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Abstract. In this paper, we propose a new technique that uses fault
injection to reverse-engineer a private block cipher implemented with an
unknown S-box. The private algorithm we wish to retrieve differs from a
known algorithm in the choice of the S-Box, which we find using a novel,
fault-injecting technique. The main idea is to consider the components of
the S-Box as the solutions of a linear boolean system, whose equations
stem from the faults injected, using existing fault models. We focus on
two well-known block ciphers, DES and AES, and prove it to be feasible
to retrieve the the S-Box for both cases. We present the fault models
used, the equations extracted from the faults injected, and analyse the
final results. Given the detailed analysis, the technique can be applied
with ease to most ciphers employing an S-box.

1 Introduction

According to Kerckhoffs’s principle, a cryptosystem should be secure even if
everything about the system except the secret key is public knowledge [9]. Even
though this became a fundamental principle of modern cryptology, it is moderately
common for companies and sometimes even standards bodies to keep the inner
workings of a system secret [1, 6]. We then talk about security through obscurity,
or black-box cryptography.

Under Kerckhoffs’s principle, cryptanalysis consists in retrieving the cipher
key. But when dealing with security through obscurity, the goal is now modified
to also retrieve information on the private algorithm. This is called reverse-
engineering. Nowadays, with the omnipresence of embedded cryptography, it has
become crucial to be able to perform attacks on electronic devices embedding
unknown cryptosystems.

Previous attempts at reverse-engineering unknown cryptosystems were either
through (electro-)optical means, such as the discovery of the MIFARE algorithm
[6], or through the use of side-channel analysis [11]. Side-channel analysis was
originally devised to find the secret key through the measurement of physical
characteristics of the chip such as power intake. Guilley et al. [7] employed
this technique to retrieve the internals of black-box ciphers. This is called the
side-channel analysis for reverse-engineering (SCARE) attack.

In this paper, we present a new type of attack employing the principle of fault
injection [2] to retrieve the unknown S-box of a black-box cipher. Fault injection
was originally devised to retrieve the secret key through injection of faults into



the chip executing the algorithm and observing the modified output. Our attack
injects faults into the chip, collects the output from the chip, performs analysis of
this data and finally converts the data into a set of equations in binary variables,
which are finally solved using Gaussian elimination to retrieve the S-box. This
new type of attack we call fault injection for reverse engineering (FIRE).

The rest of the paper is organised as follows. In Sect. 2, we describe the state
of the art, such as physical attacks of cryptosystems and linear systems solving.
In Sect. 3, we present a DES-based cryptosystem, and a FIRE attack on it. Then,
in Sect. 4, we describe an AES-based cryptosystem, and its corresponding FIRE
attack. Finally, in Sect. 5 we conclude this paper.

2 State of the Art

2.1 Physical attacks on cryptographic systems

Most of the cryptographic algorithms used in serious applications are supposed
to be secure against algorithmic attacks. However, they are implemented on
physical components, and hence become vulnerable against physicals attacks.
Once such algorithms are implemented, either on dedicated hardware or as
software on a micro-controller, the different physical properties of the algorithm
can be observed. Over the years, sophisticated attacks have been developed to
attack cryptographic devices through such observations.

Side-channel attack The physical implementation of a cipher may reveal useful
information about the secret key in an indirect way. Kocher in [10] and in
[11] published two novel attack techniques exploiting side channel leakage of
cryptographic devices. Computation requires time, consumes power and causes
electromagnetic radiations: all these are possible sources of information related
to the secret key. These techniques are powerful, as they allow to reduce the
complexity of a brute-force attack by several orders of magnitude. However, they
require physical access to the device to collect the necessary measurements.

Fault-injection attack Fault attacks is the active way of attacking the physical
implementation of an algorithm. During the proper functioning of the device, the
attacker perturbs it by injecting hardware faults which produce an erroneous (or
faulted) output. The attacker then exploits this to retrieve secret information.
As explained in [8], the most common ways to carry out such an attack are
manipulating the supply voltage or the the external clock, or applying laser or
X-ray beams.

