WONS 2024 - 19th Wireless On-demand Network systems and Services Conference

FedCAM - Identifying Malicious Models in
Federated Learning Environments Conditionally to
Their Activation Maps

Reda Bellafgira, Gouenou Coatrieux, Mohammed Lansari, Jilo Chala

IMT Atlantique
INSERM UMR 1101 Latim
Brest, France
Email: {reda.bellafqira, gouenou.coatrieux, mohammed.lansari, chala-tura.jilo} @imt-atlantique.fr

Abstract—Federated Learning (FL) is a machine learning
paradigm enabling collaborative model training across multi-
ple participants and a server with decentralized data while
maintaining privacy. However, FL is susceptible to adversarial
poisoning attacks where some malicious participants may fail the
convergence or change the behavior of the model under some
conditions. This paper introduces FedCAM, a robust framework
designed to detect and exclude malicious model updates in
FL. FedCAM uniquely utilizes Activation Maps (AMs) from
representative data samples (a trigger set), unlike other methods
relying on surrogate vectors of model parameters. It leverages a
conditional variational autoencoder (CVAE), conditioned on the
trigger set’s label class, to evaluate the reconstruction error of
geometric median normalized AMs. FedCAM dynamically deter-
mines the decision threshold for each round based on CVAE’s
error, proving more effective in detecting poisoning compared to
existing methods, as demonstrated by our experiments on the
IID MNIST dataset. This approach ensures efficient detection of
malicious updates in every FL round.

Index Terms—Deep Learning Model, Byzantine Attack, Poi-
soning Attack, Auto-Encoder

I. INTRODUCTION

Federated learning (FL) represents a solution for training
a global model between remote clients while ensuring the
confidentiality of their private data [1]-[3]. In this framework,
a central server initiates a global model and transmits it to
a group of clients for training purposes. Subsequently, the
clients conduct local training of the global model on their
dataset. To preserve data privacy, they employ techniques such
as differential privacy [4] or homomorphic encryption [5], and
then transmit the updated global model back to the central
server. Thereafter, the central server aggregates these updates
using methods such as FedAvg [6], KRUM [7], GeoMed [8],
SCAFFOLD [9] and FedProx [10] before sending the updated
global model to clients. This iterative process continues until
the global model is trained.

This work was partly supported by the Inserm industrial chair CYBAILE
and two French government grants managed by the Agence Nationale de la
Recherche under the France 2030 program, bearing the references ANR-22-
PESN-0006 (PEPR digital health TracIA project) and ANR-22-PESN-0014
(PEPR digital health SSF-ML-DH project), respectively.

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

49

Even though such an FL process ensures the privacy of
the client’s data, mainly because the central server does not
have access to local data samples [11], its decentralized nature
renders it susceptible to certain attacks, especially poisoning
attacks. In these attacks, malicious clients can introduce cor-
rupted samples during the training phase to alter in a given
way the performance of the machine learning (ML) model.
In this paper, our focus is directed towards two distinct types
of poisoning attacks, specifically the Byzantine attack and the
Targeted Model Poisoning Attack (TMPA). A Byzantine attack
consists of arbitrarily modifying the updates sent by clients,
to degrade the performance of the global model or even cause
the learning phase to fail [12]-[14]. The main objective of
a TMPA is to misclassify a pre-selected set of inputs [15]
taking advantage of the lack of transparency in client updates.
Thus, the development of an aggregation method capable of
detecting and removing malicious updates in time remains a
significant challenge to the practical implementation of FL.

A. Related Work

The domain of Byzantine-robust federated learning has
attracted considerable attention. The majority of existing litera-
ture including [7], [8], [16], has focused on extending stochas-
tic gradient descent to defend against Byzantine attacks. Nev-
ertheless, these aggregation strategies are not efficient when
confronting TMPA [17], [18].

Regarding TMPAs, several proposals make use of Vari-
ational Autoencoders (VAE), renowned for their anomaly
detection capabilities. These methods use VAE reconstruction
error as a probabilistic anomaly measure, offering a more
objective score than traditional autoencoder-based and prin-
cipal components-based anomaly detection. Specifically, Li et
al. [17] proposed a VAE-based defense framework over local
model updates, demonstrating significantly larger reconstruc-
tion errors for malicious updates compared to benign ones.
Nonetheless, this approach requires VAE to be trained on
normal instances to achieve good defense performance under
specific malicious attacks, such as same-value attacks. This
is a strong assumption in real applications, considering the

