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Abstract. In this paper we report on the performance of the RSA vari-
ants of Brands protocols for zero-knowledge proof and restrictive blinded
issuing [1]. The performance is relatively bad: For 4 attributes and an
RSA key size of 1280 bits, blinded issuing takes about 10 seconds and
the zero-knowledge proof takes about 9 seconds. For 2 attributes the
zero-knowledge proof drops to 5 seconds. The poor performance comes
from the fact that the cryptographic coprocessor on the Java card can
only be employed in very limited ways. With appropriate support of the
cryptographic coprocessor both protocols would run much faster.
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1 Introduction

This paper has a (partly) negative message: it shows that certain desirable things
cannot be done, . . . currently. In particular, it shows, via various performance
measurements, that the current generation of Java cards is unsuitable for ad-
vanced cryptographic protocols, such as privacy-friendly selective disclosure of
attributes, via zero-knowledge proofs. The simple reason is that current cards
are too slow. The more subtle reason is that the Java-Card API does not permit
access to the (fast!) cryptographic primitive operations on the cryptographic co-
processor. The hope that a clear exposition of this problem will contribute to a
solution in the near future is an important motivation for writing this paper.

The emergence of severe vulnerabilities in the Mifare Classic chip card [4, 11,
5], which is heavily used in public transport (like London’s Oyster, or the Dutch
OV-chipkaart), has led to renewed interest in smart cards for public transport.
The current generation of cards is identity-based:

– cards have a fixed UID in anti-collision that allows tracing of individuals,
also outside the context of public transport, since this UID can be picked up
by any reader;

⋆ Sponsored by the NLnet foundation through the OV-chipkaart project.
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– cards have a fixed (application level) identity that is used in every trans-
action, enabling detailed travel logging and profiling of individuals (with a
personalized card).

There is a desire, at least in certain communities, to move to more privacy-
friendly mechanisms, based for instance on attributes instead of identities. After
all, in most cases there is no compelling reason why you should tell who you are
upon entering a bus; possession of a valid travel attribute should be sufficient.
Advanced cryptographic protocols have been developed for such attribute-based
access control, such as [1] based on zero-knowledge and blind signatures or [13]
based on bilinear pairings on elliptic curves. In this paper we evaluate the ap-
proach of Stefan Brands [1] via a prototype implementation on Java Card. We
focus on two of the crucial protocols, namely for selective disclosure of attributes
and for blinded issuing of a signed attribute expression on currently publicly
available Java cards. This is part of a project that is informally called “OV-chip
2.0”. As Brands suggested, we combine the RSA variants of his proof of knowl-
edge protocol with his protocol for blinded issuing. We equip the protocols with
the necessary code for initialization and key generation and implement every-
thing in a Java-Card applet and an appropriate host-driver application. The host
driver runs on a normal PC and talks to a Java card through a CCID compli-
ant smart-card reader. The host driver can install the applet, download the key
material and personalize the applet, run the protocols, and, of course, measure
their execution time.

We actually implemented two versions of the applet. The first one, the
coprocessor-enabled applet, performs the computations as far as possible on the
cryptographic coprocessor of the Java card. The second one, the pure Java-Card

applet, computes everything on the virtual machine of the Java card. The host
driver can talk to both applets.

The pure Java-Card applet is, of course, very very slow. It is only discussed
here to provide an impression about the speedup of the cryptographic coproces-
sor. However, also the coprocessor-enabled applet is not as fast as we wished.
For 4 attributes and an RSA key size of 1280 bits, blinded issuing takes about 10
seconds and the zero-knowledge proof takes about 9 seconds on the coprocessor-
enabled applet. When using only 2 attributes the zero-knowledge proof takes
about 5 seconds. The main performance limitation is the Java-Card API (to-
gether with the provided security of Java cards) that permits no adequate access
to the cryptographic coprocessor. We analyze the problems that lead to this
unexpectedly bad performance in more detail in Section 2 and Section 3.

