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Abstract—Multi-hop networks that are dominated by line-
of-sight (LOS) wireless channels have gained traction in the
recent past owing to the emergence of wireless networks based
on unmanned aerial vehicles. One of the challenges in such
vehicular networks is to design communication strategies to
provide both ultra-reliability and low-latency features. Towards
providing ultra-reliability against channel impairments , it is well
known that automatic repeat request (ARQ) based decode-and-
forward relaying is an effective strategy wherein each transmitter
can be allotted an appropriate number of re-transmissions based
on the LOS component of its forward link. However, in order to
provide low-latency features, it is also known that multiple re-
transmissions may not be a favorable choice as the total number
of re-transmissions across the relays incurs significant delay in
communicating the packet in the end-to-end network. Identifying
this conflict introduced by the ARQ protocol, we investigatethe
optimal allocation of the number of ARQs at each link so as to
minimize the packet-drop-probability at the destination subject
to a sum constraint on the total number of ARQs allotted to
all the nodes in the network. First, we prove a set of necessary
and sufficient conditions on the optimal ARQ distribution, and
then use these conditions to propose a low-complexity algorithm
to solve the problem statement. Through extensive simulation
results, we show that the proposed algorithm significantly reduces
the computational complexity when compared to exhaustive
search and yet recovers the optimal ARQ distribution.

Index Terms—Multi-hop network, low-latency, ultra-reliability,
ARQ based protocol, line-of-sight component.

I. I NTRODUCTION

Multi-hop wireless networks have found extensive applica-
tions [1]–[3] for their ability to extend the coverage area of
power-limited radio transmitters. In particular, these networks
are known to facilitate long-range communication between
a source and a destination node by introducing multiple
short-range links thereby guaranteeing high reliability features
against impairments introduced by fading channels. Towards
achieving high end-to-end reliability over multi-hop networks,
a number of protocols have been proposed by carefully analyz-
ing the trade-off between complexity and error performance.
On the one hand, the class of Amplify-and-Forward (AF)
protocols [4] are known to assist low-complexity processing at
the intermediate relays, however, they are also known to boost
the accumulated noise witnessed at the destination, which
in turn degrades the error performance. On the other hand,
the class of Decode-and-Forward (DF) protocols [4] have

been shown to deliver high end-to-end reliability providedthe
decoding strategy at the relays ensures perfect recovery ofthe
packets. One such strategy towards ensuring perfect recovery
of packets is the class of automatic repeat request (ARQ) based
DF strategies, wherein each intermediate relay node is allotted
multiple re-transmissions to combat multipath fading [5].

While the idea of relaying packets through ARQ based DF
strategy ensuresultra-reliability, the very fact that each inter-
mediate node has to process the packets will incur substantial
delay on the packets. In particular, the delay introduced at
each relay comprises processing delay (for the decoding and
encoding operations) and transmission delay (for multiplere-
transmissions), and moreover, the end-to-end delay incurred on
the packets is the sum of the delays contributed by all the re-
lays on the path. Although there exists a gamut of contributions
on optimizing reliability over multi-hop networks, very few
have studied the underlying trade-off between end-to-end reli-
ability and end-to-end delay offered by these protocols [6], [7].
We highlight that a study of this nature is paramount especially
when the packets from the source have both ultra-reliability
and low-latency constraints, i.e., when the packets at the
source node must reach the destination within a given deadline
[8]–[10]. Example applications including such constraints are
vehicular networks with autonomous driving vehicles, robotic
surgery etc. In a nutshell, motivated by facilitating low-latency
transmission of packets, we study the trade-off between end-
to-end reliability and end-to-end delay in a multi-hop network
that employs ARQ based DF strategy. We specifically consider
multi-hop networks that are dominated by line-of-sight (LOS)
fading channels since such LOS channels usually manifest in
applications that need both low-latency and ultra-reliability
features, e.g. Unmanned-Aerial-Vehicles (UAVs) [11].

A. Problem Statement

In an ARQ based DF relaying strategy, each relay node is
given a certain number of attempts to transmit the packets
upon failure to decode by the next node in the chain. As a
consequence, if a relay node is unable to correctly decode the
packet within the given number of attempts, then the packet
is said to be dropped at that link. Since the packet can be
dropped at any of the links in the network, one important
design objective is to minimize the end-to-end packet-drop-
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TABLE I: Novelty of our work with respect to existing contributions

Reference Existing contributions Limitations in comparison with our work
[13] Achieves high reliability under the constraint of Not considered LOS channels.

strict latency by using cooperative ARQ scheme. Not addressed the optimal distribution of ARQs
The idea is to vary the reserved time for re-transmission

[6] Low-latency and high-reliability communications in the control
and non-payload communications (CNPC) link of UAVs. Not addressed the optimal distribution of ARQs

This is a multiple antenna based model
[7] Uses Gaussian-Chebyshev quadrature (GCQ) to approximateNot minimized the latency with respect to ARQs

the achievable data rate No ARQ scheme considered
[14] Adaptive HARQ (A-HARQ) scheme is proposed. LOS channels not considered.