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

difficulty in detecting poisoning attacks by design. To enhance
TMPA defense, researchers have also explored Conditional
VAE. FedCVAE [18], a defense framework that does not
require training to detect malicious client updates. To do so,
when the central server receives local updates from clients,
it computes and normalizes a surrogate vector for each client
model using the Geometric Median (GM). Surrogate vectors
close to the GM have values near zero, contrasting with those
far from the GM. These normalized vectors are then inputted
into the CVAE, conditioned on the current round number in
the FL training. As the CVAE is not pre-trained, inputs near
zero yield reconstruction errors close to zero, and vice versa.
However, the fact that this method relies on surrogate vectors
for model parameters complicates the detection of certain
attacks, such as backdooring or others that slightly modify
the model parameters, as we will see in Section IV.
Methods like FedGuard [19] follow a different strategy to
these approaches. In FedGuard, at each round, the server
distributes the global model and a CVAE the participants
both train on their local data. Clients return to the server the
trained global model and the CVAE decoder only. The server
then used the CVAE decoder to generate synthetic datasets to
audit each client’s model performance directly on the global
learning task. Models with low performance are excluded from
the aggregation. While FedGuard shows promise, it incurs
significant communication overhead and demands extensive
client resources, posing scalability challenges. Additionally,
clients’ data privacy could be a concern, as the synthetic data
generated could inadvertently reveal sensitive information.

B. Contribution

To address the above issues, we propose a novel anomaly
detection framework: FedCAM. Different from the previous
approaches that focus on clients’ model updates or surrogate
vectors, FedCAM makes use of the activation maps (AMs) of
a hidden layer obtained for a given set of trigger samples [20].
These AMs are fed into a CVAE conditioned on the labels of
the trigger samples, to effectively detect and reject malicious
updates at the server level. Our primary hypothesis is that in
FL models, a poisoning attack influences not only the model
parameters but also the distribution of its AM.

Subsequently, it normalizes the AMs of all selected clients
using a geometric median. Then, it evaluates the reconstruction
errors using the CVAE, with the trigger set labels serving
as a conditional factor. The server then employs FedAvg for
aggregation, applying it to non-malicious updates. As we will
see, AMs normalization is at the basis of Byzantine attack
detection while TMPA identification mostly relies on CVAE
and its condition, especially in the case of backdooring. In our
experiments, We tested our method under Byzantine attacks
and TMPAs when 10% or 30% of all the clients are attackers,
a common hypothesis in FL. The results show that our methods
converge rapidly and stably on an IID dataset.

The basic principles of our FedCAM framework are as
follows. Before initiating the training process, the server uses
the initial global model to compute the AMs of one of its

50

hidden layers for a given subset of test images, i.e. the
trigger set. Then it normalizes these AMs using Geomed (for
geometric median) and trains a CVAE model conditioned by
the trigger set sample labels. During each FL training round,
the server calculates the geomed normalized AMs for each
client-updated model using the trigger set. It next evaluates
the AMs CVAE reconstruction error to decide whether a client
model is benign or not. The server then employs FedAvg for
aggregation, applying it to non-malicious updates. As we will
see, AMs normalization is at the basis of Byzantine attack
detection while TMPA identification mostly relies on CVAE
and its condition, especially in the case of backdooring. In our
experiments, We tested our method under Byzantine attacks
and TMPAs when 10% or 30% of all the clients are attackers,
a common hypothesis in FL. The results show that our methods
converge rapidly and stably on an IID dataset.

The contributions of this paper are summarized as follows:

o We propose a CVAE-based detection framework named
FedCAM, which can effectively detect and remove ma-
licious model updates based on the combination of the
AMs distribution of a trigger set and their labels as CVAE
conditions.

o We evaluate the performance of FedCAM on IID feder-
ated datasets under Byzantine attack and TMPA.

o We compare the convergence rate of FedCAM and Fed-
CVAE [18], and the results demonstrate the superiority
of the proposed model on the backdooring attacks.

II. BACKGROUD

In this section, we review the basics of federated learning
(FL) and autoencoders. These concepts are key ideas used in
anomaly detection.

A. Federated Learning

Fig. 1 shows a common scenario of federated learning.
Basically, the training process is managed by an orchestrating
server S. At first, this server initializes the global model Mg
to be trained and sends it to a few selected clients in the
federation to be trained locally on their datasets. Clients send
their updated models or in some cases only their gradients,
back to the server, which aggregates them to refine the global
model. A common method for this aggregation is FedAvg
[21]. This process of local training and aggregation is carried
out iteratively until the global model achieves the desired
performance or until other pre-established criteria are met.
Formally, one refines the FL process as follows. Let K be the
number of clients in the federation, D, the dataset with ny
samples of the k" client C},. The training process is conducted
over a series of rounds, such that at each round t:

1) S randomly selects U clients from {C} }r—1. x and sends
them the current global model Méfl.