To achieve better performance for Brands protocols one needs access to the
native (assembly) methods for standard and modular multiplication, modular
exponentiation and for division that fully exploit the cryptographic coprocessor
on the card. For using elliptic curves with the discrete log (DL) variants of Brands
protocol one would need access to native methods for point addition and scalar
point multiplication. Even the current Java Card 3.0 draft does not specify any of
these methods although any card with support for RSA and elliptic curves does
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contain such methods. With adequate access to the cryptographic coprocessor
Brands protocols would probably run in about 1 second.

Our implementation is based on the Bignat library, a newly developed library
for big natural numbers on Java Card. The implementation further exploits the
Java-Card protocol layer for the communication between the applet and the
host driver. The Java-Card protocol layer is a custom layer for remote method
invocation on Java cards that supports methods with an arbitrary number of
arguments and results of up to 32 KByte in size. The complete sources are
available for download from https://ovchip.cs.ru.nl/OV-chip_2.0with one
exception: Because of Brands patents on his protocols the few methods that
implement the protocol for the two applets and the host driver are missing
from the distribution.1 The protocol is however fully described in [1] and in
Appendix B of this paper so that it should be not too difficult to get the applets
running for research purposes.

This paper is structured as follows. Section 2 gives insight into the Java-Card
API and explains why currently any implementation of Brands protocols on Java
cards will have to fight with performance problems. Section 3 presents our Big-
nat library for operations on big integers on Java Card. Section 4 describes the
protocols that we implemented and presents our performance measurements. In
Section 5 we shortly discuss elliptic curves and Section 6 concludes. Appendix A
shortly introduces Montgomery multiplication, because it is mentioned very of-
ten in this paper. The Appendix B contains the technical description of the
implemented protocols, similar to the descriptions in [1] but with adoptions for
our implementation.

2 Performance Limitation in the Java-Card API

The performance critical part in the RSA variants of Brands protocols are ex-
pressions of the form (ga1

1 · · · gak

k ) mod n, which we call modular multi-powers in
the sequel. Such a modular multi-power encodes the attributes a1, . . . , an of the
card as numbers and its blinding in a blinded attribute expression. The length of
the bases, exponents and the modulus determine the security level. A modulus n

and bases bi of 1280 bits and exponents ai of 160 bits provide reasonable security
over the next few years.

Apart from the modular multi-powers one also needs multiplication, modular
multiplication, addition, division and modulus on big natural numbers. Current
Java cards are equipped with a cryptographic coprocessor and a suitable na-
tive (assembly) library that can perform these operations in a reasonably fast
way. For instance, RSA public key encryption takes only 120 milliseconds for
a RSA key and a cipher text of 1280 bits and a public exponent of 200 bits.
This leads to speculated 0.3 milliseconds for one modular multiplication of 1280
bit numbers. However, Java-Card applets can only use the public Java-Card
API [8, 9] and extending this API with new native (assembly) methods is not

1 The current patent owner is Microsoft. Microsoft lawyers are still pondering our
request from January 2009 to permit the distribution of the complete sources.
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permitted. The current Java-Card API version 2.2.2 [9] gives very limited access
to the cryptographic coprocessor in class BigNumber in the optional package
javacardx.framework.math. This class contains multiplication and addition,
but no modular multiplication, no division or even modular exponentiation. It
appears that almost no cards are available that implement version 2.2.2 of the
Java-Card API. Until now we only found two such cards: The Athena IDPro-
tect2 and a recent JCOP31 card from NXP. Both do not support the optional
package javacardx.framework.math. The older API version 2.2.1 [8], which is
implemented by most of the currently available cards, does neither contain the
package javacardx.framework.math nor the BigNumber class.

Without direct access to the cryptographic coprocessor the only remaining
possibility is to trick one of the high-level cryptographic methods into perform-
ing, for instance, a modular multiplication or a modular exponentiation. Current
Java cards provide a number of such high-level methods that perform big-integer
calculations internally, for instance for RSA (encryption, decryption and key
generation), Diffie-Hellman key exchange and DSA. However, internally most of
these high-level methods use random padding or randomly generated arguments,
which cannot be controlled from the API level. These random ingredients are
essential for the security of those methods, but they make it impossible to turn
them into a big-integer operation.