Re-transmissions are done on better quality sub-bands Not relevant to address optimal ARQ distribution
[15] Analyzes packet-drop-probability for energy harvesting No LOS channel. Does not improve the reliability

nodes with links using ARQ or hybrid-ARQ with a given constraint on latency.
Optimal distribution of ARQs not studied.

probability (PDP), which is the fraction of packets that do not
reach the destination. A straightforward solution to minimize
the PDP is to allocate appropriate number of ARQs on each
link based on its LOS component. However, we note that
ARQs result in significant amount of end-to-end delay on
the packet due to multiple rounds of re-transmissions, and
this delay, in the worst case, is proportional to the total
number of ARQs allotted to all the nodes in the network.
Therefore, on packets, which have low-latency constraints, the
total number of allotted ARQs must be bounded. As a result
of this conflict of jointly providing ultra-reliability andlow-
latency features, we identify an interesting problem of “How
to allocate ARQs to each link such that the PDP is minimized
under the constraint that the total number of ARQs allotted
across the relay nodes is bounded by a fixed number?”.

B. Contributions

1) We propose a new problem on distributing the number
of re-transmissions across multiple relay nodes in a LOS
dominated multi-hop network so as to support low-latency
and ultra-reliability features on the underlying packets (See
Section II). In particular, given a multi-hop network with
potentially distinct LOS components of the links, we formulate
an optimization problem of minimizing the PDP under the
constraint that the sum of the ARQs across all the links in
the network is bounded. First, we show that this optimization
problem involves a non-linear objective function with non-
negative integer-constraints on the solution. Because of the
sum constraint on the total number of ARQs, we show that
the size of the search space is bounded. However, we also
show that computing the optimal distribution of ARQs through
exhaustive search is not feasible to implement in practice.
Towards solving this problem with low complexity methods,
we prove a set of necessary and sufficient conditions on the
optimal solution of the optimization problem (See Section III).

2) At high signal-to-noise-ratio (SNR) values, we observe
that the set of necessary and sufficient conditions simpli-
fies to a set of linear equations relating the number of re-
transmissions allotted to theN links. Using this special case,
we convert the problem of computing the optimal distribution
of re-transmissions to an equivalent problem of solving a
system of linear equations inRN , and to another problem

of searching a distribution of re-transmissions in the integer
search-space that are nearest to the real solution. Through
this approach, we show that the search space for finding the
optimal distribution of re-transmission can be significantly
reduced when compared to the exhaustive search method.
Although our approach of formulating an equivalent problem
is motivated by high SNR approximation of the necessary
and sufficient conditions, we show through simulation results
that our algorithm continues to generate a small list size at
low and moderate SNR values (See Section IV). Furthermore,
we highlight that our algorithm scales well with the number
of hops, and importantly provides substantial reduction in
complexity when the bound on the total number of ARQs
allotted across the relay nodes increases.

Although [6], [7], [13], [14] have studied latency and
reliability aspects of multi-hop networks, they have neither
addressed LOS environments nor have considered the opti-
mization problem of minimizing the PDP with a constraint on
the total number of ARQs. Some specific differences between
our work and the prior contributions are listed in Table I.

Notations: We usex ∼ CN (0, σ2) to represent a circularly
symmetric complex Gaussian random variable with mean0
varianceσ2. The set of all complex numbers, real numbers,
rational numbers, integers, and positive integers, are respec-
tively denoted byC, R, Q, Z, andZ+. We useι =

√
−1. We

used(a,b) to represent the Hamming distance between two
vectorsa andb.

II. LOS DOMINATED MULTI -HOP NETWORK MODEL

Consider anN -hop network, as shown in Fig. 1, which
includes a source node, a destination node, and a set ofN −1
relays. We assume that the information bits from the source
node are aggregated in the form of packets, and these packets
are communicated to the destination in a multi-hop fashion
using theN−1 intermediate relays. In other words, the multi-
hop network consists ofN wireless links, wherein the first link
corresponds to the channel between the source node and relay
R1, the second link corresponds to the channel betweenR1

andR2, and similarly, theN -th link corresponds to the channel
between relayRN−1 and the destination node. We assume that
the channel between any two successive nodes is characterized
by Rician fading with a quasi-static time-interval ofL channel
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Fig. 1: Depiction of LOS dominatedN -hop network, where
0 ≤ ck ≤ 1 represents the LOS component of thek-th link,
and qk ∈ Z+ denotes the number of ARQs allotted to the
transmitter of thek-th link, for 1 ≤ k ≤ N .

uses. In particular, the complex baseband channel of thek-th
link, for 1 ≤ k ≤ N , is modeled by

hk =

√

ck

2
(1 + ι) +

√

(1 − ck)

2
gk,

where 0 ≤ ck ≤ 1 captures the LOS component, and
1 − ck is the Non-LOS (NLOS) component such thatgk
is distributed asCN (0, 1). In this signal model, the LOS
componentck is a deterministic quantity, thereby ensuring the
equality E[|hk|2] = 1 irrespective of the value ofck. As a
special case,ck = 0 and ck = 1 capture the well-known
Rayleigh and Gaussian channels, respectively, whereas the
intermediate values capture different degrees of Rician fading
channels. Assuming that the LOS components of theN links
can be potentially different, henceforth, throughout the paper,
we use the vectorc = [c1, c2, . . . , cN ] to highlight the LOS
components of theN -hop network.