2) Each selected client C', updates Méfl on his dataset D,,
such that: M! = LocalTrain(M} ", D,,), where M. is
the updated local model. Next, C', sends Mfl to S.

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

Node B

i

o3

Aggregated Model

,/ Cetal \\
rver

>§x /\ Malicious Model D

Node D
(Malicious Client)

Node A

/
o /

Fig. 1: Federated learning (FL) - At a training round ¢ several
clients {C, },=1..v update the current model Méﬁl on their
local dataset (D,,) and send their resulting models M! to a
server S. S aggregates these updates to generate an updated

global model M. In the context of poisoning, a "Malicious
Client” in red can send a potentially harmful model.

3) Once S received the models {M!},—1 p, it aggregates
them using for instance FedAvg Wthh is a weighted sum
to get the updated global model for round ¢ such as:

M§ Z 1)

u= 1’fLu

where n,, is the cardinality of the u*"

client samples.
This iterative process continues until the global model Mg
is sufficiently trained, taking advantage of the clients’ datasets

Dy, without centralizing them.

B. Autoencoders

One can find different variants of autoencoders. The one
we’re interested in is the most advanced.

1) Autoencoder (AE): Autoencoders are unsupervised and
semi-supervised neural networks oriented towards efficient
encoding, facilitating tasks such as dimensionality reduction,
feature extraction, and data reconstruction [22], [23]. Formally
and as illustrated Fig. 2(a), the architecture of an auto-encoder
is first constituted of an encoder network, or equivalently an
encoder function fy of parameters 6, that maps a given input x
into a hidden representation z [24]. Its second part corresponds
to a decoder network or function g of the parameter ¢ that
attempts to map z to a reconstructed/approximated version of
x, i.e. T, in the original input space [25], [26]. The forward
pass of an autoencoder can be summarized as follows:

2= folx) ;5 T=gq(2) 2

As stated, the goal of an autoencoder is to minimize the
disparity between the input z and its reconstruction . While
several metrics can quantify this difference, the Mean Squared
Error (MSE) remains prevalent:

MSE(z,2) = ||lz — Z|? 3)

Autoencoders have emerged as a prominent tool for
anomaly detection [27]. The core idea is that anomalies can

51

be detected based on the extent of reconstruction errors when
the input data deviates from the features learned by the
autoencoder. By appropriately thresholding these errors, it
becomes possible to discriminate anomalies from regular data
[28], [29]. However, autoencoders have a fixed-dimensional
latent space, which may not be suitable for datasets with
varying complexities. VAEs address this by introducing a
probabilistic latent space.

2) Variational Autoencoder: Variational Autoencoders
(VAEs) [30] combine the principles of autoencoders and
variational inference [31]. One VAE is trained to minimize the
Kullback-Leibler divergence between the latent distribution of
the input data and a prior distribution p(z), which is typically
a standard normal distribution [31]. VAEs have gained in pop-
ularity due to their effectiveness in unsupervised learning and
generative modeling compared to simple auto-encoders [26],
[31]-[33]. Fig. 2(b) depicts the common VAE architecture,
which can be described as follows. The encoder approximates
the posterior distribution gy(z|z) and the decoder models the
data generation process distribution with py(z|z) by maximiz-
ing the evidence lower bound (ELBO) such as:

L(x;0,) = Ellogpg(x|2)] = Drerlga(2[2)|Ip(2)) (4)

where, Dy represents the Kullback-Leibler divergence and
p(z) is the prior distribution on the latent space, typically
assumed to be a unit Gaussian distribution. To summarize :

o The data input z is passed through an encoding layer
to produce the mean p and standard deviation o of a
Gaussian distribution in the latent space.

e Samples from this distribution, represented by z, are
drawn using the re-parameterization trick [30] (illustrated
in Fig. 2(c)) and passed through a decoding layer to
reconstruct the output z.

However, if the anomalies can be better characterized by
adding extra information such as time, specific conditions,
or data labels, Conditional VAEs usually outperform anomaly
detection by VAEs.

3) Conditional Variational Autoencoders: Conditional
Variational Autoencoder (CVAE) extends VAE by constraining
the encoding and generative processes (see Fig. 2(c)). Given
a data sample = and an associated condition y:

o The encoder approximates the posterior distribution over
the latent variable z: gg(z|z,y) where 6 denotes the
encoder parameters.

e The decoder assesses the likelihood of the data based on
the latent variables z and the condition y: py(x|z,y) with
¢ being the decoder parameters.

