
Queue-Management Architecture for Delay Tolerant
Networking

Sotirios-Angelos Lenas, Stylianos Dimitriou, Fani Tsapeli, Vassilis Tsaoussidis

Space Internetworking Center (SPICE),

ECE Department, Democritus University of Thrace, Xanthi, Greece
{slenas, sdimitr, ttsapeli, vtsaousi}@ee.duth.gr

Abstract. During the last years, the interest in Delay/Disruption Tolerant
Networks has been significantly increased, mainly because DTN covers a vast
spectrum of applications, such as deep-space, satellite, sensor and vehicular
networks. Even though the Bundle Protocol seems to be the prevalent candidate
architecture for delay-tolerant applications, some practical issues hinder its
wide deployment. One of the functionalities that require further research and
implementation is DTN queue management. Indeed, queue management in
DTN networks is a complex issue: loss of connectivity or extended delays,
render occasionally meaningless any pre-scheduled priority for packet
forwarding. Our Queue-management approach integrates connectivity status
into buffering and forwarding policy, eliminating the possibility of stored data
to expire and promoting applications that show potential to run smoothly.
Therefore, our approach does not rely solely on marked priorities but rather on
active networking conditions. We present our model analytically and compare it
with standard solutions. We then develop an evaluation tool by extending ns-2
modules and, based on selective scenarios primarily from Space
Communications, we demonstrate the suitability of our model for use in low-
connectivity/high-delay environments.

Keywords: DTN, Queue management, Scheduling

1 Introduction

Queue management in traditional networks is used mainly to regulate traffic
fluctuations, as well as to assign priorities to specific traffic classes. It often utilizes
dropping mechanisms that signal end-users, implicitly or explicitly, for impeding
congestion events. Nevertheless, queue management in Delay/Disruptive Tolerant
Networks (DTN) [1] [2], with long delays and disruptions has to address additional
issues. While fair resource allocation and traffic classification are still important,
queue management needs also to exploit every available contact opportunity and
reschedule traffic prioritization and data storage to handle communication disruptions
and delays.

We extend further the preliminary architecture proposed in [3] with mathematical
analysis, architectural enhancements and systematic evaluation. Our architecture is
composed now by three main components: i) an Admission Control unit, which
determines the criteria that DTN nodes use to accept or reject incoming bundles, ii) a

Buffer and Storage Management unit, which determines how accepted bundles should
be stored, and iii) a Scheduling unit, which determines bundle service priorities. Here,
we refer to data handled by DTN nodes as bundles, even though the architecture
proposed is not confined by the standardized Bundle Protocol [4]. The characteristics
of each type of DTN network may vary and the objective each time may be different.
Here, we emphasize on space applications: space satisfies both dimensions of DTN,
that is, disruptions and long delays. We have primarily two goals: i) to increase the
DTN device throughput via efficient link exploitation and ii) to increase application
satisfaction.

From an engineer’s viewpoint, DTN requires additional supportive functionality
primarily for resource management. In DTN, resource management incorporates
storage capacity as well, which in turn is associated with long delays for data
forwarding and increased complexity for scheduling. For example, unlike typical IP
network packets, bundles do not face the danger to be dropped, however they do face
the danger to expire. Also, priority-marked packets need not prioritized service in
case connectivity disruptions have damaged their scope already.