Let C ⊂ CL denote the channel code employed at the source
node of rateR bits per channel use, i.e.,R = 1

L
log(|C|). Let

x ∈ C denote a codeword (henceforth referred to as packets)
transmitted by the source node such that1

L
E[|x|2] = 1, where

the expectation is taken overC. Whenx is transmitted over the
k-th link, for 1 ≤ k ≤ N , the corresponding received symbols
after L channel uses is given byyk = hkx + wk ∈ CL,
wherewk is the additive white Gaussian noise (AWGN) at
the receiver of thek-th link, distributed asCN (0, σ2IL).
We assume that the receiver of thek-th link has perfect
knowledge ofhk, whereas the transmitter of thek-th link does
not have the knowledge ofhk. Since the channel realization
hk is random, and the realization remains constant forL

channel uses, the instantaneous mutual information of thek-
th link may not support the transmission rate. Therefore, the
corresponding relay node will be unable to correctly decode
the packet when the mutual information offered by the channel
is less thanR. The probability of such an outage event is given
by

Pk = Pr
(

R > log2(1 + |hk|2γ)
)

= F

(

2R − 1

γ

)

, (1)

whereγ = 1
σ2 is the average signal-to-noise-ratio (SNR) of

the k-th link, F(x) is the cumulative distribution function of
|hk|2, defined as

F

(

2R − 1

γ

)

= 1−Q1

(√

2ck
(1− ck)

,

√

2(2R − 1)

γ(1− ck)

)

,

such thatQ1(·, ·) is the first-order Marcum-Q function [12].
In this N -hop network model, we assume that communi-

cation between any two successive nodes follows the ARQ
protocol, i.e., a transmitter node gets an ACK or NACK
from the next node in the chain indicating the success or
failure of the transmission, respectively. Upon receivinga
NACK, the transmitter re-transmits the packet. Letqk be
the maximum number of attempts given to the transmitter of
the k-th link. Consolidating the number of attempts given to
each link, the ARQ distribution of the multi-hop network is
represented by the vectorq = [q1, q2, . . . , qN ]. Since we are
addressing low-latency applications, we impose the constraint
∑N

i=1 qi = qsum, for someqsum ∈ Z+, which captures an
upper bound on the end-to-end delay on the packets.

Note that if a node fails to deliver the packet to the next node
within the allotted number of attempts, then the packet is said
to be dropped in the network. As the packet can be dropped
in any of the links, the packet-drop-probability (PDP) of the
N -hop network is given by

pd =

N
∑

k=1

P
qk
k

(

k−1
∏

i=1

(1− P
qi
i )

)

. (2)

When calculating the above expression, we have assumed
that the channel realizationhk takes independent realizations
across the number of attempts, and the number of ARQs
assigned to a transmitter is not known to the other nodes in
the network.

A. Formulation of Optimization Problem

For a multi-hop network with LOS vectorc and SNR
γ = 1

σ2 , we are interested in computing the ARQ distribution
q which minimizes the PDP expression in (2) under the
constraint that

∑N

k=1 qk = qsum, for a given qsum ∈ Z+.
We present this problem formulation as Problem 1, as shown
below. Henceforth, throughout this paper, we refer to the
solution of Problem 1 as the optimal ARQ distribution. We
highlight that Problem 1 is a non-linear optimization prob-
lem with non-negative integer constraints on the solution.
Since there is a sum constraint on

∑N

k=1 qk = qsum, it is
straightforward to note that the search space for determining
the optimal distribution is bounded. In particular, it can be
shown that the number of candidates in the search space is
(

qsum−1
N−1

)

. Therefore, with large values ofqsum andN , it is
not feasible to implement exhaustive search to solve Problem
1. Identifying this limitation of exhaustive search, we obtain
analytical results on the structure of the objective function and
the underlying constraints so that Problem 1 can be solved with
lower complexity than that of exhaustive search.



Problem 1:For a multi-hop network with a given LOS
vectorc, and a given SNRγ = 1

σ2 , solve

q∗1 , q
∗
2 , . . . q

∗
N =arg min

q1,q2,...qN
pd

subject toqk ≥1,

qk ∈Z+,

q1 + q2 + . . .+ qN = qsum.

III. SUFFICIENT AND NECESSARYCONDITIONS ON THE

OPTIMAL ARQ DISTRIBUTION

In this section, we present some insights on the expression
of PDP, which in turn will be useful in solving Problem 1.