The primary goal of CVAE is to maximize ELBO based on
the condition y, assuming that, the latent variables typically
follow a standard normal prior distribution conditioned on y:
p(z|ly) = N(z;0,1). This can be expressed as:

L(z,y;0,¢0) =E Drcr(qo(2l2,y)lIp(2]y))
&)
By doing so, CVAE offers a structured approach to guide

the model’s generative capability based on specific conditions,

[log pe (|2, y)] —

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

Input Encoder Decoder

z_b—>z—> o -

Output

Latent Space Output

Input Encoder Decoder

=

Latent Space

— 00—

t— z —> pa (]2) —>
| J
Sampling
Input Encoder Latent Space Decoder Output
— o _
=z — | paalzy) | —— %

Lo

Sampling

5

C

Fig. 2: Architectures: (a) Autoencoder, (b) Variational Autoen-
coder, (c) Conditional Variational Autoencoder.

facilitating the generation of targeted outputs. Noteworthy
studies in this field include [18], [34], where the latter explores
the potential of CVAE in detecting malicious update models
in the FL context.

III. PROPOSED METHOD: FEDCAM

FedCAM’s originality lies in two main aspects. Unlike other
approaches [17], [18] that rely on a surrogate vector of model
parameters, FedCAM utilizes AMs from a specific layer of the
model. These maps are associated with representative samples
from the data distribution, forming a trigger set known only
to the server.

Activation maps offer a detailed, layer-by-layer represen-
tation of how input data is processed through the model.
This detailed representation helps in understanding how dis-
turbances in model parameters affect data processing at each
layer. Although slight alterations in model parameters may not
always cause significant variations in the AMs, especially if
the network’s overall functionality remains intact, deviations
that lead to abnormal data processing can be effectively
revealed by these maps. This nuanced response to parameter
changes renders activation maps a valuable tool for anomaly
detection.

In FedCAM, during each round of FL training, the recon-
struction error of a CVAE is used. This error is calculated
over the distribution of activation maps from the model’s
participants, with the CVAE being conditioned on the label

52

class of the samples in the trigger set. A dynamic threshold
is employed to differentiate between malicious and normal
updates in each round of FL.

Formally, consider a federation with an orchestrating server
S and K clients: {Cy }r=1..x, collaborating to build a global
model Mg for a specific task. Each client C possesses its
dataset Dj. The FedCAM process in a given round ¢ is as
follows:

1) S randomly selects U clients (U < K) from the federa-
tion and sends them the current global model Mg *.

2) Each client C), locally updates Mg‘l with its dataset D,,
and sends the updated model M back to S.

3) As shown in Fig.3, for each updated model MfL S ex-
tracts the activation maps Ftu from layer Liger associated
with the trigger set T = (X, YT).

4) S feeds the CVAE with (F*, Yr), where F is the Ge-
oMed normalized form of F!, and computes the > average
mean square reconstruction error ¢/, = MSE(F!, F).
The CVAE is conditioned on the trigger sample label. S
then compares ¢!, to a dynamic threshold o to determine
if M! is a malicious update.

5) S generates the updated global model M/, using FedAvg
from the benign client updates.

In the following, we detail the training of our CVAE as
well as the dynamic detection threshold for detecting malicious
updates.

A. Training the CVAE Detector

The CVAE’s objective is to distinguish between activation
maps (AMs) from benign and maliciously updated models.
The AMs in question are linked to a trigger set T =
(X1, YT), known only to the server S. The CVAE training
occurs before federated learning and involves the following
steps:

1) S trains a model M, with the same architecture as the
global model M¢ of the federation, using the trigger set
T as input.

2) During training, S keeps a copy of the model after each
epoch, resulting in {M?},—1 ., where ep is the number
of epochs.

3) With {M%}i—1. ., ready and using the trigger set T,
S extracts the corresponding AMs from the target layer
Liarger, denoted as {F}}i—1...ep.

4) These AMs are then normalized by S using the geometric
median as follows:

E, = F, — GeoMed({Fy }u=1...cp) (6)

Let us recall that the geometric median of a set of
points in a Euclidean space is a point minimizing the
sum of distances to all points in the set. It is usefull to
remove outliers in distribution. CVAE is trained using
({Fu}uzlmemYT) as input, where {Fu}uzlmep are the
normalized AMs and Yt are the labels of the trigger set,
serving as the condition for CVAE.