A traditional FIFO-Droptail queue policy may have been an initial candidate for
such system. Apart from its simplicity and the fact that it may perform decently in
low-traffic networks, this approach is flawed severely: we cannot assign different
priorities to different traffic classes and, on top of that, queuing delays punish
uniformly and cumulatively all users, even those that may have a chance to survive a
potential short disruption. Alternatively, we could integrate a prioritization algorithm
in our scheme, such as Priority Queuing (PQ), Fair Queuing (FQ), Class-based
Weighted Fair Queuing [5] (CBWFQ) and Low Latency Queuing (LLQ) [6]. A
common, undesirable characteristic, however, is that priorities are typically
predetermined and/or static, in the sense that do not incorporate connectivity feedback
and hence cannot reflect a scheduling policy to a corresponding forwarding
implementation. This non-typical requirement renders them only blind tools for DTN
management and hence unsuitable, in their present form, for DTN networks.
Additional approaches presented in [7] take account the low expiration time left and
the number of times a packet has been forwarded, in order to drop it in cases of
congestion. The most notable approach is SHLI (drop shortest life time first) which
drops the packet with the lowest expiration time. However, this might have some
undesirable side-effects when some packets have been delayed significantly, yet we
can still manage to forward them before they expire.

Relevant work on DTN queue management is limited, and usually focuses on
specific problems, such as policies or scheduling, providing a narrow approach to the
queue management, occasionally isolating joint problems. However, some interesting
work exists already. In [8], Amir Krifa et al., focus on queue management policies,
and reach similar conclusions; they show that traditional buffer management policies
such as drop-tail or drop-front are sub-optimal for use in DTN networks. Current
implementations of the DTN, such as ION [9] and DTN2 [10], at this stage, adopt
simple approaches to queue management considering the lack of corresponding
standards. For example ION, deploys the bundle protocol approach, via a PQ scheme
with three queues of outbound bundles, one queue for each of the defined levels of
priority (“class of service”) supported by BP. Our approach employs an enhanced
classification scheme that integrates both network (i.e., connectivity) dynamics and

traffic requirements. Therefore, scheduling is not a product of packet marks and
hence, application alone, but rather a joint decision of data priority, application
potential to survive disruptions and the network disruptions per se.

The rest of the paper is organized as follows. In section 2, we define our queue
management model, including only the details necessary for the stochastic analysis,
whereas in section 3 we present our stochastic analysis and the corresponding results.
In section 4 we apply, validate and compare a part of our model through simulations
in ns-2. Finally, in section 5 we conclude and set the framework for future work.

2 Delay Tolerant Queue Management Model

In order to define our queue-management model, hereafter referred as DTQM
(Delay-Tolerant Queue Management) we consider the DTN network as a network
with low connectivity, high and variable delays and absence of end-to-end path. We
define DTQM in a way that allows us to include all the necessary functionality to
satisfy a generic set of requirements. Thus, we divide DTQM into three units; i)
Admission Control, ii) Buffer and Storage Management, and iii) Scheduling. We
discuss all units’ functionality, however, due to lack of space we emphasize on the
most novel and sophisticated units, namely the Buffer and Storage Management and
Scheduling units.

Admission Control: Admission Control determines how and which data may be
accepted from a DTN node and is mainly related to data-custody requests. When
custody requests are accepted by a DTN node, that node is obliged to maintain the
bundles in its memory, until it is able to forward them, or until they expire.

Buffer and Storage Management: Contrary to traditional networks, where the
routing nodes require buffers to implement a store-and-forward strategy, DTN nodes
need additional persistent storage to maintain those packets that cannot immediately
be forwarded due to limited connectivity. In IP-based routers, the main focus of
researchers is to increase channel utilization and decrease delay through scheduling
and dropping. This approach inherently assumes that end nodes respond to losses and
therefore recover in short time. However, when connectivity is scarce, the
requirement for short-time recovery is already violated. Furthermore, DTN networks
introduce an additional level of complexity, as a result of combining both volatile and
persistent storage. Clearly, the trivial approach to store every incoming bundle in
persistent storage and move it to buffer upon request increases the processing delay of
all the bundles and fails in cases of applications engaged in low-delay transfers.

In Fig. 1 we depict graphically the Buffer and Storage Management unit.
Generally, this model is composed by two units, the Policy unit and the actual Storage
unit. The purpose of the Policy unit is to accept all the bundles that enter the node
and, depending on the conditions, move them to buffers or storage. Buffer and
Storage management is initially differentiated based on whether there is connectivity
between the DTN node and the next-hop. During periods of connectivity, packets that
enter the node may be immediately routed to the output without being stored first. The
total sending rate μ is calculated by the sum of sending rates μC and μN of the
Connectivity and Non-Connectivity buffer, respectively.

