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Abstract—Motivated by growing demand for radio frequency
spectrum, spectrum regulators are laying the groundwork for
centralized, dynamic spectrum sharing systems that will enable
efficient access to spectrum for new wireless technologies. With a
database of spectrum user information, and an infrastructure of
spectrum sensors, these sharing systems will leverage cognitive
radio concepts to automatically identify suitable spectrum for
users. Whether incumbent users should provide information
directly to the database or rely on the sensor network for
detection remains an open question with implications for the
effectiveness of the sharing and the privacy of the users. Both
methods present the potential to explore a privacy-performance
tradeoff within the sharing system.

In this work we assess this tradeoff with both sensing and
interface obfuscation approaches in a spectrum sharing system.
We identify key design parameters in a formal model for the
sharing system architecture, and conduct a thorough simulation
study of a real-world use case to quantify privacy and perfor-
mance. While abstract models suggest sensing based solutions
should compare favorably with obfuscation heuristics applied to
the user interface, the performance of realistic sensor network
designs suggests that achieving a favorable privacy-performance
tradeoff with sensor networks may be significantly limited by
practical considerations.

I. INTRODUCTION

Dramatic growth in wireless applications and technologies,
such as cellular, Wi-Fi, and the internet of things, demands
increased access to radio frequency spectrum. Unfortunately,
desirable frequency ranges are limited, and there is no unen-
cumbered spectrum for new services. Further, replacing legacy
technologies is time consuming and expensive, meaning that
rapid introduction of a new technology requires improvements
to how we share spectrum.

How to best employ spectrum sharing technologies remains
an open question. Decentralized cognitive radio solutions face
challenges such as the ”hidden node problem,” and difficulty
with remediation of misbehaving devices [1]. Centralized
solutions have been introduced, offering potential efficiency
advantages and simplified RF devices [2]. In this setting users
interface directly with Spectrum Access Systems (SAS) which
maintain databases of spectrum policy and use information.

In the U.S., the Federal Communications Commission has
issued rulemakings to create a Citizens Broadband Radio
Service (CBRS) managed by dynamic SAS, opening the
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3550-3700 MHz band for access to new commercial services
[3], [4]. New entrants are expected to share the band with
incumbent systems, which will retain priority access. The
SAS will interface with spectrum users, and will also be
informed by an infrastructure of spectrum sensors, called the
Environmental Sensing Capability (ESC). The SAS is expected
to identify suitable protections to prevent harmful interference
to priority/primary users (PUs) which must be enforced by the
SAS when granting spectrum access to secondary users (SUs).

Government entities e.g., military radars, comprise the
PUs in CBRS. Incumbent users have raised concerns about
maintaining the privacy of their operations, suggesting that
some PUs should rely entirely on the ESC instead of sharing
information directly with the SAS [5]. The SAS would need
information such as locations, frequencies, time of use, and
susceptibility to interference, where any of these may be
considered very sensitive by the incumbents and should be
protected from exposure to a potential adversary. Privacy
may also be preserved for PUs communicating directly with
the SAS by obfuscating the information they provide. PU
privacy depends on the accuracy and precision of the user
data provided to the SAS as well as of the ESC estimation
capability. Coarse precision will require more conservative
access to the spectrum by SUs in order to avoid harmful
interference. As a result, there is a potential tradeoff between
the privacy of the PUs and the utility of the shared spectrum
that can be achieved by the SUs.

In this work we study the privacy-performance tradeoff in
terms of design options for the SAS and privacy strategies of
the PUs. We focus on inference attacks, i.e., adversaries that
attempt to learn information about the users without disrupting
the system. We leverage a SAS architecture and analytical
model to evaluate the SAS, validating and expanding on our
findings with a thorough simulation study of the CBRS use
case. As a result, we find that while ESC based solutions can
theoretically achieve good performance and privacy relative to
interface obfuscation mechanisms, when practical limitations
of sensor network implementation are accounted for, even
fairly simple interface obfuscation schemes achieve signifi-
cantly better performance and privacy. Further, the privacy and
performance of an ESC based system is determined largely by
the density of the sensor network deployment, which should be
anticipated to be a major cost factor. With a method to evaluate
sensing, interface obfuscation, privacy, and performance in the
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design and operation of a centralized spectrum sharing system,
we believe the results of this work will help to enable more
effective spectrum sharing, freeing bandwidth for use by new
wireless technologies.