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

L
h

—> ife}C <at ——> M,i is benign

—— clse ——> | M ismalicious

Fig. 3: Overview of FedCAM principles. Using samples from the trigger set X, FedCAM extracts the activation maps f‘i
of a given layer Ly oOf the updated model M,]i provided by the client C}, at round ¢. From normalized Fi and Y (the
trigger set labels), CVAE produces f}; and computes the average of the MSE reconstruction error: €}, = m(fg, Fi). If €
is higher than the threshold at, M ,f is assumed to be a malicious model.

Since CVAE is trained with benign AMs, we anticipate that
the reconstruction error of normalized AMs from malicious
models will be significantly higher than from benign updates.

B. Dynamic Detection Threshold and FedCAM Algorithm

To decide whether to include an updated model M sent by
the client C,, in the federation during the tt* round, FedCAM
first normalizes the AMs using the geometric median, known
for its resistance to outliers. Specifically, at each round ¢,
the server receives the models {M!},—1. y from U clients,
and computes the AMs for each client model to obtain
{F!},—1..u. Then, it normalizes theAMsfor each client as
follows:

F! = F! — GeoMed({F!}—1..) 9

where Fé represents the normalized AMs of the u*" client at
the #*" round.

Once the normalized AMs {F!} are computed for each
client, they are fed to the CVAE along with the labels Y
from the trigger set T, and the average of the normalized
AMs reconstruction errors, ef“ is computed as:

¢! = MSE(CVAE(F!, Y1), F) ®)

where MSE denotes the mean square error. Then, FedCAM
compares this value €, to a dynamic threshold «; to make a
decision. In this work, oy is defined as the mean value of the
AMs reconstruction errors of all updated models at round ¢:

1
t t
o ——ugleu)

where U is the number of clients the orchestrating server S
selected at round ¢ to update the global model M.

To summarize, at the FL round ¢, the malicious model
rejection function of FedCAM operates as follows: if €/, > o,
then the model M is considered to be from a malicious client
by FedCAM and will not be used in the aggregation. The
global pseudo-code of FedCAM is provided in Algorithm 1.

53

Algorithm 1 FL Routine with FedCAM conducted by the
orchestrating server

Require: M the global FL model to train; Liuq., the layer
from which to get the AMs; U number of clients; T =
(X, Y) the trigger set; Dy, local dataset of the client
Cj: CVAE trained detector.

1: M2 <+ Initialize(M¢)
2: for each round t =1,2,..., R do

3: Randomly select U clients from the federation

4: for each clientu=1,...,U do

5: M} + LocalTrain(M5 ', D,,) % C,, local training

6: F!' = GetActivation(M}, T, L) % activation
maps extraction

7: F! = F! — GeoMed({F!},—1..v) % Geomed nor-
malization

8: F! = CVAE(F!, Y1) % CVAE reconstruction

9: ¢! = MSE(F ,F!) % reconstruction error

10: end for

1: ot

— % Y uect €' % dynamic detection threshold
computation

12: S* + Selection of clients that respect €/, < ot

130 ML — Y o Z:ﬁMﬁ % FedAvg aggregation,

)

with ”n,” is the cardinality of the v'" client samples.

14: end for

IV. EXPERIMENTAL EVALUATION
A. FL classification task and FedCAM settings

In the following experiments, as other works from the
literature, FedCAM was implemented taking into account
an FL framework that aims to build a global model Mg
for an image classification task on MNIST [35], a popular

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

public benchmark dataset for handwritten digit classification.
MNIST consists of 60,000 training and 10,000 testing 28 x 28
pixel images, distributed among 10 distinct classes. Datasets
were uniformly distributed across the customers to respect
the assumption of independent and identically distributed
(IID) datasets. Thus each client C} has a local dataset Dy
whose distribution is similar to that of the other clients.
The code for reproducing main experiments is available at
https://github.com/Bellafqira/FedCAM_.

The architecture of M, is as follows: three fully-connected
(FC) layers with 256, 128, and 10 output neurons (ON),
respectively. Relu is used as an activation function in all layers.
The target Layer L;4,g¢; from which FedCAM will extract the
activation maps corresponds to the second-to-last layer. The
federation we considered is constituted of 1000 clients, and
U = 50 of them are selected randomly at each round ¢. The
trigger set T = (X, YT) is constituted of 100 images from
the test set (The test set is considered public and accessible
to the server in the context of FL). Regarding CVAE, its
architecture is such as an FC layer with 100 ON, a latent
space with 8 ON, and an FC layer with 100 ON as a decoder.