Fig. 1. The Buffer and Storage Management model.

In more detail the purpose of each storage unit can be described as follows:
• Connectivity buffer. The Policy unit moves bundles to the Connectivity buffer

only when there is connectivity and therefore the corresponding bundles can be
forwarded to the next node. After a time-period which is determined by some
threshold, when no connectivity exists, bundles that are stored temporarily in the
Connectivity buffer move to Persistent storage.

• Persistent storage. The Policy unit moves bundles to Persistent storage in three
cases: i) when there is no connectivity, ii) when there is connectivity but no
Connectivity buffer space available, and iii) when there is both connectivity and
Connectivity buffer space available, however the contact graph, which is known a
priori, instructs that time does not suffice to forward bundles to the next hop.

• Non-Connectivity buffer. Bundles are moved from storage to the Non-
Connectivity buffer in the following two cases: i) when bundles are of high priority
(are either urgent or a scheduled contact is expected) and there is no connectivity and
ii) when there is connectivity but other bundles are selected to be forwarded
(opportunistic contact). The algorithm that determines which bundles should be
forwarded first at a given communication opportunity is described briefly in the
Scheduling section.

Our proposed model additionally deals with the problem of increased processing
delay. In the event of multiple nodes in a row that are actively connected,
transmission is rather straightforward, since packets are transferred from buffer to
buffer without the interference of storage. In the event of short connectivity no further
delay due to storage retrieval is imposed; bundles have already moved to the Non-
Connectivity buffer, and hence bandwidth through short connectivity can be fully
exploited.

Scheduling: Scheduling unit reassigns the priorities for each bundle and determines
which bundles should be outputted from the DTN node when a communication
opportunity occurs. A priority-oriented model should be inevitably considered; this
model should incorporate application requirements, data requirements, Time-to-Live
(TtL) for bundles etc.

Although we will not delve into more details, our scheduling depends heavily on
the arrival timestamp and on TtL. In order to enhance application service, we promote
both packets that have recently arrived in the node and packets that are near their
expiration. This approach decreases significantly waiting delays and promotes
application satisfaction. In Fig. 2 we depict the priority function used, where ToD

(Type of Data) is a specific identifier that denotes the packet traffic class and TtL
denotes the expiration time.

Fig 2. Scheduling priority function.

3 Stochastic Analysis

The purpose of this analysis is to highlight the advantages of our proposed model over
traditional scheduling approaches. Our model consists of a primary FIFO queue
(Connectivity buffer) and a secondary supportive queue (Non – Connectivity buffer),
which serves high-priority bundles. We note that, in the context of Space, the queuing
delay involved does not expect to contribute significantly to the total application
delay, given the high propagation delay, and furthermore, the potentially very high
storage delay involved in typical Space applications. Therefore, a priority queuing
(PQ) or a PQ-derived scheduling model for incoming packets does not present
conceptually a tempting approach, since it may fail with long-stored packets. Clearly,
our approach departs from a FIFO scheme, and therefore, calls for a straightforward
comparison with a typical FIFO scheme. However, for completeness, we extend our
stochastic analysis also for PQ, which we consider as a theoretical upper bound (only)
when connectivity is always present.

It is apparent, from an engineer’s perspective, that our model is designed to handle
disconnectivity/disruption issues. As such, it is reasonably expected to perform better
in environments with limited connectivity, especially against traditional queuing
schemes, which do not include a native mechanism to handle intermittent
connectivity. Nevertheless, to achieve fairness towards FIFO and PQ, we use a worst-
case scenario for DTQM, where connectivity is always available on the system. The
results shall indicate to which extent our model is able to perform satisfactorily. In
such environments, where connectivity is always available and we do not exploit
DTQM’s full potential, even a performance comparable to PQ and better than FIFO is
acceptable.

