1

In this sub-section, we discuss about the solution procedure
of the optimization problem P1 when it meets the feasible
condition as has been discussed in the previous sub-section.
From expressions of different terms of the utility function of
the optimization problem P1 as given in (3) and (8), it can be
observed that there are multiplicative terms (i.e., multiplication
of two different optimization variables). Therefore, the objec-
tive function of the optimization problem P1 does not follow
the convexity property, which makes the optimization problem
P1 non-convex. We analyse the optimization problem and try
to devise an efficient way to solve it.

It can be observed that E(c)
WU is a monotonically increasing

function of fWU. As we are trying to minimize the term E(c)
WU

in optimization problem P1, from the constraint as given in
(10b), we can say that for given value of β, optimal value for
fWU is received for equality, i.e.,

fWU(β) = βQCWU/T. (14)

Hence, we can modify the term E(c)
WU in optimization problem

P1 by considering fWU = fWU(β) :

E(c)
WU(β) =

kWU(βQCWU)
3

T 2
. (15)

Therefore, we can represent the modified objective function as
independent of fWU:

U(β, τr, PWU,1, PWU,2)

= Rp − ψ
[
PWU,1

τr
2

+ E(c)
WU(β) + E(o)

WU

]
. (16)

Modified optimization problem becomes:

P2 : maximize
β,τr,PWU,1,PWU,2

U(β, τr, PWU,1, PWU,2)

subject to: (10a)− (10f)
0 ≤ β ≤ βmax. (17)

From the optimization problem P2, it can be observed that
it is still non-convex due to multiplicative terms in the objective
function. From our analysis, we present following proposition.

Proposition 3.1: For given feasible values of β = β and
τr = τ r, we can derive optimal values for PWU,1 and PWU,2 as
given in (18) and (19), respectively. Following notations are
used in expressions for both power levels at the WU:

x , (1− β)Q
Bw

[
T − τ r − tMEC(β)− tf (β)

]
P1 ,

{
PWU,1|Bw

τ r
2

log2(1 + SNR1+3) = RL

}
P2 , Pavg − PWU,2(β, τ r)

P3 , {PWU,1|SNR1+3 = SNR2 in (1)}

Pi ,
{
PWU,1|

∂(Rp(τ r)− ψPWU,1)

∂PWU,1
= 0

}
,

where tMEC(β) and tf (β) are received from (5) and (6),
respectively for β = β. Please note that for P2 < 0, the
optimization problem becomes infeasible for given β and τ r.

P ∗
WU,1(β, τ r)

=

{
max {P1, 0} Pi < 0
min {Pi, Pmax, P2, P3} Pi > 0

(18)

P ∗
WU,2(β, τ r) =

2x − 1

h4d
−α
4 /σ2

. (19)

Proof: For β = β and τr = τ r, we can write the objective
function as:

U(β, τ r, fWU, PWU,1, PWU,2)

= Rp(τ r)− ψ
[
τ r
2
PWU,1 + E(o)

WU(β) + E(c)
WU(β)

]
, (20)

where Rp(τ r) is received for τr = τ r in (1), E(o)
WU(β) is

received for β = β in (8).
We can observe that the utility function has separate terms

for PWU,1 and PWU,2. We analyse the utility function for PWU,2
from the first order derivative of U(β, τ r, fWU, PWU,1, PWU,2)
with respect to PWU,2, i.e.,

C1

[
ln(1 + C2PWU,2)− C2PWU,2

1+C2PWU,2

]
{log(1 + C2PWU,2)}2

, (21)

where C1 , ψγ(1−β)Q
Bw log2(e)

and C2 , h4d
−α
4

σ2 . From (21), we
can say that the term is always positive for feasible values
of PWU,2, which can be easily proved by taking derivative
of the numerator. Therefore, we can conclude the utility
function, i.e., U(β, τ r, fWU, PWU,1, PWU,2), is a monotonically
decreasing function for PWU,2. As we are trying to maximize
U(β, τ r, PWU,1, PWU,2), we should consider lowest feasible
value for PWU,2, which we get from (10c), i.e., PWU,2 ≥



2x−1
h4d

−α
4 /σ2

, where x has been defined in the statement of
this proposition. Also it can be observed from (10f) that the
feasible range for PWU,1 is maximum for τ r and β when we
consider PWU,2 = 2x−1

h4d
−α
4 /σ2

. Therefore, from our discussions,
we can conclude that the optimal value for PWU,2 becomes
P ∗

WU,2(β, τ r) =
2x−1

h4d
−α
4 /σ2

.