We only found one exception: The ALG_RSA_NOPAD cipher algorithm contains
no random padding and can be used to compute a modular power ga

mod n.
There are some restrictions on the arguments, but one can easily work around
them. Our NXP JCOP cards, for instance, only support moduli between 64 and
244 bytes. The modulus must further have a first non-zero byte and a length (in
bytes) that is divisible by 4. As a further peculiarity an exponent of 0 yields 0
as cipher text, that is, x0 = 0 when using the RSA cipher. With an exponent of
1 the RSA_NOPAD cipher can be used to compute a modulus g mod n. This is,
however, not very useful, because g cannot be longer than n (in bytes) and for
such numbers a simple schoolbook division achieves the same performance.

On currently available Java cards it is impossible to directly use the crypto-

graphic coprocessor for multiplication, modular multiplication or division of big

integers.

It took us a some time to remember that ab = (a+b)2−a2−b2

2 . For odd mod-
uli this equation can actually be turned into a method for computing modular
products. This method will be called squaring multiplication in the following. For
one modular product squaring multiplication needs to do 3 modular squares, 2
subtractions, 1 right shift and 1 to 4 additions. The number of additions varies,
because, for instance, (a + b)2 mod n might be smaller than a2

mod n and in
this case ((a + b)2 − a2) mod n = ((a + b)2 mod n) − (a2

mod n) + n.
On Java cards squaring multiplication gives a big speedup, because the

squares can be computed on the cryptographic coprocessor with the help of
the RSA cipher. For instance for numbers of 1280 bits, one square costs only
14 milliseconds, while one addition, which must be done on the Java virtual

2 See http://www.athena-scs.com.
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machine of the card, costs 75 milliseconds. Montgomery multiplication, which
must also run on the Java virtual machine of the card, requires 320 additions for
numbers of 1280 bits and takes about 25 seconds. A squaring multiplication for
such numbers costs only between 350 and 580 milliseconds.

The RSA cipher on Java Card computes only modular exponents. But if one
chooses a modulus n > (a + b)2 then one can use squaring multiplication also to
compute a normal (non-modular) product ab.

We can conclude here that the Java-Card API does not facilitate the imple-
mentation of advanced cryptographic protocols, because the API does not give
access to the fast big-integer operations that are available on the card. With-
out support from the cryptographic coprocessor one is forced to implement the
missing operations in Java using bytes and shorts (as there are usually no 32 bit
integers on a Java card). With the overhead of the Java Virtual Machine added
on top of the limited execution speed of the main processor this will almost cer-
tainly yield an unacceptable performance. As things stand, the situation is not
likely to improve much, because the current draft of the Java-Card specification
for upcoming Java Card 3.0 [10] does not contain any additions to the BigNum-

ber class that is already present in version 2.2.2. So even if some future cards
implement the relevant optional package, one still has to implement division and
addition in the Java Virtual Machine. With the trick of squaring multiplication,
the cryptographic coprocessor can speed up multiplication and modular multi-
plication but a multiplication directly on the coprocessor would probably still
be about 100 times faster than our squaring multiplication method.

One aim of this paper is to draw attention to the limitations of the Java
Card API for advanced cryptographic protocols and to motivate the Java-Card
community in general and the card producers in particular to allow access to ba-
sic cryptographic operations on the coprocessor via extensions of the Java-Card
API. The paper illustrates the need for such extensions for the next generation
of (privacy-friendly) smart card applications.

3 Bignat: A Big-Integer library for Java Card

The limitations of the Java-Card API force us to perform some computations in
a big-integer library on Java Card. We decided to implement such a library from
scratch, for the following reasons. Although different big-integer libraries have
been developed in the past in different projects [2, 3], no such library is currently
publicly available. As [2, 3] already point out, porting an existing big-integer
library does not make much sense because of the limitations of Java Card. The
absence of a garbage collector, for instance, enforces a completely different Java
programming style, in which all allocations are performed at applet initialization
time and temporary objects appear in the interface of those methods that need
them. We further believe that a library interface tailored towards the application
can improve the performance. For Brands protocols, for instance, the bases gi

in a blinded attribute expression (ga1

1 · · · gak

k ) mod n are constant, which makes
special optimizations possible.
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Fig. 1: Performance of
multiplication. The top
chart compares Mont-
gomery, school-book,
and squaring multiplica-
tion for short numbers.
Squaring multiplication
is fastest from about 92
bits. The bottom chart
displays the performance
of squaring multiplication
for large numbers. One
can clearly recognize the
different number of addi-
tions that were necessary
for the randomly chosen
parameters. All measure-
ments were done over the
contact interface of the
card.