We initiate our analysis by modeling network traffic. Packet arrival is modeled as
as an exponential process and packet departure as a general distribution process. This
is not, however, a globally valid assumption, since different types of traffic can result
in different distributions concerning the packet arrival and departure. Nonetheless, as
our knowledge on the possible DTN applications is limited, we assume that the
environment and the applications under investigation manifest all the necessary
characteristics of a M/G/1 system based analysis. The potential existence of self-
similar characteristics is not considered here. Furthermore, we assume that all packets

ToD

ToD

2∙ToD

0.5∙TtL TtL

TtL

have the same size, non-preemptive priority is enforced and flows correspond to
different traffic classes.

One might argue, from an analytical perspective, that precision is rather dubious
when we attempt to analytically compare different queuing policies with potentially
distinct goals. However, there are several occasions when these mechanisms are
indeed equivalent and directly comparable. For example, as throughput is decreasing,
the behavior of these three systems converges.

We begin our queuing analysis by estimating the average system delay for each
flow in a PQ scheme. We consider a single-server PQ system fed by three Poisson
streams with arrival rates λ1, λ2 and λ3. Each stream can be considered as a flow of
data generated by various applications, in our case Real-time (RT), Telemetry (TM)
and Telecommand (TC) applications. The buffers corresponding to different flows are
infinite and packets in each buffer are served in the order they arrive. Thus, we use
three queues, one per flow, and three priority classes. We limit the overall system
utilization by setting ρi<1 and ρ1+ρ2+ρ3<1. This keeps the system from being
overloaded and cancels the possibility of flow starvation. Table 1, presents the
notation used throughout the present mathematical analysis.

TABLE I. NOTATION

Ni Average number of packets in each queue
λi, λ Packet arrival rate at class-i queue / Total packet arrival rate

 μi, μ Packet service rate at class-i queue / Total packet service rate
 ρi, ρ System utilization factor per class-i / System utilization factor

R Mean residual service time
Wi Average queuing delay of a class-i packet
Ti Average system delay of a class-i packet
X2 Second service moment

That said, we consider the ith data packet arrival at the first queue of the PQ system.
Since class-1 packets have the highest priority, the ith packet that has just arrived must
wait in queue for a mean residual time R until the end of the current packet
transmission, plus the transmission time required for a mean number of packets N1
currently in the first queue, preceding the ith packet.

µ
1

1

N
RW +=

(1)

We calculate the mean residual time, for M/G/1 systems, by the formula ([11]):

∑
=

=
n

i
ii XR

1

2

2
1 λ , 2

2 2
µ

=iX
(2)

Now, according to Little’s law [12], the average number of packets waiting in the
system is equal to the average delay multiplied by the average arrival rate of the
system. We apply Little’s law to the class-1 queue. As the average queuing delay for
class-1 packets is W1 and the average queue occupancy is N1 with arrival rate λ1, we
have

111 WN λ= (3)

1
1 1

)3(),2(),1(
ρ−

=⇒
RW ,

µ
λρ 1

1 =
(4)

Similarly, by enforcing non-preemptive priority queuing and according to [11] the
average queuing delay for class2 and class-3 packets is accordingly:

)1)(1(211
2 ρρρ −−−
=

RW
(5)

)1)(1(32121
3 ρρρρρ −−−−−
=

RW
(6)

Finally, by adding the service time 1/μ of the ith packet in the equations (4), (5) and
(6), we can calculate the average system delay for class-k packets:

µ
1

+= kk WT
(7)

Next, we estimate the average delay for each flow in a FIFO scheme. In this
scheduling scheme, each flow has the same average queuing delay, which depends on
the average number of packets in queue N, and the mean residual time, R. According
to [11]

the average system delay in a FIFO scheme is:

)1(
11
ρµµ −

=⇒+= FIFOFIFO TWT
(8)