The paper is organized as follows. Related work is reviewed
in Section II. A system model for the SAS, ESC, and user
interface is provided in Section III. In Section IV, we ana-
lytically investigate the utility-privacy tradeoff of sensing and
database systems. For the specific case of CBRS, we conduct
a thorough simulation study in Section V, followed by our
conclusions in Section VI.

Throughout this paper, we will use uppercase to denote
vectors, arrays, and their elements, and subscripts to index
the elements. Lowercase will denote scalar variables, where
subscripts are used to distinguish variables that are similar in
nature. Similarly, we use superscripts to distinguish related
arrays. Calligraphic font will be used to denote sets, and bold
face to denote random variables.

II. RELATED WORK

Privacy of spectrum sharing is studied in [6]–[11], but the
formulations are limited to SU-centric privacy and cannot be
directly extended to issues of PU privacy. PU privacy with a
SAS is considered in [12] where the authors assess strategies
for the SAS falsely denying SU resource assignments to pro-
tect PU privacy. This obfuscation strategy can be considered as
a special case of the more general SAS privacy framework we
present here. In [13]–[15], PU privacy preserving obfuscation
methods are considered against adversary inference attacks
based on observation of the SAS assignments, while in [16],
a protocol is presented for PUs and SUs to both preserve their
location privacy by randomly perturbing the information they
report to the SAS. These works do not consider a general
SAS that includes a sensing component, nor do the privacy
models address adversaries able to hack the SAS directly. This
precludes assessment of PU privacy in the CBRS setting and
a more general methodology is needed.

Spectrum sensing has received much attention in the lit-
erature. Many formulations on the subject of cognitive radio
assume sensing is conducted directly by SUs, which make
local decisions on how to access the spectrum [17], [18]. The
performance of an individual sensor is limited by any fading
along the interference path, while uncertainty in the thermal
noise floor of the sensors can also degrade performance of an
individual sensor [19]. Cooperative sensing techniques have
been proposed where multiple networked sensor measurements
are used to achieve more accurate detection, and may be
well suited for an ESC with an infrastructure of spectrum
sensors. Optimal determination from the sensor measurements
can provide increased robustness [20], [21], but at the cost of
communication overhead and complexity. As a compromise,
approximate approaches are employed to fuse measurements,
including hard decision voting methods and linear fusion [22],
[23]. One limitation of these approaches is that they consider
a binary PU state where either the PU is present or it is not.
This presents a challenge in extending these approaches to the
SAS setting, where multiple PUs may be operating, further
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Fig. 1. System Model.

motivating the more general system model we use to study
the privacy-performance tradeoff.

Machine learning techniques, where solutions are learned
from a set of training data have been considered in limited
cognitive radio and spectrum sharing settings [24], [25]. [26]
treated the sensing problem with a reinforcement learning so-
lution, but this requires deployment of sensors at PU boundary
locations to provide reliable feedback to support the learning
process. Since PUs are mobile and cannot be confined to a
fixed area, it is not clear that such a reinforcement learning ap-
proach can be applied. Machine learning has also been applied
to the sensing problem in [27], [28] where several machine
learning algorithms were evaluated for their effectiveness in
sensing incumbent users, but the issue of privacy was not
specifically included in these models.

In this work, we formulate a general SAS framework that
encompasses the ESC, database, direct user interfaces, obfus-
cation mechanisms, and appropriate metrics for performance
and privacy. We identify and study relevant design parameters
under an adversary inference attack model. Through analysis
and simulation, we show under what conditions different
implementations are most effective, and draw insights from the
observed characteristics of the performance-privacy tradeoff.