Our library implements natural numbers of arbitrary but fixed size that must
be specified at object creation time. The numbers are mutable; for many opera-
tions the result is stored in the object on which the operation is invoked. If this
object is not big enough to hold the result, an exception is thrown. The library
implements addition, subtraction, multiplication and division with their school-
book algorithms. The Bignat library additionally implements Montgomery multi-
plication (see Appendix A) and squaring multiplication, which are both modular
multiplications. Squaring multiplication employs the cryptographic coprocessor
of the card via the RSA_NOPAD cipher. Figure 1 shows the performance of these
different multiplication methods. Montgomery multiplication has a quadratic
complexity, its computation time rises from 4.1 seconds for 512 bit numbers over
25 seconds for 1280 bit to 64 seconds for 2048 bit numbers. As the bottom chart in
Figure 1 shows, squaring multiplication is much faster. However, from the RSA
encryption performance we estimate that a 1280 bit multiplication performed
directly on the cryptographic coprocessor would only take 0.3 milliseconds.

The Bignat library contains a wrapper method for accessing the crypto-
graphic coprocessor via the RSA cipher for computing modular powers. The



Performance issues of Selective Disclosure Protocols 7

 0

 0.1

 0.2

 0.3

 0.4

 512  768  1024  1280  1536  1792  2048

 60

 120

 180

 240
tim

e 
in

 s
ec

ex
po

ne
nt

 s
iz

e 
in

 b
it

base size in bits

RSA modular power

encrypt only
modPow
exponent

Fig. 2: Performance of
computing exponents on
the cryptographic copro-
cessor (contact interface
only). Cipher and key
initialization has a sig-
nificant overhead over
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right y-axis.

 0

 1

 2

 3

 4

 5

 6

 7

 512  768  1024  1280  1536  1792  2048
 0

 40

 80

 120

 160

 200

 240

 280

tim
e 

in
 s

ec
on

ds

ex
po

ne
nt

 s
iz

e 
in

 b
its

base number size in bits

RSA multi-power (4 bases)

wired
wireless

exponent

Fig. 3: Performance of
the RSA method to com-
pute modular multi pow-
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tion for any base size
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length is displayed on the
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wrapper works around known problems, for instance, it correctly computes
x0 = 1. Figure 2 shows the performance of this method for computing mod-
ular powers. For the measurements the size of the exponent was chosen such
that it provides similar security for Brands protocols as an RSA modulus of the
same size as the bases. The security level of the RSA modulus is thereby esti-
mated following Lenstra [6]. The exponents we use grow from 94 bits for bases
of 512 bits to 198 bits for bases of 1952 bits. In Figure 2 the third line displays
the exponent length against the right y-axis.

For modular multi-powers (ga1

1 · · · gak

k ) mod n the Bignat library contains
two specialized methods: the RSA multi-power method that uses the crypto-
graphic coprocessor as much as possible and the simultaneous squaring multi-

power method that computes the result entirely without the cryptographic co-
processor.

The RSA multi-power method computes the single modular exponents
gai

i mod n with the RSA cipher of the card and multiplies the results with
squaring multiplication. Figure 3 displays the performance of this method for
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computing a multi power with 4 bases (i.e., k = 4). The subtractions and addi-
tions inside squaring multiplication are responsible for a significant part of the
computation time. Counting subtractions as additions, the computation of one
multi-power consists of 9–18 additions, which costs between 0.6 and 1.3 seconds
for 1280 bit numbers.

The simultaneous squaring multi-power method uses the simultaneous squar-
ing method on the basis of Montgomery multiplication. It takes advantage of the
fact that for Brands protocols the bases gi are constant and uses a precomputed
table of all possible products of the bases gi. Therefore it only needs about 2|a|
Montgomery multiplications, where |a| denotes the maximal size of the exponents
ai in bits. The simultaneous squaring method requires that all bases and also the
precomputed table of factors are provided in Montgomery representation. Fig-
ure 4 shows the performance of the simultaneous squaring multi-power method.
It is clear that on Java Card the simultaneous squaring multi-power method has
mostly anecdotic value. We only discuss it here for two reasons. Firstly, it pro-
vides an impression of the performance benefits of the cryptographic coprocessor
on Java Card. Secondly, an implementation based on the simultaneous squar-
ing multi-power method can easily ported to a platform without cryptographic
coprocessor support, such as a smart phone.