The SCARE attack More recently it has been shown ([3, 5, 7]) that side-channel
attacks could be used to retrieve secret parts of private algorithms. This is
called side-channel attack for reverse-engineering, or simply SCARE. when a
side-channel is used to retrieve an S-box on a private block cipher such as DES or
AES, the attacker studies the transition y = SB(x⊕k). In a classical side-channel
attack, SB is known and we wish to retrieve k. In SCARE, we assume to know k
and wish to retrieve SB.



2.2 Solving linear boolean systems

If we consider an S-box as a boolean function fn→m (i.e. a boolean function
from {0, 1}n to {0, 1}m), we can split it into m and fn→1, called the components.
Each one of the components will be considered as a vector s ∈ {0, 1}2n , being
the solution of a linear system in 2n variables. Each one of the faults injected
brings a certain l number of equations (depending on the fault model), that
the component s must satisfy. This means that each component s is one of the
solutions of the system in {0, 1} of l equations:

A ·X = B. (1)

where A is a l×2n boolean matrix, and both X and B are vectors of 2n elements.

The equations are of the form
⊕2n−1

i=0 ai ·xi = bi. Let L be the set of solutions
of the system L = {s ∈ {0, 1}2n : A · s = B}. Let us note that

s ∈ L ⇔ s̄ ∈ L (2)

It stems from the fact that if α and β are boolean variables, then α⊕ β = ᾱ⊕ β̄.
This property will be important for the rest of the study, since the minimum
of candidates returned will be 2. To solve this linear system of equations, we
have used the Sage software [14] to perform the Gaussian elimination, but any
mathematical software is adequate for the job, as the matrices are typically quite
small.

3 The case of DES

We first give a description of a FIRE attack on a DES-like cryptosystem. Even if
the attack has already been shown by Biham & Shamir in [2], it gives us a good
foundation to proceed during the more complex case of a SPN such as AES in
Sect. 4.

The Data Encryption Standard (DES) was developed in the 1970s by the
National Bureau of Standards with the help of the National Security Agency. Its
purpose was to provide a standard method for protecting sensitive commercial
and unclassified data. IBM created the first draft of the algorithm, calling it
LUCIFER. DES officially became a federal standard in November of 1976 [12].
DES is a symmetric cryptosystem, specifically a 16-round Feistel cipher. It has a
64-bit block size and uses a 56-bit key. From this key, 16 sub-keys are created
and are used at each round. The input is split in two halves. The progression of
the cipher is described in Fig. 1.

The round function, applied to a 32 bits register R and a 48 bits round Key
K, F (R,K), consists in the succession of 4 sub-functions: first, E is an expansion
function applied to R which returns a 48 bits output. The key K is then XOR-ed
to E(R). S is the substitution function. It consists in 8 S-Boxes SB0, . . . ,SB7
each of which map a 6-bit input to a 4-bit output. A 32-bit permutation P is
finally applied to the output of S.
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Fig. 1. The DES cipher, a 16-round Feistel cipher. IP is a 64 bit permutation. The
round function applies F to the right half of the register, XORs the result to the left
half, and exchanges the roles of the halves.

We consider the fault model introduced by Biham and Shamir in [2]: it
assumes that the attacker is able to inject faults at the last round, round no. 15,
on the right register R15. We consider that the substitution function S has been
modified and kept secret. We then wish to retrieve SB0, . . . , SB7, the 8 S-Boxes
which compose it.

Let c = (L16, R16) be the correct and c? = (L?
16, R

?
16) be the faulty ciphertext,

resulting from the same plaintext m and secret key K. If we consider that the
secret key is not known but fixed to a certain value, we will not retrieve the exact
S-boxes, instead we will retrieve the function x 7→ SBi(x⊕ ki), where ki is key
input of the ith S-Box.



Without loss of generality, let us consider that the key is known for the attack,
hence we can ignore it for our present discussion. We thus have:

R16 = L15 ⊕ F (R15) = L15 ⊕ F (L16)

and R?
16 = L15 ⊕ F (R?

15) = L15 ⊕ F (L?
16).

hence we get:

R16 ⊕R?
16 = F (L16)⊕ F (L?

16)

R16 ⊕R?
16 = P [S(E(L16))]⊕ P [S(E(L?