III. SYSTEM MODEL

Spectrum sharing with a SAS consists of a direct interface
with users, an ESC composed of a network of sensors, and a
process that determines spectrum assignments for SUs. Here
we describe an extension to the spectrum sharing system
model in [14] to include a sensing component. This system
is illustrated in Figure 1 and we describe each component in
the following sub-sections, deferring discussion of the privacy
model to Section IV. While the model is intended to be
generally applicable to spectrum sharing scenarios, to ensure
concepts are clear, we focus on a specific CBRS example
where the PUs operate military radars and the SUs consist
of cellular network operators1. Suppose the SU transmissions
are from the cellular user equipment (UE) to base station (BS)
receivers. BS transmissions to UEs are assumed to occur at
another frequency or time and can be treated analogously.

1CBRS also includes a tier of General Authorized Access users which can
be considered as a subset of the SUs in our model.
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A. User Interfaces
An SU requests an assignment via a connection that does

not rely on spectrum from the SAS by sending information on
its present location and parameters. We denote this information
for nSU SUs with the set X̃SU = {LSU , GSU ,P}. P
identifies the range of useful transmission powers, frequency
tuning ranges, and a range of useful bandwidths determined
by hardware limitations and application specific requirements.
SU locations are given by the set LSU ⊆ L, where L is
the set of all discretized locations in the considered region.
To allow the access system to take advantage of frequency
dependent scheduling, an SU may also send channel state
information for the links in the SU network, e.g., estimated
channel gains on the UE-to-BS transmission path, denoted by
the array GSU = [GSUi` ], where ` is the frequency channel
index and i is the index for the ith SU.

We will refer to the set of PU system and operational ground
truth parameters as X̃PU = {L̃PU , P̃PU , Ĩ, Λ̃}. L̃PU ⊆ L is
the true set of PU locations, PUs will operate with transmission
powers P̃PU , Ĩj is a harmful received interference power
threshold for the jth PU, and 0 < Λ̃j < 1 is a reliability
requirement for the PU, i.e., the maximum probability that
the threshold given by Ĩj can be exceeded. This reliability
parameter accounts for inherent uncertainty due to the ESC
detection process, any obfuscation strategies, and imperfect
SAS prediction of aggregate interference from the SUs. Some
or all of these parameters may be used as a basis for in-
formation communicated directly to the SAS database. We
denote X db = {Ldb, P dB , Idb,Λdb} as the set of potentially
obfuscated information received by the SAS from the PU.

B. Environmental Sensing Component
We denote the PU information potentially detectable by the

ESC with the set X̃ esc = {L̃esc, P̃PU} ∈ Xesc, where Xesc
is the set of all possible PU states. Here, L̃esc ⊆ L̃PU since
some PUs may be receive-only and undetectable by the ESC.
Other PU transmission characteristics may also be detected by
the ESC, e.g., waveform details, but for simplicity and brevity,
we will not include these aspects explicitly in our formulation.

Because the operations of the incumbent military radars
in CBRS are considered sensitive, SAS stakeholders have
proposed that sensing systems should not enable precise
geolocation of PUs [29]. Instead, sensors in the system should
be limited to detecting received signal strength, and should
not include the use of directional antennas to support angle of
arrival estimation, nor the use of precise timing information
that would support time and frequency difference geolocation
techniques. With these restrictions, the ESC in SAS will
consist of a network of energy detectors.

A total of nesc energy detectors are deployed in the region
to detect PUs. We assume quiet periods of duration ν are
scheduled where no SUs are granted access to the spectrum
and measurement of the PU transmissions is only affected by
the sensor bandwidth b and thermal noise ηesc. The energy
detected by the sensors, are denoted by the random vector
S ∈ Rnesc

+ where the randomness follows from an additive
white Gaussian process for modeling the sensor thermal noise.

The sensor measurements in S are sent to a centralized node
for estimation of the PU state, denoted X esc = {Lesc, P esc}.
The ESC interpretation problem was studied in [28] and found
to be impractical to solve optimally. For our CBRS case study,
we will implement and compare machine learning solutions
for an ESC, which [27] and [28] found to be effective for
spectrum sensing.