4 Implemented protocols and their Performance

In this section we describe in somewhat more detail the protocols that we imple-
mented and show their performance on current Java cards. For reasons of space
the precise technical description of the protocols has been moved to Appendix B.

We actually implemented two applets, the coprocessor-enabled applet and the
pure Java-Card applet. The same host driver is used to control both applets. The
coprocessor-enabled applet uses internally the RSA multi-power method while
the pure Java-Card applet uses the simultaneous squaring multi-power method.
The pure Java-Card applet is only shown here for the comparison.
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Both applets are functionally equivalent. They hold k attributes a1, . . . , ak

that could encode the card type (e.g., whether it is a month card or a reduc-
tion card), the expiration date, possibly a balance, and so on. One of the at-
tributes is the private key of the applet, which will never be disclosed to any-
body. From the attributes the applet computes its blinded attribute expression
A = bv ga1

1 · · · gak

k mod n, where the bases gi, the RSA modulus n and the public
RSA exponent v are public system parameters. The b is a blinding factor that is
private to the applet and that ensures that the attribute expression A does not
function as a pseudonym. To ensure that the attributes are original the whole
attribute expression A is signed. The signature is constructed in such a way that
the signing authority does not see the resulting signature and therefore cannot
use the signature to recognize the applet later.

In our implementation one can configure the number of attributes k and
the size of the RSA modulus n and the size of the public RSA exponent v

at initialization time. A modulus of 1280 bits and an exponent of 160 bits are
sufficient to ensure security over the next few years. Together the host driver and
each of the applets implement the following protocols (for a complete technical
description of the protocols see Appendix B):

Key Setup and Initialization The host driver generate the keys, the bases
g1, . . . , gk and chooses the first attributes a1, . . . , ak of the applet. The key
material, the bases and the attributes are installed in the applet and the
applet computes its first attribute expression A. As last part of the initial-
ization the resign protocol is run to let the applet change its blinding b and
to equip it with a valid signature.

Resign Protocol The applet shows its blinded attribute expression A and the
signature and the host driver checks the validity of the signature (this check
is of course left out if resigning runs as part of the initialization). The host
driver can then change selected attributes (for instance to change the ex-
piration date) and the applet chooses a new blinding b. Finally the applet
obtains a new signature for the changed blinded attribute expression.

Gate Protocol The applet shows its blinded attribute expression A and the
signature, which is checked by the host as in the resign protocol. The applet
then proves with a zero-knowledge proof that it knows suitable attributes
a1, . . . , ak that give rise to A. Thereby the host learns nothing about the
attributes.

A feature currently missing is the partial disclosure of some attributes. For in-
stance, at the gate the card would disclose its card type and claim that the
expiration date lays in the future.

Figure 5 shows the transaction times for the complete system, using either
the coprocessor enabled or the pure Java-Card applet. For 4 attributes and a
RSA key size of 1280 bits and a public RSA exponent of 160 bits the resign
protocol takes between 10 and 11 seconds and the gate protocol between 8 and
9 seconds (the lines in Figure 5 show the average of a number of measurements).
For 2 attributes resigning takes between 8 and 9 seconds and the gate proto-
col between 5.2 and 5.8 seconds. The applet is therefore probably too slow for



10 Hendrik Tews and Bart Jacobs

 5

 10

 15

 512  768  1024  1280  1536  1792  2048

tim
e 

in
 s

ec
on

ds

RSA key size in bits

Coprocessor enabled applet

resign 4 attr
gate 4 attr

resign 2 attr
gate 2 attr

 15

 30

 45

 60

 75

 64  128  192  256  320  384  448  512

tim
e 

in
 m

in
ut

es

RSA key size in bits

Pure Java-Card applet (4 attributes)

resign
gate

Fig. 5: Performance of
the two applets. Note
that y-axis of the top
chart is in seconds, while
for the bottom chart it
is in minutes. Timings
are complete transac-
tion times over the wired
interface, that is, includ-
ing the computation of
the host driver, the com-
munication time, and,
of course, the computa-
tion of the applet. The
coprocessor enabled ap-
plet only supports key
sizes between 64 and 244
bytes, because the RSA
cipher on our cards only
supports these key sizes.
The measurement for the
pure Java-Card applet
has been stopped after
the key size 512.