16))]

P−1[R16 ⊕R?
16] = S(E(L16))⊕ S(E(L?

16)).

Since c and c? are known, the only unknown register, L15, disappears once
R16 is XOR-ed with R?

16. The intrinsic design of Feistel block-ciphers allows us to
have the knowledge of the fault injected, and its effect during the cipher, giving
us the difference at the input and output of the S-Boxes. We note ∆in and ∆out,
those differences:

∆in = E(L16)⊕ E(L?
16)

∆out = P−1[R16 ⊕R?
16].

where ∆in and ∆out are 48 and 32 bits long. However, if we focus on the ith

S-box Sbi for instance, we can consider ∆i
in and ∆i

out as 6 and 4 bits long. We
know x = E(L16)[6 ∗ i : 6 ∗ (i+ 1)], the 6 bits input of SBi during the unaltered
cipher, x? = E(L?

16)[6 ∗ i : 6 ∗ (i+ 1)], the 6 bits input of SBi during the faulty
cipher. We have the relation:

Sbi(x)⊕ Sbi(x?) = ∆i
out.

Our goal is to retrieve Sbi, which is a boolean function from {0, 1}6 to
{0, 1}4. Let’s consider it component-wise, i.e. as 4 functions from {0, 1}6 to {0, 1}:
(s0, s1, s2, s3). From each injected fault, we must have:

For j = 0, . . . , 3, sj,x ⊕ sj,x? = ∆i
out(j), (3)

where ∆i
out(j) is the jth bit of ∆i

out.
For each injected fault and for each component j, sj must satisfy the previous

equation. It is then added to the final system. We now have a distinguisher, we
can define Li,j,N as the set of candidates for the jth component of the ith S-box.
Considering N fault injections, giving us (xk, x

?
k, ∆out,k) ( k from 1 to N), we

have:

Li,j,N = {s ∈ {0, 1}64 such that ∀k, k ≤ N : sxk
⊕ sx?

k
= ∆i

out,k(j)}.

Simulating an error perturbing randomly one single input bit of an S-box
of DES, we reach the final set of two candidates mentioned at eq. (4) after



Fig. 2. Attacking component 0 of the first S-Box of DES: On the x axis, the number of
faults injected, on the y-axis the mean of #L1,0,x after 1000 tries. In the end, we only
have 2 candidates.

approximately 130 fault injections. Fig. 2 illustrates the mean progression of
#L1,0,N with 1000 experiments. This attack converges to the expected solution,
meaning that, since we have the property (2),

∃n0 such that ∀n > n0, Li,j,n = {sj , s̄j}. (4)

Note that in order to fully retrieve the 8 S-boxes, one has to test both candidates
for all the 32 components. This leads to an exhaustive search in 232, which is
trivially feasible.

4 The case of AES

AES is a widely used symmetric-key encryption by Daemen and Rijman [4],
adopted as a standard by the National Institute of Standards and Technology of
the US. It is based on a design principle known as a Substitution Permutation
Network (SPN). AES has a fixed block size of 128 bits and a key size of 128, 192,
or 256 bits. It operates on a 4× 4 array of bytes, termed the state (where 1 byte
= 8 bits). Most calculations carried out by the cipher are done in the finite field
of GF(28).

The AES cipher is specified as a number of repetitions of transformation
rounds, each round made up with 4 round transformations: SubBytes, Mix-
Columns, ShiftRows and AddRoundKey. Note that the last round is exempt
from MixColumns.

Without loss of generality, since we consider that the cipher key is known, we
set it to 0, and we also discard the final ShiftRows operation since it can trivially
be inverted. Hence we only consider operations MixColumns and SubBytes,
as explained below in detail.



MixColumns applies a linear transformation to a column of the state:

MixColumns



x
y
z
t


 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·

x
y
z
t

 ,
where the operations are performed in GF(28).

SubBytes is a non linear transformation which is applied to each byte of the
state. It is traditionally implemented as a S-box, which can be seen as a boolean
function SB from 8 bits to 8 bits. Note that SubBytes is a bijection.

SubBytes



x
y
z
t


 =


SB(x)
SB(y)
SB(z)
SB(t)

 .
In our attack, this function is unknown, and the goal is to retrieve it.