We partition the region into discrete sensing cells. For
any ESC implementation, we can estimate the probability of
missed detection, denoted pmd, i.e., the probability that the
ESC fails to detect a PU in a particular sensing cell, as well as
the probability of false alarm, denoted pfa, i.e., the probability
that the ESC detects a PU present in a sensing cell where
no PU is actually operating. These error rates will depend
on the physical parameters of the sensor network, increasing
with thermal noise ηesc and decreasing with the number of
samples, i.e., the time-bandwidth product bν, as this allows
the effect of the noise to be averaged out. The error rates will
also decrease with higher density sensor deployments, as this
will tend to result in more sensors nearby the PU, receiving
the PU transmission with high signal-to-noise power ratio, γ.

C. SAS Assignments to SUs

The SAS manages nc frequency channels and assigns dis-
crete power levels over discrete time slots, where the duration
of these slots are chosen as a trade between efficiency and
complexity of the system. Assignments will protect nPU
PU locations identified in X db and in X esc. The SAS will
assume a propagation model with uncertainty when predicting
channel gains between SUs and detected PU locations, i.e.,
GPU = [GPU

ij` ] ∈ RnSU×nPU×nc is the random array for
the channel gains between each PU (e.g., radar) and SU
device (e.g., UE) with indices `, i and j corresponding to
the frequency channel, the SU and the PU respectively.

For each time slot, the SAS will allocate spectrum to
SUs to maximize some utility function subject to robust
constraints protecting the PUs from harmful interference. A
SAS assignment function f() should return maximum trans-
mit power allocations for each SU-channel pair as an array
PSU = [PSUi` ] ∈ RnSU×nc

+ such that

Pr

(
nc∑
`=1

nSU∑
i=1

PSUi GPU
ij` ≥ Idbj

)
≤ Λdbj (1)

A power assignment of zero excludes an SU from transmitting
in the corresponding frequency channels during this time
slot. In this way, f() acts as an admission control, channel
assignment, and power assignment function. The selection of
f() as well as any obfuscation involved in the reporting of
X db and X esc will affect the utility of the spectrum for the
secondary users and the primary users’ privacy.

Identifying solutions to (1) is non-trivial. For the purpose
of this paper, we will offer a general methodology, but when
a specific form for f() is called for in the following results
and ESC evaluations, we leverage the approach in [28], which
accounts for uncertainty in both the channel state information
and the sensor detection. The utility U() may be left general,
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addressing considerations including throughput, fairness and
multiple access among SUs. In the remainder of this work,
we take the sum-rate of the SUs as our metric for SU utility,
assuming fairness between SUs is handled external to the SAS,
e.g., by the cellular network operator.

IV. PRIVACY ANALYSIS

Here we define the adversary threat model, identify metrics
to quantify privacy, and specify obfuscation mechanisms in
the SAS model. This will allow us to formally define the
SAS design problem for use both in abstract analysis and for
specific application to spectrum sharing in CBRS.

A. Adversary Threat Model

An adversary will observe the spectrum sharing system,
with observations denoted by the set Y . Modeling the PU
state as random, an adversary makes an inference attack by
estimating pX̂ (X̃PU = X|Y), a distribution for the PU state
given the observations. Adversaries may have different levels
of access to information in the sharing system. In this work,
we will specifically consider the case where the adversary has
direct observation of the SAS through hacking or other means.
Thus the adversary observes Y = {X db, X̃SU , S}, i.e., the user
communications with the SAS and the ESC measurements.

Other adversary models could be considered, e.g., an ad-
versary might observe the assignments granted by the SAS to
SUs. Related works have already shown that SU assignment
obfuscation strategies can preserve PU privacy effectively
under this threat model [14], and such strategies are equally
applicable to sensing and interface obfuscation approaches.
Similarly, an adversary that is able to hack the PU systems
via the interface with the SAS might also be considered. In
this case, privacy will be totally lost for any PU with their
true information, X̃PU , stored on their system, corresponding
to a cyber security challenge beyond the scope of the privacy
analysis in this paper. For PUs that only store obfuscated
parameters on their system or else rely on the ESC instead
of reporting their information, the adversary does not gain
any additional information by hacking these PU systems,
corresponding to a case of the threat model we consider here.

B. Privacy Metrics

We measure PU privacy in terms of the quality of the
adversary estimate given its observation of the SAS. We focus
on the issue of location privacy for our case study in Section
V, though time and frequency use privacy could be treated
analogously. Specifically, we apply average distance error and
search area metrics from [30].

