Measurement Analysis when Benchmarking Java
Card Platforms

Pierre Paradinas!, Julien Cordry?, and Samia Bouzefrane?

! INRIA Rocquencourt 78150 Le Chesnay France
Pierre.Paradinas@inria.fr

2 ONAM 292 rue Saint-Martin 75003 Paris France
firstname.lastname@cnam. fr

Abstract. The advent of the Java Card standard has been a major
turning point in smart card technology. With the growing acceptance of
this standard, understanding the performance behaviour of these plat-
forms is becoming crucial. To meet this need, we present in this paper, a
benchmark framework that enables performance evaluation at the byte-
code level. This paper focuses on the validity of our time measurements
on smart cards.

Key words: Java Card, Benchmark, Performance

1 Introduction

With more than 5 billion copies in 2008 [4], smart cards are an important device
of todays information society. The development of the Java Card standard [1]
made this device even more popular as it provides a secure, vendor-independent,
ubiquitous Java platforms for smart cards. It shortens the time-to-market and
enables programmers to develop smart card applications for a wide variety of
vendors products.

In this context, understanding the performance behaviour of Java Card plat-
forms is important to the Java Card community (users, smart card manufactur-
ers, card software providers, card users, card integrators, etc.). Currently, there
is no solution on the market which makes it possible to evaluate the performance
of a smart card that implements Java Card technology. In fact, the programs
which realize this type of evaluations are generally proprietary and not avail-
able to the whole of the Java Card community. Hence, the only existing and
published benchmarks are used within research laboratories (e.g., SCCB project
from CEDRIC laboratory [9] or IBM Research [16]). However, benchmarks are
important in the smart card area because they contribute in discriminating com-
panies products, especially when the products are standardised.

In this paper, we propose a general benchmarking solution through different
steps that are essential for measuring the performance of the Java Card plat-
forms. The emphasis here is towards the validation of the resulting tests in terms
of accuracy and precision.

The remainder of this paper is organised as follows. In Section 2, we de-
scribe briefly some benchmarking attempts in the smart card area. In Section
3, an overview of the benchmarking framework is given. Section 4 analyses the
obtained measurements using first a statistical approach, and then a precision
reader before concluding the paper in Section 5.

2 Some attempts at measuring Java Card Performance

Currently, there is no standard benchmark suite which can be used to demon-
strate the use of the JCVM and to provide metrics for comparing Java Card
platforms. In fact, even if numerous benchmarks have been developed around
the JVM, there are few works that attempt to evaluate the performance of smart
cards.

The first interesting initiative has been done by Castella et al. in [7] where
they study the performance of micro-payment for Java Card platforms, i.e.,
without PKI. Even if they consider Java Card platforms from distinct manufac-
turers, their tests are not complete as they involve mainly computing some hash
functions on a given input, including the I/O operations.

A more recent and complete work has been undertaken by Erdmann in [10].
This work mentions different application domains, and makes the distinction
between I/0, cryptographic functions, JCRE and energy consumption. Infineon
Technologies is the only provider of the tested cards for the different application
domains. The software itself is not available.

The work of Fischer in [11] compares the performance results given by a Java
Card applet with the results of the equivalent native application.

Another interesting work has been carried out by the IBM BlueZ secure
systems group and it was detailed in a Master thesis [16]. JCOP framework has
been used to perform a series of tests to cover the communication overhead, DES
performance and reading and writing operations into the card memory (RAM
and EEPROM).

Markantonakis in [13] presents some performance comparisons between the
two most widely used terminal APIs, namely PC/SC and OCF.

Chaumette et al. in [5,8] show the performance of a Java Card grid with
respect to the scalability of the grid and with different types of cards.

3 General benchmarking framework

Our research work falls under the MESURE project [14], a project funded by
the French administration (ANR), which aims at developing a set of open source
tools to measure the performance of Java Card platforms. These benchmarking
tools focus on Java Card 2.2 functionalities even if Java Card 3.0 specifications
have been published since March 2008 [3], principally because until now there
is no Java Card 3.0 platform in the market except some prototypes such as the
one demonstrated by Gemalto during the Java One Conference in June 2008.