public transport and most other applications. However, the performance of the
coprocessor enabled applet shows that with proper support from a cryptographic
coprocessor Brands protocols could already be used today on Java cards. With
an appropriate API for the coprocessor we estimate that transaction times of
about 1 second are possible for currently available Java cards.

5 Variants based on Elliptic curves

Brands protocols for selective disclosure and blinded issuing do also exist in
a discrete log (DL) variant. This variant can be implemented on the basis of
elliptic curves [12]. The main advantage of elliptic curves is that they permit
much smaller key sizes—keys of 150–200 bit would be sufficient. Therefore the
numbers that one has to manipulate for the DL variant are much smaller: 150–
200 bits instead of 1200–2000 bits as for the RSA variants. The disadvantage
is that the base operation on elliptic curves —addition of two points— is much
more involved.
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Although many Java cards implement cryptographic protocols based on el-
liptic curves, there is no support for adding points of an elliptic curve in the
Java-Card API. There are two high-level elliptic curve related methods in the
Java-Card API: ECDSA, the digital signature algorithm over elliptic curves and
ECDH, Diffie-Hellman key agreement over elliptic curves. ECDSA specifies some
random padding, so it cannot be used to perform addition or scalar multiplica-
tion of points. It should be possible to trick the Diffie-Hellman algorithm into
performing a scalar multiplication of an elliptic-curve point. However, a point of
an elliptic curve has two coordinates and the Diffie-Hellman key agreement on
Java Card only returns the x-coordinate. This could suffice for those protocols
that just do one scalar multiplication at the end, because then the missing y-
coordinate can be reconstructed on the host. For Brands protocols, however, one
would have to reconstruct the missing y-coordinate on the card. As this involves
a square root we are very sceptical about the performance benefits of exploiting
the Diffie-Hellman key agreement.

We have not done any experiments yet, but we expect that Brands DL vari-
ants would actually be slower than our coprocessor enabled applet. We expect
that the disadvantage of the missing coprocessor support outweighs the advan-
tage of shorter keys.

6 Conclusion

In this paper we evaluated the performance of Brands selective disclosure and
blinded issuing protocols on currently publicly available Java cards. The per-
formance is not sufficient for most applications. A zero-knowledge proof for 4
attributes takes about 9 seconds, while blinded issuing takes about 10 seconds
for an RSA key size of 1280 bits. For two attributes the zero-knowledge proof
takes about 5 seconds for the same RSA key size. Limitations in the Java-Card
API for accessing the cryptographic coprocessor are solely responsible for the
bad performance. While we found a way to compute modular powers ga

mod n

on the coprocessor by abusing RSA public key encryption, there is no direct way
to execute a modular big-integer multiplication on the coprocessor. Montgomery
multiplication executed on the Java Card Virtual machine takes 25 seconds for
1280 bit numbers. The familiar equation (a + b)2 = a2 + 2ab + b2 can be used
to dramatically speed up the computation of a modular product because the
squares can be computed on the cryptographic coprocessor. With this trick one
modular multiplication takes between 0.3 and 0.6 seconds for numbers of 1280
bits. In contrast, we estimate that a modular multiplication directly on the cryp-
tographic coprocessor would only take about 0.3 milliseconds for numbers of this
size.

We believe that, with appropriate support in the API, running times in the
order of 1 second are possible.

To facilitate the development and use of new cryptographic protocols the
Java-Card API should as soon as possible be enriched with at least two optional
classes. One for the basic big-integer operations that are missing from java-
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cards.framework.math.BigNumber: modular multiplication, modular addition,
division, modulus, modular powers, and modular inverse. The second class should
contain addition and scalar multiplication of points on elliptic curves. Note that
all these operations are already implemented on most cards, so it is only a
question of exporting them to the Java-Card API.
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Appendix A Montgomery Multiplication

This appendix briefly describes Montgomery multiplication as used in our im-
plementation, see [7, Algorithm 14.36] for a more general description. For clarity
we use − · − to denote standard multiplication.