However, in order to guarantee that the service distribution of the FIFO queue
corresponds to an appropriately weighted sum of the service distributions for the
different classes in the priority queue scheme, we set:

µ
223 −−= RTT FIFONFIFO

(9)

We continue our analysis by estimating the average delay for each flow in a
DTQM scheme. We divide the analysis in two parts. Since DTQM uses two outgoing
queues (plus the permanent storage – see Fig. 1) one for connectivity and the other for
non-connectivity data, we can safely assume that the first one emulates a FIFO queue
while the second one approaches the behavior of a PQ scheme. The latter assumption
holds since the prioritization function that we apply (see Fig. 2), requires packet
sorting. That said, the first queue analysis in terms of average system delay is directly
comparable with a FIFO scheme, while the second queue calls for a PQ-based
analysis. In order to fairly evaluate our proposed scheme, we omit permanent storage
from the mathematical analysis. This allows the three systems to present similar
properties and hence be comparable. We consider an average system arrival rate λ
equal to the other systems and set arrival rates, without loss of generality, for the two
queues λa = 0.4λ and λb = 0.6λ. The selection of coefficients 0.4 and 0.6 as the
preferred values for our stochastic analysis was based on some initial empirical
calculations and will be calibrated further according to emulation results. Finally, the
total average system service rate will be μ where μa=0.4μ and μb=0.6μ for first and
second queues, respectively.

To start off, the average queuing delay for the first queue does not differentiate per
flow and can be calculated based on the average number of packets in queue-1 and the

mean residual time, using equation (2) and replacing λ1, λ2, μ1 and μ2 with λa, λb, μa
and μb respectively.

RNW
a

CON +=
µ

(10)

By applying Little’s law for queue-1 we get:

CONaWN λ= (11)

From equations (10) and (11) we get:

a
a

a

a
a

a
CON

RW
µ
λρ

µ
λρ

ρ
4.0 where,

1
=⇒=

−
=

(12)

The average system delay for all the flows in queue-1 is:

a
CONCON WT

µ
1

+=
(13)

We now approximate the behavior of the second queue as follows. The queue can
split into three sub-queues or subclasses. Each class will be served using a PQ-based
scheme. Furthermore, the proportion of packets for each class on the total available
capacity of the queue-2 buffer is λ1/λ for class-1 packets, λ2/λ for class-2 packets and
λ3/λ for class-3 packets. Therefore, the average queuing delay for class-1 packets is:

RNW
b

NONCON
+=

µ
1

1
(14)

By applying Little's law [12], we obtain:

NONCONNONCONb WNWN 1111
1

1 6.0 λλ
λ
λ

=⇒=
(15)

From equations (14) and (15) we get:

b
b

b

b
b

b
NONCON

RW
µ
λρ

µ
λ

ρ

λ
ρλ

6.0 where,
1 1

1 =⇔=
−

=
(16)

The average queuing delay for the second subclass depends on N1 packets, which
are buffered in the first subclass, plus N2 packets, which are buffered in the second
subclass, plus the residual time R. In our case, unlike the ordinary properties of PQ,
our design assumptions do not permit the possibility of higher priority packets to
rearrange the queue at any given stage. Therefore, we have:

b
NONCONNONCON

bb
NONCON

NWWNNRW
µµµ

2
12

21
2 +=⇒++= (17)

NONCONNONCONb WNWN 2222
2

2 6.0 λλ
λ
λ

=⇒= (18)

From equations (17) and (18) we obtain:

λ
ρλ b

NONCON
NONCON

W
W

2

1
2

1−
= (19)

By the same token, average queuing delay for third subclass is:

λ
ρλ b

NONCON
NONCON

W
W

3

2
3

1−
=

(20)

Finally, system's average delay for each subclass is:

b
NONCONkNONCONk WT

µ
1

+=
(21)

Having calculated the average delays for the two queues separately, we will
combine these values to acquire the total delay. A statistically acceptable method for
doing this is by using weights. Considering the way that we have defined the problem,
it is logical to expect that each queue will contribute with a different percentage to the
overall system delay. Hence, we will consider that queue-1 and queue-2 will
contribute to the total average system delay by 40% and 60%, respectively.
Considering the values of λ and μ in each queue, we have.