Now, we find out optimal value for PWU,1. From the
expression of U(β, τ r, PWU,1, PWU,2) as given in (20), it can
be observed that U(β, τ r, PWU,1, PWU,2) is a concave function
of PWU,1 with inflection point at Pi as defined in the statement
of this proposition. However, based on values for ψ, we might
get Pi < 0, under which U(β, τ r, PWU,1, PWU,2) monotonically
decreases for PWU,1 ≥ 0. Therefore, for Pi < 0, we should
consider PWU,1 = P1, which holds equality in (10a). However,
for Pi > 0, we need to keep another fact in mind, i.e., the relay-
ing rate depends on the minimum value among two SNRs, i.e.,
SNR1+3 and SNR2 in (1). The relaying rate does not increase
while increasing PWU,1 beyond P3 (as defined in the statement
of this proposition); whereas, the energy consumption at the
WU for relaying increases with PWU,1. Therefore, we should
consider P ∗

WU,1(β, τ r) = min {Pi, Pmax, P2, P3}.
Now, we analyse the optimization problem for given fea-

sible values of PWU,1 = PWU,1 and PWU,2 = PWU,2. We define
following notations, which we use in further discussions:

U(β, τr, PWU,1, PWU,1)

= τr[
Bw
2

log2{1 + min(SNR1+3(PWU,1),SNR2)}−

ψPWU,1

2
]− ψ[E(o)

WU(PWU,2) + E(c)
WU(β)]

a , T − Q

Bw log2

{
1 +

PWU,2h4d
−α
4

σ2

}
− γQ

Bw log2

{
1 +

PMECh4d
−α
4

σ2

} − QCMEC

fMEC

b , a/(T − a),

where E(o)
WU(PWU,2) is received from (8) for PWU,2 = PWU,2.

For PWU,1 = PWU,1 and PWU,2 = PWU,2, we can write the
corresponding optimization problem as:

P3 : maximize
β,τr

U(β, τr, PWU,1, PWU,2)

subject to: τr ≥ τLB
r (22a)

0 ≤ β ≤ βmax (22b)
τr
a
− β

b
≤ 1, (22c)

where τLB
r = 2RL

Bw log2{1+min(SNR1+3(PWU,1),SNR2)}
, we derive

(22a) and (22c) from (10a) and (10c), respectively while
considering PWU,1 = PWU,1, PWU,2 = PWU,2.

From the expression of the objective function in the op-
timization problem P3 as given above, it can be observed
that it consists of linear and non-linear terms for τr and β,
respectively. Moreover, we also observe that the optimization
problem P3 is concave over τr and β. From our analysis, we
present following proposition.

Proposition 3.2: We define the term C3 , Bw

2 log2{1 +

min(SNR1+3(PWU,1),SNR2)} − ψPWU,1
2 , based on which we

can find out optimal values for β and τr for the optimization
problem P3 as given below. We also define following nota-
tions, which are used in this proposition:

βl ,
[
τLB
r

a
− 1

]
b, βi ,

{
β|∂U(β, τr, PWU,1, PWU,2)

∂β
= 0

}
For : C3 > 0

Optimal β∗(PWU,1, PWU,2) and τ∗r (PWU,1, PWU,2) lies on the
straight line, i.e., τr

a −
β
b = 1, which we get after solving the

dual optimization problem for P3, i.e.,

minimize
λ

maximize
β,τr

L(β, τr,λ) (23)

where L(β, τr, λ) = U(β, τr, PWU,1, PWU,2)+λ1(τr − τLB
r )−

λ2(β − βmax) − λ3( τra −
β
b − 1), is Lagrangian function for

the optimization problem P3 and λ = [λ1, λ2, λ3] are dual
variables for (22a)-(22c), respectively.