Definition 1: Let π : RN → RN denote a permutation
operator on anN -dimensional Euclidean space. For anN -hop
network with LOS vectorc, we define an equivalent multi-
hop network with LOS vector̄c = π(c), wherein the wireless
channel of thek-th link experiences the LOS componentc̄(k),
wherec̄(k) denotes thek-th component of the vector̄c.

Theorem 1:The PDP of anN -hop network with LOS vector
c and ARQ distributionq is equal to the PDP of anN -hop
network with LOS vectorπ(c) and ARQ distributionπ(q),
whereπ is any permutation operator onRN .

Proof: We will prove this theorem using the method of
induction. ForN = 2, the PDP can be written as

pd = P
q1
1 + P

q2
2 (1− P

q1
1 ) = P

q1
1 + P

q2
2 − P

q1
1 P

q2
2 . (3)

By swappingc1 andc2, and alsoq1 andq2, we obtain

p′d = P
q2
2 + P

q1
1 (1− P

q2
2 ) = P

q2
2 + P

q1
1 − P

q2
2 P

q1
1 . (4)

From (3) and (4), it is clear thatpd = p′d. Thus, the statement
of the theorem is proved forN = 2.

Assume that forN = k, swapping any two links will not
change the PDP. ForN = k + 1, we want to prove that
swapping any two links will not change the PDP. The PDP
expression in such a case can be written as

pd = P
q1
1 + P

q2
2 (1− P

q1
1 ) + . . .+ P

qk
k

[

k−1
∏

j=1

(1 − P
qj
j )
]

+ P
qk+1

k+1

[

k
∏

j=1

(1− P
qj
j )
]

.

By taking (1 − P
q1
1 ) common from the second term onward,

we can rewrite the above expression as

pd = P
q1
1 + (1− P

q1
1 )

[

P
q2
2 + P

q3
3 (1− P

q2
2 ) + . . .

+ P
qk+1

k+1 (1− P
q2
2 ) . . . (1− P

qk
k )

]

. (5)

It can be seen from (5) that thek terms in the square bracket
constitute the PDP of ak-hop network with the LOS vector
[c2, c3, . . . , ck+1] and the ARQ distribution[q2, q3, . . . , qk+1].
Therefore, by hypothesis of induction, swapping any two links

within the set{c2, c3, . . . , ck+1} will not change the PDP. It
now remains to show that swapping the link with LOS com-
ponentc1 with any of the links in the set{c2, c3, . . . , ck+1}
will not change the PDP. For illustrative purposes, we will
show that swappingc1 with ck+1 does not change the PDP,
although this approach can be applied to swapc1 with any of
the links in the set{c2, c3, . . . , ck+1}. Towards swappingc1
with ck+1, let us first swapc2 andck+1 using (5), to obtain

pd = P
q1
1 + (1− P

q1
1 )

[

P
qk+1

k+1 + P
q3
3

(

1− P
qk+1

k+1

)

+ . . .

+ P
q2
2 (1− P

qk+1

k+1 )

( k
∏

j=3

(1− P
qj
j )

)

]

.

Note that this manipulation does not change the PDP due to
the induction step. We further rewritepd as

pd = P
q1
1 + P

qk+1

k+1 (1− P
q1
1 ) + (1− P

q1
1 )

[

P
q3
3 (1 − P

qk+1

k+1 )

+ . . .+ P
q2
2 (1 − P

qk+1

k+1 )

( k
∏

j=3

(1 − P
qj
j )

)

]

. (6)

By swapping the links with LOS componentsc1 andck+1 in
the above expression, we obtain

p′d = P
qk+1

k+1 + P
q1
1 (1− P

qk+1

k+1 ) + (7)

(1 − P
qk+1

k+1 )

[

P
q3
3 (1− P

q1
1 )

+ . . .+ P
q2
2 (1− P

q1
1 )

( k
∏

j=3

(1− P
qj
j )

)

]

. (8)

It is straightforward to observe thatpd = p′d. Therefore, for
N = k + 1, we have shown that swapping any two links will
not change the PDP. Finally, since it is well known that a
permutationπ can be realized through a sequence of swaps, it
follows that the PDP of anN -hop network with LOS vector
c and ARQ distributionq is same as that of the PDP of the
network with LOS vectorπ(c) and ARQ distributionπ(q).

The following theorem shows that a link with higher LOS
component must not be given more ARQs than the link with
lower LOS component.

Theorem 2:With the LOS vectorc, let the SNR be such that
Pk < 1

2 , ∀ k. Then the optimal ARQ distributionq satisfies
the property that wheneverci ≥ cj , we haveqi ≤ qj ∀ i, j.