Moreover, since Java Card 3.0 proposes two editions: connected or web oriented
edition and classic edition, our measuring tools can be reused to benchmark Java
Card 3.0 classic edition platforms.

Our benchmarks have been developed under the Eclipse environment based
on JDK 1.6, with JSR268 [2]. The underlying ISO 7816 smart card architecture
forces us to measure the time a Java Card platform takes to answer to a command
APDU, and to use that measure to deduce the execution time of some operations.

The set of tests are supplied to benchmark Java Card platforms available
for anybody and supported by any card reader. The various tests thus have
to return accurate results, even if they are not executed on precision readers.
We reach this goal by removing the potential card reader weakness (in terms
of delay, variance and predictability) and by controlling the noise generated
by measurement equipments (the card reader and the workstation). Removing
the noise added to a specific measurement is done with the computation of an
average value extracted from multiple samples. As a consequence, each test is
performed several times and some basic statistical calculations are used to filter
the trustworthy results.

The benchmarking development tool covers two parts: the script part and the
applet part. The script part, entirely written in Java, defines an abstract class
that is used as a template to derive test cases characterized by relevant measuring
parameters such as, the operation type to measure, the number of loops, etc. A
method run() is executed in each script to interact with the corresponding test
case within the applet. Similarly, on the card is defined an abstract class that
defines three methods: a method setUp() to perform any memory allocation
needed during the lifetime test case, a method run() used to launch the tests
corresponding to the test case of interest, and a method cleanUp () used after the
test is done to perform any clean-up. The testing applet is capable of recognizing
all the test cases and launching a particular test by executing its run method.

As detailed in [6] the general benchmark framework follows different steps.
The objective of the first step is to find the optimal parameters used to carry out
correctly the tests. The tests cover the VM operations and the API methods.
The obtained results are filtered by eliminating non-relevant measurements and
values are isolated by drawing aside measurement noise. Any measurement that
is outside of a confidence interval can be considered as noisy. A profiler module is
used to assign a mark to each benchmark type, hence allowing us to establish a
performance index for each smart card profile used. The bulk of the benchmark
consists in performing time execution measurements while we send APDUs from
the computer through the Card Acceptance Device (CAD) to the card. Each
test (run) is performed a certain number of times (Y7) to ensure reliability of the
collected execution times , and within each run method, we perform on the card
a certain number of loops (L). L is coded on the byte P2 of the APDUs which
are sent to the on-card applications. The size of the loop performed on the card
is L = (P2)2.

As [15] details, there is a way to isolate the time performance of fractions
of code as small as a bytecode. As such we can isolate the performance of a

simple sadd bytecode. We designed two tests (run). For each iteration of the L
loops, each test calls a method. In the first of those tests (the reference test), the
method called stacks up two numbers (sspush). In the second test (the operation
test or, more precisely here, the sadd operation test), the method stacks up the
two same numbers and performs a sadd (short addition). The difference of time
performances between those two tests divided by L should give us the isolated
time performance of a single sadd.

The sadd bytecode is a simple one, but there is primarily a need to validate
our measurement method. Indeed, we need to know if our concept of measuring
the performance of a smart card from the outside and isolating the performance
of a single operation (bytecodes, and APIs entries) is valid.

4 Validation of the tests

4.1 Statistical correctness of the measurements

The expected distribution of any measurement is a normal distribution. Accord-
ing to Lilja [12], the arithmetic mean is an acceptable representative value for
any given set of normally distributed time measurements (Lilja recommands at
least 30 measurements). Nevertheless, Rehioui [16] pointed out that the results
obtained via methods similar to ours were not normally distributed on IBM
JCOPA41 cards. Erdmann [10] cited similar problems with Infineon smart cards.