For : C3 < 0

β∗(PWU,1, PWU,2) =

{
βmax, βi > βmax
max {βi, βl} , βi < βmax

(24)
τ∗r (PWU,1, PWU,2) = τLB

r . (25)

Proof: From the expression of the utility function of the
optimization problem P3 as given above, it can be observed
that the utility function is linear over τr and non-linear over
β. Moreover, the objective function is concave over β. It is
intuitive that the optimal value for τr depends on the co-
efficient of τr in the objective function of the optimization
problem P3, i.e., C3 as has been defined in this proposition.
Hence the optimal value for β depends on the value of C3.

For C3 > 0, we solve the dual optimization problem for P3
using following Karush-Kuhn-Tucker (KKT) conditions [17]:

∂L(β, τr, λ)
∂τr

=
∂L(β, τr, λ)

∂β
= 0, λ1−3 ≥ 0,

λ1(τr − τLB
r ) = λ2(β − βmax) = λ3(

τr
a
− β

b
− 1) = 0.

We check that λ3 ̸= 0, otherwise, it violates the condition
L(β,τr,λ)

∂τr
= 0. This proves that τr

a −
β
b = 1 is the optimal

condition. We solve above mentioned KKT conditions to get
β∗(PWU,1, PWU,2) and τ∗r (PWU,1, PWU,2) for C3 > 0. Due to
brevity, we choose to omit further solution procedures.

For C3 < 0, objective function reduces while increasing
the value for τr. Therefore, we choose the lowest possible
value for τr for C3 < 0 in (25). As the objective function is
concave over β, we can derive the inflection point as βi as has
been defined in the definition of this proposition. Based on the
feasible range, we derive the optimal value for β in (24).

It is to be noted that both optimization problems, i.e., for
fixed β, τr and for fixed PWU,1, PWU,2, are solved optimally.
We follow iterative algorithm as given in Algorithm 1. Please
note that as we are optimally evaluating parameters’ values
in each iteration, the utility value improves in each iteration
[18], i.e., U(βj , τ jr , P

j+1
WU,1, P

j+1
WU,2) > U(βj , τ jr , P

j
WU,1, P

j
WU,2)

and U(βj+1, τ j+1
r , P jWU,1, P

j
WU,2) > U(βj , τ jr , P

j
WU,1, P

j
WU,2).



Algorithm 1: Evaluation of different parameters of the
optimization problem P2

1 Data: Consider j ← 0, βj ← β and τ jr ← τ r.
2 repeat
3 Evaluate PWU,1(β

j , τ jr ) and PWU,2(β
j , τ jr )

following Proposition 3.1;
4 P j+1

WU,1 ← PWU,1(β
j , τ jr ), P

j+1
WU,2 ← PWU,2(β

j , τ jr );
5 Evaluate β(P j+1

WU,1, P
j+1
WU,2) and τr(P

j+1
WU,1, P

j+1
WU,2);

6 βj+1 ← β(P j+1
WU,1, P

j+1
WU,2), τ

j+1
r ←

τr(P
j+1
WU,1, P

j+1
WU,2);

7 j ← j + 1;

until βj == βj−1, τ jr == τ j−1
r , P jWU,1 ==

P j−1
WU,1, P

j
WU,2 == P j−1

WU,2;
8 Result: βj , τ jr , P

j
WU,1, P

j
WU,2

IV. RESULTS AND DISCUSSIONS

In this section, we try to analyse the effect of different
parameters. We consider a scenario, where the WU lies on the
straight line connecting the PT and the PR. Moreover, the PR
and the MEC server are located at a same place, which means
d3 = d4 = d1 − d2. In Fig. 3, we provide a logical diagram
for the simulation scenario, which we consider in this paper.
In Table I, we show different parameters’ values which we

Fig. 3. Logical diagram for simulation scenario

consider in generating our results. Among other variables, we
consider channel gains h1−4 follow exponential distributions
with unit mean.

TABLE I. DIFFERENT PARAMETERS’ VALUES

Parameters Values Parameters Values
T 0.1 sec. kWU 10−26

Bw 15 KHz. CWU 105

σ2 -132.24 dBm kMEC 10−26

PPT 43 dBm CMEC 105

Pmax 30 dBm fmax 500 MHz.
Pavg 43 dBm fMEC 10 GHz.
γ .01 d1 100 m.