4.1 Fault injection

Let us assume that we are able to inject a fault on one byte of the block, just
before the last MixColumns, during the 9th round. The attack is column-wise,
meaning that we only care about the column on which the fault is injected.
For example, let us look at the first column of a regular cipher, from the last
MixColumns until the end of the cipher. We have:

α
β
γ
δ

 MC−−→ MC



α
β
γ
δ


 SB−→


x
y
z
t

 = c. (5)

Now, the same data is processed, but with a fault ε injected before the last
MixColumns. Fig. 3 illustrates the propagation of the error.

Round 9 Round 10

MixCol SubByte
Output

Fig. 3. Propagation of the fault on our simplified AES: we perturb a byte just before
the last MixColumns. The error propagates to the whole column.



We thus have:
α
β
γ
δ

 FI−→


α⊕ ε
β
γ
δ

 MC−−→ MC



α⊕ ε
β
γ
δ


 SB−→


x?

y?

z?

t?

 = c?. (6)

Now that we have a triplet (c, c?, ε). Let us examine how we could exploit
Fault Injection to extract information on SB. We start the attack from the
ciphertexts, we retrieving SB−1, which is exactly the same since SB is bijective
in SPNs.

We have, from eq. (5) and eq. (6):

SB−1(c)⊕ SB−1(c?) = MC



α
β
γ
δ


⊕MC



α⊕ ε
β
γ
δ




= MC



ε
0
0
0


 =


02 · ε
ε
ε

03 · ε

 ,
because MixColumns is linear. It translates into the system

SB−1(x)⊕ SB−1(x?) = 02 · ε
SB−1(y)⊕ SB−1(y?) = ε
SB−1(z)⊕ SB−1(z?) = ε
SB−1(t)⊕ SB−1(t?) = 03 · ε

. (7)

4.2 Translation of the FI into equations

Let us remind ourselves that SB−1 is a boolean function from {0, 1}8 to {0, 1}8.
Considering it component-wise, i.e. as 8 independent functions from {0, 1}8 to
{0, 1}:

SB−1 = {SB−10 ,SB−11 , . . . ,SB−17 } with SB−1i : {0, 1}8 7→ {0, 1}}.

Now, SB−1i can be seen as a set of 256 boolean variables:

SB−1i = {si,0, si,1, . . . , si,255}.

If we consider bit-wise the equations given in (7) then for a fault injected, we
know that, necessarily, for i = 0 . . . 7, SB−1i has to satisfy

si,x ⊕ si,x? = (02 · ε)i
si,y ⊕ si,y? = εi
si,z ⊕ si,z? = εi
si,t ⊕ si,t? = (03 · ε)i

. (8)

These four equations are to be manipulated according to the fault model, and
used to build the final system that is solved with Gaussian elimination to finally
give the solutions.



4.3 Random and unknown faults

First, we discuss the fault model that is close to the one presented by Piret and
Quisquater in [13]. The error is injected on the first byte of the state, just before
the last MixColumns. It is random and unknown. By adding lines of the system
(7), without any knowledge of the value of ε, we have:

SB−1(x)⊕ SB−1(x?)⊕ SB−1(y)⊕ SB−1(y?)⊕ SB−1(t)⊕ SB−1(t?) = 0
SB−1(x)⊕ SB−1(x?)⊕ SB−1(z)⊕ SB−1(z?)⊕ SB−1(t)⊕ SB−1(t?) = 0

,

since 03 · ε⊕ 02 · ε⊕ ε = 0. The operations are made on GF(28).
Each one of the 8 components of SB−1 has to satisfy these equations. Now that

we have removed ε, we can inject them into the system. Once solved, this system
returns all the satisfying candidates, including the eight solutions. Considering N
fault injections, giving us (ck, c

?
k) (k from 1 to N), we can define the distinguisher

LN for the attack of SB−1:

LN =

{
s ∈ {0, 1}256 such that ∀k < N,

sxk
⊕ sx?

k
⊕ syk

⊕ sy?
k
⊕ stk ⊕ st?k = 0

sxk
⊕ sx?

k
⊕ szk ⊕ sz?

k
⊕ stk ⊕ st?k = 0

,

}
.