Proof: To highlight ci and cj , we rewrite c as
[c1, c2, . . . , ci, . . . , cj , . . . , cN−1, cN ] such thatj > i. Suppose
that cj > ci, andqi andqj respectively denote the number of
ARQs given to thei-th link and thej-th link. Furthermore,
let us assume thatqi = qj = q. Suppose that we have
an additional ARQ with us, and the problem is whether to
allot that additional ARQ to thei-th link or the j-link such
that the PDP is minimized. Towards solving this problem,
let us consider an equivalent multi-hop network with LOS
vector c′ = [c1, c2, . . . , cN−1, . . . , cN , . . . , ci, cj ], whereinc′



is obtained fromc by swappingci with cN−1 and cj with
cN . From Theorem 1, we know that the PDP of the multi-
hop networks with the LOS vectorsc and c′ are identical.
Furthermore, the PDP of theN -hop network with LOS vector
c′, is written as

pd = P
q1
1 + P

q2
2 (1− P

q1
1 ) + . . .

+
(

P
qi
i + P

qj
j (1− P

qi
i )
)

∏

k∈[N ]\{i,j}

(1− P
qk
k ).

Note thatP qi
i andP qj

j appear only in the last term of the above
expression. Since the question of allocating the additional
ARQ is dependent only on the expressionP

qi
i +P

qj
j (1−P

qi
i ),

we henceforth do not use the entire expression for PDP.
Additionally, since qi = qj = q, we obtain one of the
following expressions when allocating the additional ARQ,

A = P
q+1
i + P

q
j (1− P

q+1
i ),

B = P
q
i + P

q+1
j (1− P

q
i ).

Sinceci < cj , we know thatPi > Pj . To prove the statement
of the theorem, we have to show thatA < B. As 0 < Pi, Pj <

1, it is clear thatP q+1
i < P

q
i andP

q+1
j < P

q
j . Furthermore,

A−B can be calculated as

A−B = P
q
i (Pi − 1) + P

q
j (1− Pj) + P

q
j P

q
i (Pj − Pi). (9)

Note that the first and the third term in above equation are
negative, whereas the second term is positive. Therefore, if
the absolute value of the first term is greater than the absolute
value of the second term, thenA − B < 0. In the rest of
the proof, we show thatP q

i (1 − Pi) > P
q
j (1 − Pj), for any

q ≥ 1. With q = 1, the above equation can be written as
Pi(1 − Pi) > Pj(1 − Pj). It is straightforward to prove that
the above inequality holds ifPi+Pj < 1. Thus, the statement
of the theorem is proved forq = 1. Now, sincePi > Pj ,
note thatP

q

i

P
q

j

increases asq increases, and therefore, for any
q ∈ Z+, we have the inequality

P
q
i

P
q
j

(1− Pi)

(1− Pj)
>

Pi

Pj

(1 − Pi)

(1− Pj)
> 1. (10)

This implies that the magnitude of the first term of (9) is
greater than the magnitude of the second term, and therefore,
we haveA−B < 0. This completes the proof.

In the following definition, we formally introduce the search
space for the optimal ARQ distribution as highlighted in
Problem 1.

Definition 2: The search space for the optimal ARQ distri-
bution is denoted byS = {q ∈ ZN

+ | ∑N

i=1 qi = qsum & qi ≥
1 ∀ i}.

For a given pointq ∈ S, we define its neighbors in the
following definition.

Definition 3: For a givenq ∈ S, the set of its neighbors
is defined asD(q) = {q̄ ∈ S | d(q, q̃) = 2}, whered(q, q̄)
denotes the number of disagreements betweenq and q̄.

Note that for a givenq ∈ S, we have|D(q)| ≤ 2
(

N
2

)

. In
the next definition, we formally introduce a local minima of

the spaceS by evaluating the PDP of the multi-hop network
over the points inS.

Definition 4: An ARQ distributionq∗ ∈ S is said to be
a local minima ofS, if it satisfies the conditionpd(q∗) ≤
pd(q), for everyq ∈ D(q∗), wherepd(q∗) and pd(q) rep-
resent the PDP evaluated at the distributionsq∗ and q,
respectively.

Using the above definition, we derive a set of necessary
and sufficient conditions on the local minima in the following
theorem.

Theorem 3:For anN -hop network with LOS vectorc, the
ARQ distributionq∗ = [q∗1 , q

∗
2 , . . . , q

∗
N ] is a local minima if

and only if q∗i andq∗j for i 6= j satisfy the following bounds

q∗i

(q∗j − 1)
≥

1

(q∗j − 1) logPi

log

(

Cq∗
i
−1

Cq∗
j
−2

)

+
logPj

logPi

, (11)

q∗i − 1

q∗j
≤

1

q∗j logPi

log

(

Dq∗
i
−1

Dq∗
j

)

+
logPj

logPi

, (12)

where Cq∗
i
−1 =

∑q∗1−1
r=0 P r

i , Cq∗
j
−2 =

∑q∗j −2

k=0 P k
j , Dq∗

2
=

∑q∗j
k=0 P

k
j andDq∗

i
−1 =

∑q∗i −1
r=0 P r

i .
Proof: From Definition 3, it is clear that a neighbor

of q∗ in the search spaceS differs in two positions with
respect toq∗. Let us consider two neighbors ofq∗ that
differ in the i-th and j-th index, wherei 6= j. Such neigh-
bors are of the formq̃+ = [q∗1 , q