A. Convergence analysis of of iterative algorithm
In Fig. 4, we show how the total utility value as has been

defined in (9), changes with number of iterations in Algo-
rithm 1. We consider RL = Q = 1000 bits, ψ = 1, d3 = 50
meters, and α = 4. We observe that Algorithm 1 converges in
finite iterations.

B. Effect of different parameters on relaying rate and energy
consumption

In Fig. 5, for ψ = 1, We plot the relaying rate for
three different values of α = 3, 3.5, 4. It is observed that
for a fixed value of α, the relaying rate increases with the
distance between the PT and the WU upto some point and
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Fig. 4. Convergence analysis of Algorithm 1

then it decreases. As the distance between the PT and the WU
increases, SNR values, i.e., SNR1+3 and SNR2 in (1), increases
and decreases, respectively. The relaying rate increases until
we get SNR1+3 = SNR2 and for SNR2 < SNR1+3, the
relaying rate decreases again. As we increase the value for
α, for a given value of d2, both SNR values reduce, which
effectively leads to a lower relaying rate as shown in Fig. 5.
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Fig. 5. Relaying rate for varying d2(ψ = 1, RL = 5000 bits,Q = 1000
bits)

In Fig. 6, for ψ = 9 × 104, we plot different energy
consumption values, i.e., due to relaying, offloading, local
computing, at the WU while varing the distance between
the PT and the WU, for α = 4 and 4.2. As d2 increases,
relaying power increases until we get SNR1+3 = SNR2.
For SNR2 < SNR1+3, relaying power decreases as more
relaying power does not fetch more relaying rate any more.
As value for α increases for fixed value of d2, values for Pi
and P3 in Proposition 3.1 reduce, which reduces the value for
PWU,1 and hence the relaying energy consumption reduces.
In Fig. 6, this analogy has been captured in relaying power
plot for varying d2. However, for offloading, we observe
that offloading energy consumption reduces and increases for
increasing d2 and α, respectively. As the WU approaches
near to the MEC server (i.e., d2 increases), the offloading
energy reduces; whereas, for higher values for α, the WU
depletes more energy to offload the data. We observe that
the energy consumption due to local computing at the WU
increases and reduces as we increase d2 and α, respectively.
As d2 increases, the propagation loss in the wireless link
between PT-WU becomes high. Therefore, more relaying time
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Fig. 6. Different energy consumptions at the WU for varying d2(ψ = 9 ×
105, RL = 5000 bits,Q = 1000 bits)

is required to optimize the relaying rate. More relaying time
reduces offloading time duration at the WU, which means more
local computation at the WU. This fact helps us describing
the increasing nature of computation energy at the WU for
d2 in Fig. 6. As the value for α increases, upper cap on the
relaying rate decreases, which has been discussed earlier for
Fig. 5. Hence, relaying time reduces for increasing α, which
gives more time to the WU to offload data. Due to this fact,
computation energy at the WU reduces for increasing α.

C. Feasibility of P1 for different values of RL and T
In Fig. 7, we plot optimized relaying rate while varying RL

and T . We also consider three different values for ψ = 1, 105,
and 106. In the left hand plot of Fig. 7, it can be observed that
the relaying rate is far above the constraint value (i.e., RL)
for lower values of ψ. However, as we increase the value for
ψ, the relaying rate decreases. As we increase the value for
ψ, both relaying power and duration at the WU, i.e., PWU,1
and τr/2, respectively, reduces, which in turn reduces the
relaying rate. It can be also observed that relaying rates for
different values of ψ, become zero at and after RL = 7200 bits,
which is due to the infeasibility of the considered optimization
problem. The infeasibility condition does not depend on the
value of ψ (can be observed from (12) and (13)). In the right
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Fig. 7. Relaying rate for varying RL,T (d2 = 10m., α = 4.2, Q = 1000
bits)

hand plot of Fig. 7, we consider RL = 5000 bits. It can be
observed that the relaying rate increases as we increase the
time frame duration, which is intuitive. For lower values of
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Fig. 8. Comparison between Joint optimization, RRM, and ECM in terms
of relaying rate and energy consumption for varying d2(RL = 15000 bits,
Q = 1000 bits, α = 3.8, and ψ = 105)

T , the optimization problem is infeasible, as the WU can not
complete the offloading and hence the computational task by
the given time duration.