B. Considered attacks with their settings

FedCAM aims at detecting and removing byzantine and
TMPA attacks. The objective of Byzantine attacks, also known
as untargeted attacks, is to either prevent model convergence
or to force the model to converge to incorrect values [36].
Three attacks have been tested and parameterized as in the
literature [18]:

« Sign-Flipping Attacks: in which several clients reverse the
sign of their model weight updates, with an amplifying
factor [18]. In our tests, we applied a —1 factor to the
model updates.

o Additive Noise Attack: in which several clients add
Gaussian noise to their weight updates to degrade the
performance of the global model [18], [37]. In our tests,
a centered Gaussian distribution, A/ (0, 1), with a standard
deviation of 1 was used.

e Same Value Attack: in which malicious clients consis-
tently send the same update values at each FL round. In
our experiments, malicious model parameters will take
the value 0.

On their side, TMPAs subtly undermine the global FL. model
integrity without noticeably reducing its overall performance
on its primary tasks [17], [38], [39]. We have tested the
following attack:

o In a backdoor attack, a “pattern” is added to input data.
During inference, if the model receives an image from
a certain class with this pattern, it misclassifies it into
a specific target class [38]. Our attack implementation
includes embedding a 10 x 10 pixel white square into
images, serving as a distinct pattern, and altering labels
from ”8” to ”’3” for originally classified images.

54

C. Experimental Results

In this section, we compare the performance of our proposal,
FedCAM, to FedCVAE [18], the most efficient approach,
against the attacks depicted above considering, a percentage of
attackers in the federation ranging from 10% to 30%. We give
in Fig. 4 (a) and (b), the accuracy of the global FL. models
FedCAM and FedCVAE obtained under the same additive
noise Attacks as well as the accuracy of the global FL model
without attack and defense (baseline). As can be seen, the
performance of both FedCAM and FedCVAE is very close
to that of the global FL. model without attack in the case of
10% of attackers. As the noise level increased to 30%, there
was a very slight divergence from baseline for both defenses,
even if the number of FL rounds increased. Anyway, the close
similarity in performance of FedCAM and FedCVAE suggests
that these mechanisms have comparable capabilities against
noise attacks.

This is not the case for the same value attack. As it can
be seen from Fig. 4 (c) and (d) FedCAM performs well
for both 10% and 30%. FedCAM’s global model accuracy
remains stable and close to the baseline without attack. This
is due to the AM, which can detect even slight modifications
in the model parameters. Regarding the sign-flipping attack,
whatever the percentage of attackers, FedCAM and FedCVAE
have similar robustness and the same performance as the
baseline model on IID data (see Fig. 4 (e) and (f)). To sum
up on byzantine attacks, compared to FedCVAE, FedCAM
offers better performance by being able to neutralize malicious
update influence even for the same value attack.

The TMPA we tested is the backdooring attack. As it can
be seen from Fig. 5, for two intensities of attack, i.e. 10% and
30% of clients that agreed to misbehave, FedCAM preserves
the accuracy of the global model with results comparable to the
baseline (accuracy ~ 90%). This is not the case for FedCVAE
whose performance is unstable or more vulnerable. To go
further, we also analyzed in Fig. 5 (b) and (f) the accuracy
of the attack. We can see that FedCAM neutralizes the attack
as soon as FL training starts, whereas FedCVAE fails to do
so, especially as the number of attackers increases. If we go
into more details, looking at how many attackers succeed in
going through the defense each round, we can see from Fig. 5
(c), (g) for FedCAM and (d), (h) for FedCVAE that FedCAM
is robust to the backdooring attack and that it outperforms
FedCVAE whatever the attack intensity.

FedCAM’s computational overhead compared to standard
federated learning without defense is limited to the server-side.
It involves three key calculations: activation maps computation
with a complexity of k x p for k clients and p data points, an
equal number of CVAE feedforward operations for reconstruc-
tion error calculation, and the geometric median computation
often solved in a polynomial time using iterative methods.