∗
2 , . . . , q

∗
i + 1, . . . , q∗j −

1, . . . , q∗N ] and q̃− = [q∗1 , q
∗
2 , . . . , q

∗
i − 1, . . . , q∗j + 1, . . . , q∗N ]

provided q∗i − 1 ≥ 1 and q∗j − 1 ≥ 1. From Theo-
rem 1, instead of considering the multi-hop network with
LOS vector c = [c1, c2, . . . , ci, . . . , cj , . . . , cN−1, cN ], we
consider a permuted version of it with the LOS vector
c = [c1, c2, . . . , cN−1, . . . , cN , . . . , ci, cj ], wherein the i-
th link is swapped with(N − 1)-th link, and the j-th
link is swapped withN -th link. Correspondingly, the lo-
cal minima and its two neighbors are respectively of the
form q∗ = [q∗1 , q

∗
2 , . . . , q

∗
N−1, . . . , q

∗
N , . . . , q∗i , q

∗
j ], q̃+ =

[q∗1 , q
∗
2 , . . . , q

∗
N−1, . . . , q

∗
N , . . . , q∗i + 1, q∗j − 1] and q̃− =

[q∗1 , q
∗
2 , . . . , q

∗
N−1, . . . , q

∗
N , . . . , q∗i − 1, q∗j + 1]. From the defi-

nition of local minima, we have the inequalities

pd(q
∗) ≤ pd(q̃+), andpd(q∗) ≤ pd(q̃−), (13)

wherepd(q∗), pd(q̃+) andpd(q̃−) represent the PDP evalu-
ated at the distributionsq∗, q̃+, andq̃−, respectively. Due to
the structure of the PDP and the fact thatq̃+ andq̃1 differ only
in the last two positions, it can be shown that the inequalities
in (13) are equivalent to

P
q∗i
i + P

q∗j
j

(

1− P
q∗i
i

)

≤ P
q∗i +1
i + P

q∗j −1

j

(

1− P
q∗j +1

i

)

, (14)

P
q∗i
i + P

q∗j
j

(

1− P
q∗j
i

)

≤ P
q∗i −1
i + P

q∗j +1

j

(

1− P
q∗j −1

i

)

, (15)

respectively. First, let us proceed with (14) to derive a neces-
sary and sufficient condition onq∗i andq∗j . After modifications,
the inequality in (14) can be rewritten as

P
q∗i
i (1− Pi) + P

q∗j
j (1 − P

q∗i
i )− P

q∗j −1

j (1− P
q∗i +1
i ) ≤ 0.



We can further rewrite it as

(1−Pi)



P
q∗i
i + P

q∗j
j

( q∗i −1
∑

r=0

P r
i

)

− P
q∗j −1

j

( qi
∑

k=0

P k
i

)



 ≤ 0,

using the following standard equality,

(1− Pn
i ) = (1− Pi)(1 + Pi + P 2

i + . . .+ Pn−1
i ). (16)

Since(1− Pi) ≥ 0 is always true, this implies that

P
q∗i
i + P

q∗j
j

( q∗i −1
∑

r=0

P r
i

)

− P
q∗j −1

j

( q∗i
∑

k=0

P k
i

)

≤ 0.

Furthermore, we can rewrite the above inequality as

P
q∗i
i

(

1− P
q∗j −1

j

)

−
( q∗i −1
∑

r=0

P r
i

)

(

P
q∗j −1

j (1− Pj)
)

≤ 0

Expanding
(

1− P
q∗j −1

j

)

and also using the fact that(1 −
Pj) ≥ 0, we can write the above inequality as

P
q∗i
i

( q∗j −2
∑

k=0

P k
j

)

−
( q∗i −1
∑

r=0

P r
i

)

P
q∗j −1

j ≤ 0.

This further implies that

P
q∗i
i

P
q∗
j
−1

j

≤
(

∑q∗i −1
r=0 P r

i
∑q∗

j
−2

k=0 P k
j

)

. (17)

With Cq∗
i
−1 ,

(

∑q∗i −1
r=0 P r

i

)

, andCq∗
j
−2 ,

(

∑q∗j −2

k=0 P k
j

)

,

we have,
P

q∗i
i

P
q∗
j
−1

j

≤ Cq∗
i
−1

Cq∗
j
−2

.

By taking logarithm on both sides, and subsequently rearrang-
ing the terms, we get

q∗i
(q∗j − 1)

≥ 1

(q∗j − 1) logPi

log

(

Cq∗
i
−1

Cq∗
j
−2

)

+
logPj

logPi

. (18)

This completes the proof for the first necessary condition.
Although the second necessary condition can be proved along
the same lines using (15), we omit the proof due to lack of
space in this paper. We highlight that the two conditions in
(11) and (12) are also sufficient since the bounds are obtained
by rearranging the terms in the condition on local minima.