The average distance error between the true PU locations
and the adversary estimate is computed by partitioning the
region into ñPU sub-regions such that each partition consists
of the set of cells from the original region that are closest to
one location in X̃PU . Denote these sub-regions Li for i ∈
{1, ..., ñPU} corresponding to the indices for the PU entries

that generate each sub-region. Let `i be the true location of
the ith PU. Then the average distance error is given by

1

nPU

nPU∑
i=1

∑
`∈Li

‖`− `i‖ p`(`|Y)∑
`′∈Li p`(`

′ |Y)
, (2)

where p`(`|Y) is the adversary estimated probability that any
arbitrary location ` ∈ L is contained in the true PU set L̃PU
given the observations Y . The norm is Euclidean distance.

The area the adversary would need to search to reliably find
the PUs, given the observations, serves as a second privacy
metric. Let each discrete cell in the region have area α. For
an estimate X̂ , the search area is∑

`∈L

α1

(
min
ˆ̀∈X̂
‖`− ˆ̀‖ ≤ max

`i∈L̃PU
min
`∈X̂
‖`− `i‖

)
, (3)

where 1() is the indicator function. Both the average distance
error in (2), and the search area error in (3) offer an intuitive
measure of the PU privacy loss. Either metric can potentially
be tied to actual PU operator requirements, depending on the
specific threat(s) of concern to that operator.

C. Obfuscation

The effectiveness of adversary inference attacks can be
limited by two obfuscation mechanisms in the SAS architec-
ture. First, sensor measurements are noisy. Even an optimal
estimator will experience missed detections and false alarms,
introducing uncertainty for the adversary. Privacy will depend
on the physical parameters of the deployed sensor network.
Second, the PU system may apply a random obfuscation
function, translating X̃PU to X db. This function may add false
PU entries, introduce missed detections and false alarms, as
well as add random noise to the true PU values.

Let gESC and gPU be functions modeling these obfuscation
mechanisms. Also, let h() be a function to compute a chosen
privacy metric, e.g., average distance error. To quantify the
effectiveness of the obfuscation methods, we can view the
impact on SU utility and PU privacy in the context of a formal
optimization over a time horizon of t time slots, i.e.,

max
gESC ,gPU

E{h(Y1, ...,Yt, (X̃PU )1, ..., (X̃PU )t)} (4a)

subject to E{U((PSU )1, ..., (PSU )t, GSU ,P)} ≥ ct
(4b)

(X esc)τ = gESC((X̃ esc)1, ..., (X̃ esc)τ ) (4c)

(X db)τ = gPU ((X̃PU )1, ..., (X̃PU )τ ) (4d)

(PSU )τ = f((X db)1, ..., (X db)τ , (X esc)1, ...
(4e)

..., (X esc)τ , X̃SU ) (4f)

Pr

(
nc∑
k=1

nSU∑
i=1

(PSU
i )τGPU

kij ≥ Idb
j

)
≤ Λdb

j

(4g)
1 ≤ j ≤ nPU , 1 ≤ τ ≤ t. (4h)

Problem (4) maximizes the expected PU privacy over the
obfuscation functions, subject to (4b), a constraint on the
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expected utility of the SU network exceeding threshold ct,
and to (4g), which ensures the interference to the PUs is held
to a sufficiently low level.

Given that the optimization is over two functional spaces,
even with limiting assumptions, solving problem (4) ana-
lytically is non-trivial and beyond the scope of this paper.
However, we can apply known obfuscation heuristics and
compare SAS designs rigorously in this framework. Further,
the analytical formulation allows us to make a key observation
about the role of the ESC. For any solution to (4) that relies
solely on the implementation of an ESC to detect location
information, i.e., where Ldb = ∅, there exists another solution
that achieves equal or better privacy without degrading SU
utility which does not employ an ESC at all, i.e., where
gESC always returns an empty set. Thus, choosing to rely on
detection by the ESC rather than direct communication with
the SAS database cannot offer improved privacy or SU utility.