V. CONCLUSION & FUTURE WORK

In this work, we introduced FedCAM, a novel federated
learning approach employing able to identify malicious client
updates effectively. FedCAM’s uniqueness stems from using

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

Server accuracy under 10% of additive noise

0.90 1
0.80 1
>0.70 4
9
e
5
g 0.60 1
<
0.50 4
—— No Defence
—— FedCAM
0.401 —— FedCVAE
—— NoAttack
0.301 T T T T T T
20 40 60 80 100
Round
(@)
Server accuracy under 30% of additive noise
0.90 4
0.80 4
0.70 4
>
8 0.60
5
S
20504
0.40 4
—— No Defence
0.30 4 —— FedCAM
—— FedCVAE
0.20 1 —— NoAttack
T v T T v T
0 20 40 60 80 100

Accuracy

0.90

Accuracy
o
©
g

°
3

0.60

Fig

Round

(b)

Server accuracy under 10% of backdooring

Accuracy
°
o
8

0.20
—— No Defence
—— FedCAM 0.10
—— FedCVAE
— NoAttack 0.00
0 20 a0 60 80 100

Round

(a)

Server accuracy under 30% of backdooring

0.80
5, 0.60
g
3
£ 040
—— No Defence
— FedCAM 020
—— FedCVAE
— NoAttack 0.00
0 20 40 60 80 100

Round

(e)

Server accuracy under 10% of same value

0.80
2 0.60 — No Defence
I —— FedCAM
g —— FedCVAE
< J—
0.404 NoAttack
0.204
A oA
0 20 40 60 80 100
Round
(©
Server accuracy under 30% of same value
0.80 4
2 0.60 —— No Defence
c —— FedCAM
S —— FedCVAE
< —_—
0.404 NoAttack
0.204
T v v T v T
0 20 40 60 80 100

Round

(C))

Attacker accuracy under 10% of backdooring

—— No Defence
—— FedCAM
—— FedCVAE

Attacker accuracy under 30% of backdooring
0

a0 60 80 100
Round

(®)

—— No Defence
—— FedCAM
—— FedCVAE

Round

() (2

55

Accuracy

Accuracy

Server accuracy under 10% of sign flipping

0.95
0.90
0.85
0.80
0.754
—— No Defence
—— FedCAM
0.70 —— FedCVAE
—— NoAttack
0.65 +— v y v v .
0 20 40 60 80 100
Round
(e
Server accuracy under 30% of sign flipping
0.95
0.90
0.85
0.80
0.75 4
A
070 —— No Defence
—— FedCAM
0.659 —— FedCVAE
—— NoAttack
0.60 1 T T T T T T
0 20 40 60 80 100
Round

FedCAM and FedCVAE Comparison Under Additive Noise (a) (b), Same Value (c) (d) and Sign-flipping (e) (f).

(h)
. 5: FedCAM and FedCVAE Comparison Under Backdoor Attack. (c) and (g) are for FedCAM. (d) and (h) are for FedCVAE

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

the CVAE reconstruction error of activation maps (AM) ob-
tained from a given trigger set; CVAE conditioned by the
trigger set sample labels; and a dynamic threshold for detecting
models from malevolent clients. Our experiments demonstrate
FedCAM’s capability in mitigating various poisoning and
byzantine attacks, thus enhancing the security and convergence
of global classification models under IID data distributions.
Future work will focus on adapting FedCAM to non-IID distri-
butions and applying it to broader machine learning domains,
such as natural language processing and image segmentation.
Further, we plan to incorporate security enhancements like
differential privacy and investigate more sophisticated aggre-
gation techniques, areas that are not extensively covered in
current research.

(1]

(2]

(3]

[4]

(5]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning
on heterogeneous devices: A survey,” Computer Science Review, vol. 50,
p. 100595, 2023.

D. Zeng, S. Liang, X. Hu, H. Wang, and Z. Xu, “Fedlab: A flexible
federated learning framework.” J. Mach. Learn. Res., vol. 24, pp. 100
1, 2023.

M. Lansari, R. Bellafgira, K. Kapusta, V. Thouvenot, O. Bettan, and
G. Coatrieux, “When federated learning meets watermarking: A com-
prehensive overview of techniques for intellectual property protection,”
Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1382—
1406, 2023.

K. Wei, J. Li, C. Ma, M. Ding, W. Chen, J. Wu, M. Tao, and H. V.
Poor, “Personalized federated learning with differential privacy and
convergence guarantee,” [EEE Transactions on Information Forensics
and Security, 2023.

Z. Yang, Y. Chen, H. Huangfu, M. Ran, H. Wang, X. Li, and Y. Zhang,
“Dynamic corrected split federated learning with homomorphic encryp-
tion for u-shaped medical image networks,” IEEE Journal of Biomedical
and Health Informatics, 2023.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273—
1282.

P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and
J. Stainer, “Byzantine-tolerant machine learning,” arXiv preprint
arXiv:1703.02757, 2017.

R. Guerraoui, S. Rouault et al., “The hidden vulnerability of distributed
learning in byzantium,” in International Conference on Machine Learn-
ing. PMLR, 2018, pp. 3521-3530.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International conference on machine learning. PMLR, 2020,
pp. 5132-5143.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429-450, 2020.