NONCONCONDTQM
TTT 11 6.04.0 += ,

NONCONCONDTQM
TTT 22 6.04.0 += ,

NONCONCONDTQM
TTT 33 6.04.0 +=

(22)

As for the numerical results presented below, the value of system service rate is
constant at 10 packets/sec, whereas the values of λ vary in order to obtain the possible
range of system utilization, 10% - 90%. Τhe value of service rate, considering packet
sizes in the order of KB, provides an acceptable rate of data transmission, especially
in space environments and among low energy sensors.

Fig 3. Numerical results

The numerical results of our analysis are presented in Fig. 3. We compare the
aforementioned queuing schemes based on the average delay for each queue in each

system and the average queue occupancy. The results show that our approach
achieves a performance clearly better than FIFO and in some cases better than PQ,
especially when the system utilization factor is high.

4 Experimental Evaluation

Evaluating such a queue management policy requires extensive experiments using an
actual space network, since DTQM affects both lower-level (battery lifespan) and
higher-level (throughput, latency) performance metrics. We implement and evaluate
our proposed solution using the ns-2 software simulator [13]. This implementation was
not trivial and required significant time considering the fact that ns-2 does not support
DTN. In this work, we focus on the full implementation of the second and third
component of DTQM, namely the Buffer and Storage Management and Scheduling
parts, leaving the rest of the architecture evaluation as future work.

We apply DTQM to the network topology of Fig. 4. We assume three sending
nodes, S1, S2, S3, which are located in space and send traffic generated by various
applications (Real-time, Telemetry and Telecommand; all constant bit rate with 0.02
sec, 0.4 sec and 60 sec sending interval respectively) and a receiving node R, which is
located on earth. All traffic generated by the sending nodes is routed through the
routing node Q in which we deploy DTQM.

Fig 4. Simulation topology

Since we assumed that the sending nodes are located in space, the connectivity of
the wireless links should be intermittent. In order to emulate a DTN environment
where connectivity is not predetermined, thanks to alternative routes and connections,
we select a random disconnectivity pattern with uniformly distributed connectivity
disruptions spread across the entire duration of the experiment, as the most appropriate
for evaluating the proposed architecture. In this context, link S1-Q is uniformly
unavailable in total 1% of the time of the experiment. Similarly link S2-Q is 5%
unavailable, link S3-Q is 10% unavailable, and finally, link Q-R is 0.5% unavailable.
Furthermore, the propagation delay of links S1-Q, S2-Q, S3-Q and Q-R was set
respectively to 2sec, 600 sec, 300 sec and 0.6 sec. Finally, we set the total time of the
experiments to one hour, and measure the total number of received packets for all three
sending nodes, as well as the Application Satisfaction Index (ASI) [14] of the network,
a metric that highlights the contribution of the queuing delay to the total delay. In order
to add reliability to our results and enforce randomness to take effect we repeat the
experiment several times. In particular, the performance of DTQM was evaluated in
five connectivity scenarios, each one utilizing a different (randomly generated)
connectivity schedule. We compare the obtained results with the corresponding results
of a FIFO policy. In line with the priority function used (see Fig. 2) we assign ToD for

each application as follows: 1 for the RT application, 2 for the TM application and 3
for the TC application.

Furthermore, we set the packet intervals for each application as we would expect in
real-life, that is, Real-Time packets are generated with the shortest interval and
Telecommand packets are generated with the longest interval; hence the difference in
packet numbers.