Let n be an odd modulus and l =
⌈

|n|
8

⌉

be the number of bytes it occupies.

The Montgomery factor R with respect to n is then defined as R = 28l
mod n.

Its modular inverse with respect to n is denoted with R−1, so (R · R−1) mod

n = 1. The Montgomery representation of a number x is (x · R) mod n, where
n is clear from the context. Montgomery multiplication, denoted with − × −,
is defined as follows: x × y = (x · y · R−1) mod n. If the arguments are in
Montgomery representation then so is the result: (x · R) × (y · R) = (x · y) ·
R mod n. To compute the modular product of a fixed number of factors it is
not necessary to convert all factors into Montgomery representation. Instead one
adds an additional correction factor Rk, where k is the number of factors. For
instance (a1 · a2 · a3) mod n = a1 × a2 × a3 × R3. To convert a number from
Montgomery representation back to normal one multiplies with R−1 or exploits
x = (x · R) × 1.

Montgomery multiplication can be computed with a modified schoolbook
multiplication algorithm. To compute x × y one decomposes y into l byte-digits
ylyl−1 · · · y1y0 and performs precisely l multiplication rounds. In multiplication
round i one adds x · yi to the accumulator and shifts the accumulator one byte
to the right. Before shifting one makes the last digit of the accumulator equal
to 0 by adding a suitable multiple of n. For an odd modulus n such a suitable
multiple does always exist. Which multiple of n to use can be deduced from the
last byte of the accumulator. The final accumulator might be bigger than n, so
one has to take the modulus with respect to n at the end. The accumulator must
be capable of holding l bytes plus 9 bits. In our implementation all numbers that
come in contact with Montgomery multiplication are simply allocated with l +2
bytes.

Appendix B Description of the Implemented Protocols

This appendix describes the protocols from [1] that we implemented. The tech-
nical description is for the coprocessor enabled applet. The changes for the pure
Java-Card applet are summarized at the end of each subsection.

B.1 Initialization and Personalization

Parameter setup Before starting the following points must be configured.

– The number k of attributes each applet possesses.
– The size of the RSA modulus n in bits, denoted with |n| in the sequal.
– Optionally the size of the public RSA exponent v, denoted with |v| in the

following. If not configured, |v| is derived from |n| using Lenstras estimations
on the security level of RSA keys [6].
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The following system parameters are computed once. If not further determined
the items are randomly chosen to satisfy the relevant conditions.

– The RSA modulus n of size |n|, where n = p q with p and q prime.

– The public RSA exponent v of size |v|, such that v is prime and coprime to
ϕ(n) = (p − 1)(q − 1), where ϕ is Euler’s totient function.

– The modular inverse of v with respect to ϕ(n), denoted with v−1 in the
following.

– The private system key x ∈ Z
∗
n (i.e., gcd(x, n) = 1) and the public system

key h = xv
mod n.

– k bases g1, . . . , gk ∈ Z
∗
n

– For the pure Java-Card applet, the Montgomery factor R with respect to n

(see Appendix A).

For each applet that gets initialized one generates k random attribute values
a1, . . . , ak ∈ Zv.

Applet initialization After the coprocessor enabled applet or the pure Java-
Card applet has been installed on a Java card the following protocol initializes
the applet. In the protocol description A denotes the applet and H the host
driver.

H −→ A : |v|, |n|, k

the applet allocates all data structures

H −→ A : n, h, g1, . . . gk, b, Πg, a1, . . . , ak, v, R

where b = 1 is the initial blinding of the card,

Πg, the precomputed products of the bases gi, and R

are only used on the pure Java-Card applet.