When measuring both the reference test and the operation test on several
smart cards by different providers using different CADs (Cherry ST-1044U, FSC
Smartcard-Reader USB 2A, GemPC Twin, Omnikey Cardman 2020, Omnikey
Cardman 4040, Towitoko Chipdrive Micro, Xiring Teo), different host machines
(with CPUs AMD Sempron 3100+, AMD X2 3800+, Intel Core2 Quad CPU
Q9400), different OSs (Linux, Windows XP, Windows Vista), none of the time
performances had a normal distribution (see figure 1 for a sample reference test
performed on a card). The results were similar from one card to another in
terms of distribution, even for different time values, and for different loop sizes.
Changes in CAD, in host-side JVM, in task priority made no difference on the
experimental distribution curve.

Testing the cards on Linux and on Windows XP or Windows Vista, on the
other side, showed differences. Indeed, the recuring factor when measuring the
performances with a terminal running Linux with PC/SC Lite and a CCID
driver is the gap between peaks of distribution. The figure 1 shows the time
values obtained for a set of performed measurements.

The peaks are often separated by 400ms and 100 ms steps which match some
parts of the public code of PC/SC Lite and the CCID driver (see figure 2). With
other CADs, the distribution shows similar steps with respect to the CAD driver
source code. The peaks in the distribution from the measurements obtained on
Windows are separated by 0.2 ms steps (see figure 4). Without having access
to neither the source code of the PC/SC implementation on Windows nor the
driver source codes, we can deduce that there must be some similarities in the
source codes between the proprietary versions and the open source versions.

Fig. 1. Measurements of a reference test as the tests proceed under Linux, and the
corresponding distribution curve L = 412

Q
coo0 0 o0 o o 0 000000 0O 0 O
0o © 000 G 0000 O 00 p © 0000 O g

1.058e+09 1.060e+09
| |
o

Time in nanoseconds
1.056e+09
1

[o}]

o

+

o

- o

<

— o <

@ Qo

= 00000000000

8 - 5

o o

= T T T T T
0 10000 20000 30000 40000

Measurement performed

10000 15000 20000
| |]

Frequency

5000
1

L

f T T T 1
1.052e+09 1.054e+09 1.056e+09 1.058e+09 1.060e+09

Time values in nanoseconds

Fig. 2. Some lines from the PC/SC Lite and CCID driver source codes

pcscd.h:#define PCSCLITE_LOCK_POLL_RATE 100000
pcscd.h:#define PCSCLITE_STATUS_POLL_RATE 400000
winscard.c:SYS_USleep(PCSCLITE_LOCK_POLL_RATE);
winscard_clnt.c:SYS_USleep (PCSCLITE_STATUS_POLL_RATE + 10);

In order to check the normality of the results, we isolated some of the peaks
of the distributions obtained with our measurements (see figure 3). The Shapiro-
Wilk test is a well established statistical test used to verify the null hypothesis
that a sample of data comes from a normally distributed population [17]. The
result of such a test is a number W € [0, 1], with W close to 1 when the data
is normally distributed. No set of value obtained by isolating a peak within a
distribution gave us a satisfying W close to 1. For instance, considering the peak
in figure 3, W = 0.8442, which is the highest value for W that we observed,
with other values ranging as low as W = 0.1384. We conclude that the measure-
ments we obtain, even if we consider a peak of distribution, are not normally
distributed.

Rehioui [16] proposed an algorithm to locate the highest peak in a distribu-
tion to take the value of that peak as the correct measured value. However the
algorithm does not literally try to locate the highest peak in the distribution
curve, but, with each iteration of the algorithm, it removes the measurements
that are to far away from the arithmetic mean of the measurements. The al-
gorithm stops after several such iterations. We should be left with a certain
percentage of the initial number of measurements. That particular percentage is
determined by the user of the benchmark framework.

This algorithm is nevertheless futile when it comes to trying to determine
the correct time performance value with a “comb” like distribution (see figure
4), or if the highest peak is relatively far from the mean (which would suggest
that we have several other smaller peaks on the other side of the mean).

But what we are interested in is not exactly the raw measurement of the
reference test and the operation test, but the differences between the operation
measurements and the reference measurements.