It so happens that after n0 ≈ 400 faults injected, we have a constant set of
solutions S:

∀n > n0, Ln = S.

More precisely, the attack converges to a set S with 512 candidates. First we
describe in detail this set S, and then we discuss the possible conclusion of the
attack through exhaustive search.

To account for the 512 solutions, we consider S as an orbit of the 8 compo-
nents of SB−1: we have always SB−10 ,SB−11 , . . . ,SB−17 ∈ S. But we also have
(0, 0, . . . , 0) and (1, 1, . . . , 1) in S (they indeed satisfy all the equations brought
by the distinguisher), we then state that:

Proposition 1. u, v ∈ S ⇒ u⊕ v ∈ S

Proof. Without loss of generality, we shorten the definition of S to a single
boolean equation, which does not change with the real context. For instance:

S = {s ∈ {0, 1}256 such that sy ⊕ s?y ⊕ sz ⊕ s?z = 0}.

Now let u, v ∈ S.

uy ⊕ uy? ⊕ uz ⊕ uz? = 0 , and vy ⊕ vy? ⊕ vz ⊕ vz? = 0.

Then uy ⊕ uy? ⊕ uz ⊕ uz? ⊕ vy ⊕ vy? ⊕ vz ⊕ vz? = 0.

Then (u⊕ v)y ⊕ (u⊕ v)y? ⊕ (u⊕ v)z ⊕ (u⊕ v)z? = 0.

Finally u⊕ v ∈ S.



We now can define S such that:

S = {a0 · SB−10 ⊕ . . . a7 · SB
−1
7 ⊕ a8 · (1, . . . , 1), ai ∈ {0, 1}}.

We can remove from S the trivial solution (1, . . . , 1) and (0, . . . , 0): in fact, it
is mandatory for a SPN S-box to be bijective, and it would not be the case if
(1, . . . , 1) or (0, . . . , 0) was one of the components.

From this set, how can the full S-box be efficiently retrieved? We have 510
candidates that must be replaced into the correct position out of 8 possible
choices. A naive exhaustive search would lead to C5108 × 8! ≈ 271 possibilities.

However, as we have already noticed, ∀s ∈ S, s̄ ∈ S. We can form 255 groups
of elements of S, each of them including a candidate and its complement. For
an optimal exhaustive search, one has to select 8 of those groups, and then test
the 256 possibilities. This would lead to 28 × C2558 ≈ 257 possibilities to finish the
attack. This computational complexity is moderately high, but can be achieved
with a large set of modern GPUs and/or FPGAs, and is not out of reach of any
major organisation such as multinational companies or governments. However, we
also propose another solution by finishing the attack using the SCARE method.

4.4 SCARE conclusion of a FIRE attack

In this section, we propose a finishing of a FIRE attack when we are in the
context described in Sect. 4.3. We have a set S, of 510 candidates containing the
8 component of SB−1.

In order to use side-channel information to finish the attack, we use the curves
of the DPA-Contest [15] to find SB−1. The context is the following. We have

– N power traces corresponding of the functioning of the components with
known inputs/outputs/cipher keys.

– The set S of a reduced amount of candidates for the components of SB−1.
Here, 510.

It is well-known that the power consumption of components strongly depend on
the data processed, and more exactly the number of bit-flips completed. This
number is given by the hamming distance between a register at a time t and
t+ 1. We then talk about Hamming distance model. We study here the transition
during the last SubBytes of the AES chiper.

For every candidates s ∈ S, for every component j of SB−1, we compute
what would be the hamming distance between c (which is known) and the state
at the input of the last SubBytes, if we would have s = SB−1j . We then use a
distinguisher (Pearson’s correlation) in order to measure the dependence between
those hamming distances and the power traces.