V. SIMULATION RESULTS

We now approximate solutions to Problem (4) in a case
study of SAS designs for the CBRS setting, quantifying
privacy and performance for implementations relying on either
an ESC or PU interface obfuscation.

A. System Setup

CBRS regulations specify two kinds of PU radar with
parameters in [31]. Ground based PU radars operate within
specified protection zones, while ship-borne radars will require
interference protection from SUs in coastal areas. We assume
a 20 km by 20 km region where a network of cellular SUs
operate. SU BSs are deployed on a grid with a 2.5 km inter-site
spacing, a 5 MHz receive bandwidth and -101.5 dBm thermal
noise. A cellular network of this size could support hundreds
of UEs transmitting simultaneously, but for ease of simulation,
we deploy 40 UEs randomly in the region, finding this does
not impact the relative performance between different SAS
designs. ESC sensors are deployed on a grid with variable
inter-sensor spacing. The sensors measure the full 5 MHz
cellular bandwidth. An SU quiet period of variable duration
is scheduled every 30 seconds, where the sensors integrate
measured energy and the ESC attempts to estimate the PU
state. Figure 2 plots an example topology with a track for a
ship-borne PU radar moving due north, 5km off the coast from
the protection region.

Ground based PUs are assumed to transmit with +30 dBm,
ship-borne PUs transmit with +60 dBm, and SU power assign-
ments from the SAS are in the range -40 dBm to +24 dBm,
corresponding to typical UE transmit powers. A breakpoint
model [32] is used for mean channel gain with a freespace
model out to the breakpoint, and a path loss exponent of 4
applied beyond the breakpoint. The PUs, BSs, UEs and sensors
are placed at heights of 15, 15, 2 and 3 meters respectively. We
assume log-normal shadowing with a standard deviation of 10
dB. PU receivers are assumed to have a harmful interference
power threshold Ĩ = −114 dBm. For SU utility, we assume
sum-rate throughput, computed as the sum Shannon capacity
of all SU assignments.

B. Machine Learning for ESC Estimation

For the ESC estimation problem, we leverage the machine
learning library in MATLAB to experiment with Support
Vector Machines (SVM), ensembles of decision trees, and
logistic regression methods as proposed for spectrum sensing
in [28]. To identify suitable parameters for our models, train
our machine learning classifiers, and compare methods, we
generate a set of training data with 12,000 observation-label
pairs, {S, L̃esc}, in the training set. The first 10,000 pairs
are used to train the models while the remaining 2,000 are
used to verify that the models generalize beyond the data
they are trained on. Each training sample is generated with
an independent, identically distributed topology. Because the
number of potential classes described by L̃esc is very large, we
partition the region into a grid of sensing cells, and separately
train a classifier for each sensing cell.

In Figure 3, we plot the performance of ESC estimators
based on a sensor grid with 2 km inter-sensor spacing, a 2 km
sensing cell resolution, and observations based on the last 8
measurements of the nearest 20 sensors. True detection rates
are plotted against false alarm rates as the so-called receiver
operating characteristic (ROC), where the achieved rates are
adjusted by selection of a decision threshold for each method.
The machine learning approaches include logistic regression,
two SVMs, one with a linear kernel and one with a Gaussian
kernel, and three decision tree ensembles, where ensembles are
produced via bagging, adaptive boosting, or random subspace
sampling. A hyper-parameter search was conducted for each
approach, and the results shown correspond to the hyper-
parameters yielding the largest area under the ROC curve.

The linear SVM and logistic regression implementations
clearly outperform the other methods. This holds for inter-
sensor spacings we examined from 2 km to 10 km. On a
PC with a 2.2 GHz processor, the boosted ensemble, random
subspace ensemble, and SVM with the Gaussian kernel com-
pute their classifications in hundreds of microseconds, and the
remaining methods require only tens of microseconds. With
its combination of speed and accuracy, we select the SVM
classifier with a linear kernel and implement it as our ESC
estimator in the CBRS case study.
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C. Sensing Performance