Corollary 1: At high SNR, i.e., whenPk is negligible for
eachk, we have

q∗i
(q∗j − 1)

≥ logPj

logPi

+ ǫ
(1)
i,j , (19)

q∗i − 1

q∗j
≤ logPj

logPi

+ ǫ
(2)
i,j , (20)

where|ǫ(1)i,j | and |ǫ(2)i,j | are small numbers.
Proof: When Pi and Pj are negligible, the first terms

of the right hand side of both (11) and (12) are negligible

becauselog

(

Cq∗
i
−1

Cq∗
j
−2

)

≈ 0 and log

(

Dq∗
i
−1

Dq∗
j

)

≈ 0, and

log( 1
Pi
) >> 0. However, we note that these terms may

either be positive or negative depending on the values of
qi, qj, Pi, andPj . Therefore, by considering the polarity of
these values, we bound the absolute values ofǫ

(1)
i,j andǫ(2)i,j in

the statement of the corollary.
Based on the necessary and sufficient conditions derived

in Theorem 3, we are ready to synthesize a low complexity
algorithm to solve Problem 1.

IV. L OW-COMPLEXITY L IST-DECODING ALGORITHM

From Corollary 1, it is straightforward to note that at high
SNR values, the necessary and sufficient conditions on the
local minima satisfy the bounds in (19) and (20), for every pair
i, j such thati 6= j. We immediately notice that the following
inequality also holds

q∗i − 1

q∗j
<

q∗i
q∗j

<
q∗i

q∗j − 1
. (21)

Using (19), (20), and the strict inequality constraints in (21),
we propose a method to choose the ARQ distributionq in the
following proposition.

Proposition 1:If the ARQ distributionq is chosen such that
qi
qj

=
logPj

logPi
, for i 6= j, thenq is a local minima of the search

space at high SNR.
Proof: By choosingq such that qi

qj
=

logPj

logPi
for i 6=

j ensures that the sufficient conditions in (19) and (20) are
trivially satisfied whenǫ(1)i,j < 0 andǫ(2)i,j > 0. However, when

ǫ
(1)
i,j > 0 and ǫ

(2)
i,j < 0, the sufficient conditions in (19) and

(20) continue to satisfy, provided the SNR is sufficiently large
to bound|ǫ(1)i,j | <

q∗i
q∗
j
−1 − q∗i

q∗
j

and |ǫ(2)i,j | <
q∗i
q∗
j

− q∗i −1
q∗
j

.

Based on the results in Proposition 1, we formulate Problem
2 as a means of solving Problem 1 at high SNR. However,
from Problem 2, it is straightforward to note that a solution
is not guaranteed since the ratiologPj

logPi
, which is computed

based on the LOS components and the SNR, need not be inQ.
Therefore, we propose to solve Problem 2 without the integer
constraints, i.e., to find an ARQ distributionq ∈ RN satisfying
the constraintsqi

qj
=

logPj

log Pi
, for all i, j such thati 6= j, and

∑N

k=1 qk = qsum.

Problem 2: For a given {P1, P2, . . . , PN}, find
q1, q2, . . . qN such that

qi

qj
=
logPj

logPi

, ∀ i, j such thati 6= j,

qk ≥1, ∀ k,

qk ∈Z+, ∀k,
q1 + q2 + . . .+ qN = qsum.



A. Towards Solving Problem 2 without Integer Constraints

Towards solving Problem 2 without the integer constraints,
we definedi,j ,

logPj

log Pi
for i 6= j. With that, the task of solving

Problem 2 inRN can be viewed as the task of solving the
system of linear equations:Aqreal = b, where

A =





















1 −d1,2 0 0 . . . 0 0
0 1 −d2,3 0 . . . 0 0
...

...
... . . . . . .

...
...

...
...

... . . . . . .
...

...
0 0 0 . . . . . . 1 −dN−1,N

1 1 1 . . . . . . 1 1





















∈ RN×N ,

qreal = [q1, q2, . . . , qN ]T and b = [0, 0, . . . , 0, qsum]T .
Subsequently, a solution inRN can be obtained as

qreal = A−1b, (22)

as long asA is full rank. Althoughqreal in (22) satisfies the
first and the last constraints of Problem 2, it cannot be used
in the framework of multi-hop network since its components
need not belong toZ+. In order to force the solution to lie in
Z+, in the next section, we provide an algorithm that searches
for ARQ distributions inS that are nearest toqreal.

Remark 1:It is possible to prove by contradiction thatqreal

cannot have any negative components sincedi,j is strictly non-
negative for alli, j. If at least one component ofqreal is
negative, it implies that every component ofqreal is negative,
and therefore, the sum constraint corresponding to the lastrow
of Aqreal = b will not be satisfied.