The card computes its blinded attribute expression A = bv
∏

gai

i

subsequently the resign protocol is run, whereby the attribute updates

are 0 and the signature check is left out on the host

For the pure Java-Card applet there are the following changes. In the second
step the values of h, g1, . . . , gk and b are transformed into their Montgomery
representation on the host before sending. The precomputed products Πg is an
array of 2k−1 elements containing the Montgomery representation of all possible
products of the bases gi, except for the empty product 1. On the coprocessor
enabled applet Πg is an array with one arbitrary element, because the Java-Card
protocol layer does not support empty arrays. The Montgomery factor R, which
equals the Montgomery representation of 1, is needed on the pure Java-Card
applet to initialize the accumulator for the simultaneous squaring multi-power
method.
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B.2 Resign protocol

The resign protocol is taken from [1, Section 4.2.2.]. When the resign protocol
runs as part of the applet initialization the signature (Sc, Sr) is not yet initialized
and therefore not checked in the first step.

A −→ H : applet id , A, Sc, Sr, where

applet id =

{

3 for the pure Java-Card applet

4 for the coprocessor enabled applet

The host checks the signature Sc
?
= H

(

A, Sv
r (hA)−Sc

)

and aborts the protocol if the equation does not hold.

H −→ A : α, û1, . . . , ûk,

where α ∈ Z
∗
n is the host commitment, and

ûi are the encoded attribute updates for

arbitrary attribute updates u1, . . . , uk such that

− v < ui < v and ûi =

{

v + ui for ui < 0

ui otherwise

the applet computes its new attributes a′
i = (ai + ûi) mod v

and the updated attribute expression A′ = bv
∏

g
a′

i

i

A −→ H : c = (S′
c + β3) mod v, where

S′
c = H

(

A′′, α βv
2 (hA′)β3

)

A′′ = βv
1A′

and β1, β2 ∈ Z
∗
n, β3 ∈ Zv are random

the applet additionally computes

q = (S′
c + β3) ÷ v (where ÷ denotes integer division)

b′ = β1b mod n

H −→ A : r =
(

α(hA′
h)c

)(v−1)
, where A′

h = A
∏

gui

i

A −→ H : acc, where acc =

{

true if rv = α(hA′)c

false if rv 6= α(hA′)c

if acc = true the applet computes S′
r = rβ2β

S′

c

1 (hA′)q

and atomically switches to use a′
i, b

′, A′′, S′
c and S′

r

instead of ai, b, A, Sc and Sr

In the preceding protocol H is a one-way hash function and ÷ denotes integer
division with the property b (a ÷ b) + (a mod b) = a for arbitrary a, b ∈ N. Our
implementation uses 160 bit SHA-1 for H .

The host does not have access to the attribute values and must therefore
compute its updated attribute expression A′

h in a different way. Both A′ and A′
h
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must be equal, otherwise the protocol fails. Note that the attribute updates ui

might be negative, so it might be necessary to compute modular inverses (with
respect to n) in the computation of A′

h.
The protocol will also fail if one of the attribute updates yields an under

or an overflow, that is if ai + ui < 0 or if ai + ui ≥ v. Therefore, the host
can only update those attributes where it knows something about the value. In
our implementation this problem is solved with an additional status protocol,
in which the applet sends all its data, including attributes and blinding, to the
host. In a real application such a status protocol must, of course, not exist.

For the pure Java-Card applet the protocol is identical, except that A, Sr, α

and r are transmitted in their Montgomery representation and the arguments
of the hash H are also in Montgomery representation (always with respect to
modulus n).

B.3 Gate Protocol

The gate protocol is taken from [1, Section 2.4.4.].

A −→ H : applet id , A, Sc, Sr, w, where the applet id is as before, and

w = βv
∏

gαi

i is the applet’s witness

with β ∈ Z
∗
n, α1, . . . , αk ∈ Zv randomly chosen by the applet

the host checks the signature Sc
?
= H

(

A, Sv
r (hA)−Sc

)

and aborts the protocol if the equation does not hold

H −→ A : γ ∈ Zv, the random challenge

the applet checks that indeed γ < v

A −→ H : r1, . . . rk, s, where

ri = (γai + αi) mod v

qi = (γai + αi) ÷ v

s = βbγ
∏

g
qi

i

the host accepts the proof if sv
∏

gri

i = Aγw

For the pure Java-Card applet the protocol is identical, except that A, Sr, w and
s are transmitted in Montgomery representation and the arguments of H are
also in Montgomery representation.