Figure 5 shows two curves. The upper curve shows the time values obtained
for a sadd operation test, while the lower curve shows the time values for the
corresponding reference test. As we can see, each curve is subject to changes due
to the non normal distribution of their respective measurements (that is, noises
on the test platform). So it is difficult for us to choose the appropriate time value
representing each curve. There is nevertheless a time difference between the two
curves that is bigger than those variations. That is due to the execution of the
supplementary sadd byte code in each iteration of the loop. For a sufficiently
large loop size, the difference between those two curves is large enough so that it
dwarfs the importance of those variations. Indeed, the supplementary bytecode

Fig. 3. Distribution of the measurement of a reference test : close up look at a peak in
distribution L = 412

Frequency
600 800 1000 1200
1 |

400
|

200
|

| | | |
1055800000 1055900000 1056000000 1056100000

Time values in nanoseconds

Fig. 4. Distribution of sadd operation measurements using Windows Vista, and a close
up look at the distribution (I = 90%)

sadd ——

Number of measurements

N

HH\HH
\HM \H I]

6.47e+09 6.475e+09 6.486+09 6.485e+09 6.49e+09 6.495¢+09 6.5e+09 6.505e+(
Time measured (ns)

o

sadd ——

Number of measurements

: H

L L]

64786+09 6.4785e+09 6.479e+09 6.4795e+09 6.48e+09 6.4805e+09 6.481e+(
Time measured (ns)

Fig. 5. Comparison between the sadd operation measurements and the corresponding
reference measurements (I = 41%)

1.45e+09

1.4e+09

gl g it gy B s Loty L sanian N
SADD

b Aot L et b s

1.35e+09

1.3e+09

1.25e+09

Time (ns)

1.2e+09

1.15e+09

Reference

1.1e+09

TR NPT T I NPT) HIIIH‘] UL W LR MM L LM, L b L, ll\\l‘lwl I\KL AHIU\ Illl\ \‘l III\‘\

II.”IIII | |H

1.05e+09

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 2000

Number of Test performed

is then performed a sufficiently large amount of times, so that it can have a large
impact on the time performances.

So even though we don’t have access to a set of normally distributed time
values, for a given large loop size, the measurements could be accurate.

4.2 Validation through a precision CAD

We used a Micropross MP300 TC1 reader to verify the accuracy of our measure-
ments. This is a smart card test platform, that is designed specifically to give
accurate results, most particularly in terms of time analysis.

The results here are seemingly unaffected by noises on the host machine.
With this test platform, we can precisely monitor the polarity changes on the
contact of the smart card, that mark the I/Os.

We measured the time needed by a given smart card to reply to the same
APDUs that we used with a regular CAD. We then tested the measured time
values using the Shapiro-Wilk test, we observed W > 0.96, much closer to what
we expected in the first place. So we can assume that the values are normally
distributed for both the operation measurement and the reference measurement.

We subtracted each reference measurement value from each sadd operation
measurement value, divided by the loop size to get a time values set that repre-
sents the time performance of an isolated sadd bytecode. Those new time values
are normally distributed as well (W = 0.9522). On the resulting time value set,
the arithmetic mean is 10611.57 ns and the standard deviation is 16.19524. Ac-
cording to [12], since we are dealing with a normal distribution, this arithmetic
mean is an appropriate evaluation of the time needed to perform a sadd bytecode
on this smart card.

Using a more traditional CAD (here, a Cardmann 4040, but we tried five
different CADs) we performed 1000 measurements of the sadd operation test
and 1000 measurements of the corresponding reference test. By subtracting each
value obtained with the reference test from each of the values of the sadd oper-
ation test, and dividing by the loop size, we produced a new set of 1000000 time
values. The new set of time values has an arithmetic mean of 10260.65 ns and a
standard deviation of 52.46025.