L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning,” Computers & Industrial Engineering, vol. 149, p.
106854, 2020.

M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to {Byzantine-Robust} federated learning,” in 29th USENIX security
symposium (USENIX Security 20), 2020, pp. 1605-1622.

B. Zhu, L. Wang, Q. Pang, S. Wang, J. Jiao, D. Song, and M. I. Jordan,
“Byzantine-robust federated learning with optimal statistical rates,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2023, pp. 3151-3178.

H. Kasyap and S. Tripathy, “Privacy-preserving and byzantine-robust
federated learning framework using permissioned blockchain,” Expert
Systems with Applications, p. 122210, 2023.

P. Manoharan, R. Walia, C. Iwendi, T. A. Ahanger, S. Suganthi,
M. Kamruzzaman, S. Bourouis, W. Alhakami, and M. Hamdi, “Svm-
based generative adverserial networks for federated learning and edge

56

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]
[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

computing attack model and outpoising,” Expert Systems, vol. 40, no. 5,
p. e13072, 2023.

D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conference on Machine Learning. PMLR, 2018, pp. 5650-5659.

S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to de-
tect malicious clients for robust federated learning,” arXiv preprint
arXiv:2002.00211, 2020.

Z. Gu and Y. Yang, “Detecting malicious model updates from federated
learning on conditional variational autoencoder,” in 2021 IEEE interna-
tional parallel and distributed processing symposium. 1EEE, 2021, pp.
671-680.

M. Chelli, C. Prigent, R. Schubotz, A. Costan, G. Antoniu, L. Cudennec,
and P. Slusallek, “Fedguard: Selective parameter aggregation for poison-
ing attack mitigation in federated learning,” in /EEE Cluster 2023-IEEE
International Conference on Cluster Computing, 2023.

R. Bellafqgira and G. Coatrieux, “Diction: Dynamic robust white box
watermarking scheme,” arXiv preprint arXiv:2210.15745, 2022.

H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
learning of deep networks using model averaging,” arXiv preprint
arXiv:1602.05629, vol. 2, p. 2, 2016.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504-507,
2006.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,” in
Proceedings of the 25th international conference on Machine learning,
2008, pp. 1096-1103.

I. H. Sarker, “Machine learning: Algorithms, real-world applications and
research directions,” SN computer science, vol. 2, no. 3, p. 160, 2021.

P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proceedings of ICML workshop on unsupervised and transfer learn-
ing. JMLR Workshop and Conference Proceedings, 2012, pp. 37-49.
G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for
anomaly detection: A review,” ACM computing surveys (CSUR), vol. 54,
no. 2, pp. 1-38, 2021.

C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, 2017, pp. 665-674.
W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, and F. Sabrina, “Improving
performance of autoencoder-based network anomaly detection on nsl-
kdd dataset,” IEEE Access, vol. 9, pp. 140 136-140 146, 2021.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

C. DOERSCH, “Tutorial on variational autoencoders,” stat, vol. 1050,
p. 3, 2021.

S. Zhang, F. Ye, B. Wang, and T. G. Habetler, “Semi-supervised learning
of bearing anomaly detection via deep variational autoencoders,” arXiv
preprint arXiv:1912.01096, 2019.

D. P. Kingma, M. Welling et al, “An introduction to variational
autoencoders,” Foundations and Trends® in Machine Learning, vol. 12,
no. 4, pp. 307-392, 2019.

K. Sohn, H. Lee, and X. Yan, “Learning structured output represen-
tation using deep conditional generative models,” Advances in neural
information processing systems, vol. 28, 2015.

T. Keerthi e al., “Mnist handwritten digit recognition using machine
learning,” in 2022 2nd International Conference on Advance Computing
and Innovative Technologies in Engineering. 1EEE, 2022, pp. 768-772.
J. Shi, W. Wan, S. Hu, J. Lu, and L. Y. Zhang, “Challenges and
approaches for mitigating byzantine attacks in federated learning,” in
2022 IEEE International Conference on Trust, Security and Privacy in
Computing and Communications. 1EEE, 2022, pp. 139-146.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

E. M. Anass, C. Gouenou, and B. Reda, “Poisoning-attack detection
using an auto-encoder for deep learning models,” in International
Conference on Digital Forensics and Cyber Crime. Springer, 2022,
pp. 368-384.

A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing feder-
ated learning through an adversarial lens,” in International Conference
on Machine Learning. PMLR, 2019, pp. 634-643.

© 2024 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-61-4