D. Comparative analysis
Joint optimization of relaying rate and energy consumption

depends on the value for ψ. We compare the joint optimization
with two separate optimization problems, i.e., relaying rate
maximization (RRM) and energy consumption minimization
(ECM), respectively to better understand the trade-off between
relaying rate and energy consumption.

We present the RRM problem as follows:

P5 : maximize
β=βmax,τr,fWU=fmax

WU ,PWU,1,PWU,2

Rp

subject to: (10a), (10c)− (10f). (26a)

As the relaying rate is independent of β and fWU, we have fixed
those two parameters at their maximum values. We perform the
optimization problem P5 over τr, PWU,1, and PWU,2. In order
to solve the optimization problem, we make search operation
over τr in the range of τmin

r to τmax
r and find values for PWU,1

and PWU,2 for each value of τr.
In ECM problem, we minimize the energy consumption

at the WU while considering all other constraints like the
optimization problem P1:

P6 : minimize
β,τr,fWU,PWU,1,PWU,2

PWU,1
τr
2

+ E(c)
WU + E(o)

WU

subject to: (10a)− (10h). (27a)

As discussed earlier, we consider fWU = βQCWU/T due to
it’s optimality and modify the constraint as given in (10h)
by 0 ≤ β ≤ Tfmax

WU
RCWU

. We perform search operation over
τmin
r ≤ τr ≤ τmax

r and 0 ≤ β ≤ βmax and find values for
PWU,1 and PWU,2 for each value of τr and β. In Figs. 8 and
9, we compare our proposed joint optimization with other
two optimization problems, i.e., RRM and ECM, as has been
discussed above. In Fig. 8, RRM provides better relaying rate
and the WU consumes less energy for ECM, which goes
according to our intuitions. For certain parameters’ values, in
Fig. 6, we observe that the energy consumption at the WU is
dominated by the relaying energy for the joint optimization,
which helps us in understanding the nature of total energy
consumption at the WU for joint optimization in Fig. 8. For
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Fig. 9. Comparison between Joint optimization, RRM, and ECM in terms
of total utility for varying d2(RL = 15000 bits, Q = 1000 bits, α = 3.8,
and ψ = 105)

RRM, the WU uses maximum power in relaying for lower
values of d2, which reduces gradually with d2. In Fig. 8, we
observe lower gap in relaying rate for joint optimization and
RRM; however, the gap in energy consumption is substantially
high for RRM and joint optimization for a large range of d2.
From Fig. 8, we observe that joint optimization provides a nice
trade-off between the relaying rate and the energy consumption
compared to rate maximization and energy minimization.

In Fig. 9, we compare joint optimization with the other
two optimization problems in terms of total utility as has been
defined in (9). It can be observed that joint optimization out-
performs the other two, which goes according to our intuition.
As d2 increases, relaying rate and energy consumption at the
WU comes closer for joint optimization and rate maximization
(can be observed from Fig. 8), which is the reason behind
the lower gap in total utility values for joint optimization
and rate maximization for higher d2. Please note that for rate
maximization, we perform search over τr to find optimal value.

V. CONCLUSION

In this paper, we have studied MEC in the context of
cooperative relaying. The WU, who takes help of the MEC
server to complete a computational task by a particular time
duration, relays (i.e., DF relaying) the PT’s data to the PR to
get access of the high bandwidth licensed spectrum. The WU
offloads partial computational task to the MEC server using
the high bandwidth licensed spectrum. We have formulated an
optimization problem where we jointly maximize the relaying
rate and minimize the WU’s energy consumption. We make
our optimization problem more general while considering
constraints on the relaying rate, transmission power at the
WU, and computational task completion time duration. We
analyse the relaying rate and energy consumptions at the WU
for different parameters. We also perform comparative analysis
of our proposed joint optimization problem with two indi-
vidual optimization problems, i.e., relaying rate maximization
and energy consumption minimization. We observe that joint
optimization problem provides better trade-off between the
relaying rate and energy consumption compared to other two.
Moreover, joint optimization also performs better in terms of
total utility value. We have considered single WU in this paper.
It would be interesting to analyse the problem for multiple

WUs with heterogeneous delay requirements.
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