1) Ground-based PU radar: First we consider a scenario
with a ground-based PU radar operating at a random location
in the 20 km by 20 km region, which relies on the ESC
to detect its location. Figure 4 plots the sum-rate utility of
the SU network versus our two privacy metrics. Operating
points are plotted for different sensor network designs, where
each operating point is averaged over 100 random topologies
with 20 minutes of simulated SAS operation. We consider an
integration time ν of either 20 or 200 microseconds achieving
a time-bandwidth product (bν) of 100 or 1000 respectively.
We select a thermal noise power (ηesc) of -100 dBm or -110
dBm, and conduct the ESC estimate based on either the last
4, or last 12 measurements (tw) of the nearest 20 sensors to
each sensing cell. The sensing cells have a 2km resolution, and
we consider inter-sensor spacings of 2km, 3.3km, 4km, 5km,
6.6km, 10km, and 20km. Note that the inter-sensor spacings
are not explicitly labeled, but increasing sensor density moves
along the points in the figure from right to left, increasing the
achieved SU utility while sacrificing PU privacy.
Findings: The utility-privacy tradeoff is relatively linear, with
achievable utility in the range 2 to 12 Mbps sum-rate. Privacy
can be selected in the range of 3 to 6 km average distance

35 40 45

Search Area (%)

40

45

50

55

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

d
ship

=5km

d
ship

=15km

8 9 10 11

Avg. Distance Error (km)

40

45

50

55

Fig. 5. PU Ship Radar and Sensing Utility vs Privacy

error, or, with respect to search area, to between 2 and 45%
of the area of the original region. In this scenario, the received
radar signal to noise ratio is high at the sensors, such that the
impact of thermal noise and time-bandwidth product on the
accuracy of the ESC and adversary estimations is small in all
cases. In contrast, the effect of the random shadowing on the
channel gains is more significant, and is mitigated with more
independent observations, either from an increased density of
sensors, or more samples in time.

2) Ship-borne PU radar: Considering the case of a ship-
borne radar moving north to south along the coast as in Figure
2, we plot the achieved privacy-utility tradeoff in Figure 5,
considering sensor designs with -100 dBm thermal noise and
a time-bandwidth product of 100. We examine one case where
the ship is 5 km off the coast, and another where the ship is
15 km off the coast. The sensors are assumed to be deployed
on land in the protection zone where the SU network operates.
The ESC attempts to determine the PU state with a sensing
cell resolution of 2 km over a 25 km square region of ocean
closest to the SU network.
Findings: Linearity of the privacy-utility tradeoff roughly
holds here. SU throughput is increased for the scenario with
the ship further from the SU network, as expected, but it is
somewhat surprising that the privacy is decreased. The large
kW transmitter of the closer PU produces high signal-to-noise
ratios at all sensors. The adversary can easily estimate the
location of the PU, but is highly uncertain about the potential
for other PUs that might be operating. Thus there are many
potential PU states that may have produced the sequence
of observations. PUs could be effectively hidden behind the
high signal-to-noise ratios of the close PU. Since our metrics
quantify the ability of the adversary to estimate the PU state
over the entire region, the closer ship case appears to have
relatively good privacy. Applying another metric tailored to
the ability of an adversary to estimate any one PU would
suggest much poorer privacy. For the ship 15 km off the coast,
the system is able to conclude that no PUs can be operating
near the coast, and is able to estimate that specifically one
PU is operating. Even in this case, the most accurate sensing
deployment is only able to estimate the PU location with an
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average distance error of 7 km, and a search area that is 30%
of the size of the original protection region.

D. Interface Obfuscation Performance

Now consider PUs that provide obfuscated location infor-
mation directly to the SAS. We employ three obfuscation
strategies. In the first, we artificially impose missed detections
on the input by omitting any PU entries from the information
provided to the SAS with a fixed probability. Second, we vary
the resolution of the information reported to the SAS, i.e.,
rather than reporting that a PU is at a specific location, the
PU reports that it is contained within a square area. Third,
we randomly add a fixed number of false PU entries to the
information communicated, and maintain those entries over
the course of the simulation.

1) Ground-based PU radar: The privacy-performance
tradeoff of the selected obfuscation strategies is shown in
Figure 6 for the ground PU radar. Artificial missed detection
probabilities and reporting resolution are labeled explicitly,
while the number of false entries is not labeled, but correspond
to the operating points along each curve, with zero false entries
on the far left, and an increasing number of false entries as
we observe operating points to the right.