B. List Generation using the Non-Integer Solution

Our approach, as presented in Algorithm 1, is to search for
integer solutions inS that are nearest toqreal. In particular,
using qreal, we obtain an ARQ distribution, denoted by
q̃ = [q̃1, q̃2, . . . , q̃N ] ∈ ZN , by ceiling every component of
qreal, i.e., q̃ = ⌈qreal⌉. Since q̃ may have zeros in some
positions, we provide a brute-force correction by converting
those zeros to ones. Subsequently, we compute

∑N

i=1 q̃i, to
verify the sum constraint. Due to the ceiling operation on each
component,

∑N

i=1 q̃i is expected to exceed the sum constraint.
Let E denote(

∑N

i=1 q̃i)− qsum. To identify the candidates in
S, we chooseE positions inq̃ and subtract one ARQ from
each of these positions to make sure that the sum constraint is
satisfied. Although, at most

(

N

E

)

vectors inS can be generated
this way, some of the combinations may not be valid due
to the results of Theorem 2. Thus, we create a list of ARQ
distributions inS (denoted byL ⊂ S) from qreal. Finally,
we compute the PDP of every ARQ distribution inL, and
then choose the one which minimizes the PDP. An illustrative
example of our approach is given in Fig. 2 for a2-hop network.

V. COMPLEXITY ANALYSIS AND SIMULATION RESULTS

As highlighted in Section II, the computational complexity
for solving Problem1 through exhaustive search is

(

qsum−1
N−1

)

.
In contrast, we have used the results from Theorem 3, to first

qsum = 8q2

q1

(1, 7)

(2,6)

(3,5)

(4,4)

(5,3)

(6,2)

(7,1)

P1 = 0.4, P2 = 0.25

d1,2 �
logP2

logP1

= 1.51

qreal = [4.81, 3.19]

(4.81, 3.19)

• → Possible integer solutions

× → Real solution

Neighbors

Global optimal solution

Fig. 2: An illustrative example withN = 2: The LOS
components and the SNR of the two links are such that
P1 = 0.4 and P2 = 0.25. With qsum = 8, our approach
generates a list consisting2 ARQ distributions, whereas the
size of the search space is7.

Algorithm 1 List Generation Based Algorithm

Input: A, b, qsum, c = [c1, c2, . . . , cN ]
Output: L ⊂ S - List of ARQ distributions inS.

1: Computeqreal = A−1b.
2: Computeq̃ = ⌈qreal⌉.
3: for i = 1 : N do
4: if q̃i = 0 then
5: q̃i = q̃i + 1
6: end if
7: end for
8: ComputeE =

(

∑N

i=1 q̃i

)

− qsum

9: L = {q ∈ S | d(q, q̃) = E, qj ≯ qi for ci < cj}.
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Fig. 3: List size forN = 4 andN = 6 at R = 1.

solve a relaxed version of Problem2 in Rn (instead ofZn), and
then search for candidates inS that are nearest toqreal. Thus,
the computational complexity of our method is dominated by
the complexity of solving the system of linear equations, and
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Fig. 4: PDP forN = 4, 6 atR = 1. With uniform distribution,
each link is first allotted⌊ qsum

N
⌋ ARQs, whereas the remaining

ARQs are equally shared by the firstqsum modN links.

that of the algorithm used to generate the list of candidates
in S. While the complexity for the former case isO(N3), the
complexity of generating the list is at most

(

N

E

)

, whereE is
the excess number of ARQs after the ceiling operation.

To showcase the difference between the size of the list and
that of the search space, we plot them in Fig. 3 for several
instantiations of multi-hop networks withN = 4 andN = 6.
In particular, we plot the list size both with and without
incorporating the results of Theorem 2. For the former case,
when subtracting one ARQ from all possible

(

N

E

)

positions
from q̃, we discard those ARQ distributions which follow the
rule qi > qj wheneverci > cj . As a result, we observe that
the list size shortens remarkably after incorporating the rule of
Theorem 2. Based on the simulation results, we observe that
the ARQ distribution which minimizes the PDP from the list
L matches the result of exhaustive search, thereby confirming
that our list indeed encapsulates the optimal ARQ distribution
of the underlying problem. Although we used high SNR results
of Corollary 1 to synthesize the list-decoding method, we
observe that the size of the list reduces significantly at low
and medium range of SNR values as well. We attribute this
behavior to the fact that the parametersǫ(1)i,j and ǫ

(2)
i,j , for

i 6= j, satisfied ǫ
(1)
i,j < 0 and ǫ

(2)
i,j > 0, which in turn

ensured thatqreal satisfied the sufficient conditions of local
minima. Finally, for the parameters considered in Fig. 3, we
also plot the corresponding PDP in Fig. 4 so as to highlight
the suboptimality of uniform ARQ distribution.

VI. SUMMARY

We have addressed a new framework to reliably communi-
cate low-latency packets over a multi-hop network dominated
by line-of-sight channels. We have specifically consideredthe
question of how to distribute a given number of ARQs across

the relay nodes in an ARQ based decode-and-forward relaying
protocol such that the packet-drop-probability is minimized.
To facilitate solving this problem with low-complexity meth-
ods, we have derived necessary and sufficient conditions on
the optimal distribution of ARQs, and have subsequently used
these conditions to propose a list-based enumeration algorithm.
Simulation results confirm that the generated list is substan-
tially shorter than that of exhaustive search, thereby rendering
our algorithm amenable to implementation in practice.
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