On Fig. 4, the correlation traces resulting from the attack of the 7th component
by using SCARE. This means that we are looking for SB−17 amongst the 510
members of S. On the figure, by using 10000 traces, we clearly can identify SB−17

in red and bold, ¯SB−17 , the symmetric below, and the 508 bad candidates, giving
a correlation close to zero. An adversary able to perform fault injections on a



Fig. 4. SCARE on the 7th component of SB−1, with N = 10000 power traces. We have
the 510 correlation traces: on the x-axis the time samples of the power traces, on the
y-axis, the value of the correlation. We clearly identify here the solution (on the top)
and its complementary (on the bottom)

component is very likely to be able to get a campaign of acquisition of power
traces in order to conclude the attack this way. Hence it alleviates the burden on
the attacker of making the exhaustive search in 257 as munitioned at the end of
Sec. 4.3.

Note that the SCARE attack is feasible here since we have a very restricted
number of candidate for the solutions. When dealing with SCA, the number
of candidates to test is very important: 256 hypothesis to test when we want
to retrieve a key byte, but 228 hypothesis to test when we are looking for a
single component of SB−1. Here the FIRE attack carried out most of the job by
reducing the 22

8

to 510.
On Fig. 4, we have the results with N = 10000 power curves. However, from

N = 5000 curves (taken randomly from the ones available for the DPA Contest),
the attack is feasible, meaning that we are able to extract the solutions.

4.5 Results with various fault models and contexts

In this section, we present several other realistic fault models, or context allowing
us to perform a FIRE attacks.

Random and known faults Let us consider the strongest fault model: we are
able to inject a random and known fault during the cipher execution.
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Fig. 5. Attacking component 0 of AES S-Box inverse. On the x-axis, the number of
faults injected, on the y-axis the mean of #L0,x after 100 tries. In the end, we only
have 2 candidates.

The advantage with this model, is that, since we know ε, we are able to target
which one of the components of SB−1 we are attacking.

Considering N fault injections, giving us (ck, c
?
k, ε

k), k = 1, . . . N , we can
define the distinguisher Li,N for the attack of the ith component of SB−1:

Li,N =

s ∈ {0, 1}256 such that ∀k < N,

sxk
⊕ sx?

k
= (02 · εk)i

syk
⊕ sy?

k
= εki

szk ⊕ sz?
k

= εki
stk ⊕ st?k = (03 · εk)i

 .

This model, combined with the technique described in Sect. 4.2, allows us
to retrieve the full SB−1 in less than 180 faults injected. Fig. 5 illustrates the
progression of L0,N , simulating an error occurring randomly on the first byte of
the state just before the last MixColumns.

Stuck-at model It has been shown that it is possible for an attacker to force a
byte to a certain value, that it can choose. If we suppose that, just before the
last SubBytes, one can force the first byte to a given value τ :

α
β
γ
δ

 FI−→


τ
β
γ
δ

 SB−→


x?

y?

z?

t?

 = c?.



Hence he has access to x? which is equal to SB(τ). It leads to a trivial attack,
since with 256 accurate stuck-at injections, one can retrieve the full S-Box.

Note that even one single stuck-at injection, we get a lot of information to
bring into the system, if we decide do use different models during the attack.

In the case where it is not possible to inject a stuck-at fault at the input of
the last SubBytes, but that it can be done just before the last MixColumns:

α
β
γ
δ

 FI−→


τ
β
γ
δ

 MC−−→ MC



τ
β
γ
δ


 SB−→


x?

y?

z?

t?

 = c?.

In that case, even if we know the value of τ , α is assumed to be random. But we
have:

∃ε ∈ GF(28) such that τ = α⊕ ε.

It hence leads to the fault model presented at Sec. 4.3, just as if we would have
injected an unknown and random ε.

5 Conclusion

In this paper, we have introduced a new tool to reverse-engineer a private
algorithm. This new FIRE attack allows us to retrieve the S-Box of private
block-ciphers in a reasonable number of faults injected and under plausible and
existing fault models. For the sake of practical demonstration, we have carried
out the attack on two major ciphers, AES and DES, but the attack can be made
to work on almost any cipher containing and unknown S-Box. In the case of the
DES S-boxes, around 1000 Fault Injections are needed and a final exhaustive
search in 232 is necessary to fully retrieve all the 8 S-Boxes. For AES, under
the most plausible model, around 400 fault injections suffice and lead to a finite
set of 510 candidates. We can then either conclude the attack using exhaustive
search in 257, or perform a data acquisition campaign and finish the attack using
SCARE.
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