Findings: Notably, there is a knee in the characteristics
for search area privacy, where additional false entries have
a reduced impact on the throughput of the SUs relative to
the first few false entries. This is intuitive since the first few
are likely to cause many SUs to switch to an interference
constrained mode, while additional entries find SUs already
operating at reduced powers due to interference constraints
from the earlier entries. Also, artificial missed detections
have a negligible effect on privacy, particularly when a larger
number of fake entries are included, and the increased risk
of harmful interference to the PUs may not be justifiable. In
terms of average distance error, the privacy-utility tradeoff is
approximately linear out to a 6 km average distance error.
At this point, additional false entries have little impact on
SU throughput or average distance error. Finally, reporting
resolution is found to have a substantial impact on the privacy-
performance tradeoff, where a coarse resolution substantially
reduces the throughput but also achieves higher privacy, par-
ticularly in terms of the search area privacy.

2) Ship-borne PU radar: Findings: The characteristics
of the privacy-performance tradeoff are shown in Figure 7
where we apply a 2 km reporting resolution. Note here that
the ship operating 5 km off the coast does not have better
privacy than the ship operating 15 km off the coast as we saw
in the sensing case, since the high power transmission does
not affect the interface obfuscation strategies. Addition of fake
entries does not significantly degrade the throughput in the 5
km case since the random placement of the entries is likely
to be further from the shore. The 5 km ship does appear to
offer a higher achievable average distance error, but we find
this is an artifact of the chosen PU operating region, where
the 5 km ship operates near the region edge, and the 15 km
ship operates closer to the center.
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E. Interface Obfuscation Versus Passive Sensing

In Figure 8, we compare the sensing and interface obfusca-
tion approaches directly, with the ground-based radar scenario
on the left, and the ship-borne scenario on the right. Both plots
appear consistent with our finding in Section IV, i.e, for any
sensing system design, we can find an interface obfuscation
strategy that performs at least as well. In fact, in the ground
radar scenario, we find that interface obfuscation significantly
outperforms sensing, where the same level of privacy can
be maintained while offering the SU network nearly double
the sum-rate. While not as dramatic, interface obfuscation
outperforms sensing in the ship-borne scenario as well.

We find that none of the sensing designs can offer through-
put on par with the interface obfuscation strategies. This results
from the difficulty in designing and modeling a sensing system
that is accurate enough to offer high SU utility while also
maintaining interference protection for the PUs. The most
effective methods to improve sensing accuracy, i.e., higher
densities of sensors and longer histories of observation, will
drive the real-world complexity and cost of deploying sensor
networks. In particular, deploying very high densities of energy
detectors may present a prohibitively high cost since each
sensor will require acquisition of hardware, real-estate to host
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the sensor, electrical power, and a communication link back to
the ESC. On the other hand, interface obfuscation strategies
are all easily implementable in software, and the primary cost
driver is the implementation of the interface itself.

Finally, consider the flexibility of interface obfuscation
versus sensing. The performance of a sensing system is largely
dependent on hardware implementations, limiting the potential
to adapt to evolving technologies and operational requirements
employed by PUs and SUs. Machine learning sensing es-
timation also presents a potential challenge for operational
flexibility because such approaches are only effective when
the training data accurately reflects the real-world operational
environment. Any changes to the PU system hardware or oper-
ational behaviors may require retraining of the ESC estimators.
Alternatively, interface obfuscation strategies can potentially
be adapted on the fly, with independent PUs having the ability
to dial in their own level of required privacy.

VI. CONCLUSIONS

We have modeled privacy and performance of centralized
spectrum sharing systems, encompassing passive sensing and
interface obfuscation with spectrum users. With abstract anal-
ysis, and through specific assessment of a practical sharing
scenario, we found that practical interface obfuscation can
perform at least as well as any theoretical passive sensing
system based on an adversary that has hacked into the sharing
system directly, and may significantly outperform realistic
sensing system designs. This work can help to inform and
enable the implementation of spectrum sharing systems that
jointly satisfy user utility and privacy requrements.
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