The value we found with a regular CAD under Linux and without priority
modification is just 3.42% away from the more accurate value found with the
precision reader. Although this is a set of measurements that are not normally
distributed (W = 0.2432), the arithmetic mean of our experimental noisy mea-
surements seems to be a good approximation of the actual time it takes for this
smart card to perform a sadd.

The same test under Windows Vista gave us a mean time of 11380.83 ns with
a standard deviation of 100.7473, that is 7,24% away from the accurate value.

In conclusion, our data are noisy and faulty but despite a potentially very
noisy test environment, our time measurements always provide a certain accu-
racy and a certain precision.

5 Conclusion

With the wide use of Java in smart card technology, there is a need to evalu-
ate the performance and characteristics of these platforms in order to ascertain
whether they fit the requirements of the different application domains. For the
time being, there is no other open source benchmark solution for Java Card. The
objective of our project [14] is to satisfy this need by providing a set of freely
available tools, which, in the long term, will be used as a benchmark standard.
In this paper, we have focused on the validation of our time isolation technique.
Despite, the noise, our framework achieve some degree of accuracy and preci-
sion. Besides the portability of the benchmarking framework, this means that
evaluating appropriately the performance of a smart card does not necessarily
require a costly reader. Java Card 3.0 is a new step forward for this community.
Our framework should still be relevant to the classic edition of this platform,
but we have yet to test it.

References

Java Card 2.2.2 Specification, April 2006.

JSR 268: Java Smart Card I/O API, December 2006.

Java Card 3.0 Specification, March 2008.

Pierrick Arlot. Le marché de la carte a puce ne connait pas la crise. Technical

report, Electronique international, 2008.

5. Eve Atallah, Franck Darrigade, Serge Chaumette, Achraf Karray, and Damien
Sauveron. A grid of Java Cards to deal with security demanding application
domains. In 6th edition e-Smart conference & demos, September 2005. Sophia
Antipolis, French Riviera.

6. Samia Bouzefrane, Julien Cordry, Hervé Meunier, and Pierre Paradinas. Evalu-
ation of Java Card Performance. In Eighth Smart Card Research and Advanced
Application Conference CARDIS, Egham, United Kingdom, September 2008.

7. Jordy Castella-Roca, Josep Domingo-Ferrer, Jordi Herrera-Joancomati, and Jordi
Planes. A performance comparison of Java Cards for micropayment implementa-
tion. In CARDIS, pages 19-38, 2000.

8. Serge Chaumette and Damien Sauveron. Some security problems raised by open
multiapplication smart cards. In 10th Nordic Workshop on Secure IT-systems:
NordSec 2005, October 2005.

9. Jean-Michel Douin, Pierre Paradinas, and Cédric Pradel. Open Benchmark for
Java Card Technology. In e-Smart Conference, September 2004.

10. Monika Erdmannn. Benchmarking von Java Cards. Master’s thesis, Institut fiir
Informatik der Ludwig-Maximilians-Universitdt Miinchen, 2004.

11. Mario Fischer. Vergleich von Java und native-chipkarten toolchains, benchmarking,
messumgebung. Master’s thesis, Institut fiir Informatik der Ludwig-Maximilians-
Universitiat Miinchen, 2006.

12. David J. Lilja. Measuring Computer Performance: A Practitioner’s Guide. Cam-
bridge University Press, 2000.

13. Constantinos Markantonakis. Is the performance of smart card cryptographic func-

tions the real bottleneck ? In 16th international conference on Information security:

Trusted information: the new decade challenge, volume 193, pages 77 — 91. Kluwer,

2001.

W=

14.
15.

16.

17.

The MESURE project website. http://mesure.gforge.inria.fr.

Pierre Paradinas, Samia Bouzefrane, and Julien Cordry. Performance evaluation of
java card bytecodes. In Springer, editor, Workshop in Information Security Theory
and Practices (WISTP), Heraklion, Greece, 2007.

Karima Rehioui. Java Card Performance Test Framework, September 2005. Uni-
versité de Nice, Sophia-Antipolis, IBM Research internship.

S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52, 8 and 4, pages 591-611, 1965.