 In Fig. 5 below, we present the results from the comparison of DTQM against
Droptail, using ASI and average delay as our performance metrics. The first
observation that we can make is that DTQM outperforms Droptail in any case. In
particular, we experience a 60% delay decrease on average and in some cases it can
reach up to 90% reduction of the corresponding bundle delay using a typical FIFO
scheme. This delay decrease is also reflected on the system ASI, which is increased
20%, on average.

Fig 5. Experimental results

TABLE II. EXPERIMENTAL RESULTS

 Best Case Worst Case
 RT TM TC RT TM TC

Received
packets

FIFO 15680 696 5 15732 645 4
DTQM 15618 754 5 15500 869 7

Average
Delay

FIFO 1308 1196 1477 1306 1113 1219
DTQM 357 267 150 565.9 789.7 877

System
ASI

FIFO 0.49 0.53
DTQM 0.69 0.55

Table 2 demonstrates in detail the best and worst case results for DTQM. By
viewing Table 2, we notice that the received packets are almost the same in any case
(with the exception of the TM packets of the worst case experiment) regardless of
queuing policy. Nevertheless, we may experience up to 40% increase in received
Telemetry and Telecommand packets when DTQM is deployed, since we assign them
with higher ToD. Moreover, the most interesting observation is the undoubtable
improvement of the average delay regardless of the application. However, since we
transfer the same number of packets in both cases, how can we justify the delay
decrease? DTQM uses a sophisticated scheduling algorithm that assigns higher priority
to the packets most recently arrived in the node and promotes them in the queue (see
Fig. 2). Thus, packets are reordered in the buffer based on the time they entered the
routing node. Classic scheduling uses a rigid FIFO approach, which although it seems
to promote fairness, in fact it increases the communication time, with the risk of
dropping a packet due to TtL expiration.

5 Conclusions

In this paper we proposed a novel architecture for queue management in DTN nodes.
Although the available space confines us from presenting a more detailed version and
evaluation of our model, we sketched several of its characteristics.

One of the most interesting results was initially introduced by the stochastic
analysis, which yielded positive results for the operation of our model that exhibits a
behavior far superior to FIFO and comparable to PQ, even in network conditions that
are unfavorable for our scheme. We also obtained supportive results from the
conducted experiments that alleviate worries from adopting numerous assumptions on
the stochastic analysis section. Therefore we can safely claim that DTQM has the
potential to achieve smaller queuing delays and higher application satisfaction when
connectivity is scarce.

Our next step is to enhance our evaluation towards two directions: i) to present a
more detailed analysis, which incorporates total capacity and storage capacity as well,
in order to highlight one major property of DTN and ii) to extend the experiments by
using the space-oriented testbed [15] that we have developed in our lab.

Acknowledgments. The research leading to these results has received funding from
the European Community's Seventh Framework Programme ([FP7/2007-2013_FP7-
REGPOT-2010-1, SP4 Capacities, Coordination and Support Actions) under grant
agreement n° 264226 (project title: Space Internetworking Center-SPICE)

References

1. Fall, K.: A delay-tolerant network architecture for challenged internets. ACM SIGCOMM
2003, Karlsruhe, Germany, 25-29 August (2003).

2. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.:
Delay Tolerant Networking Architecture. RFC 4838, April (2007).

3. Dimitriou, S., Tsaoussidis, V.: Effective Buffer and Storage Management in DTN Nodes.
E-DTN 2009, St. Petersburg, Russia, 14 October (2009).

4. Scott, K., Burleigh, S.: Bundle protocol specification. RFC 5050, November (2007).
5. Class-based Weighted Fair Queuing, Cisco IOS Software Releases 12.0 T.
6. Low Latency Queuing, Cisco IOS Software Releases 12.0 T.
7. Lindgren A. and Phanse K. S.: Evaluation of queuing policies and forwarding strategies for

routing in intermittently connected networks. Proc. of IEEE COMSWARE, January 2006.
8. Krifa, A., Barakat, C., Spyropoulos, T.: Optimal buffer management policies for delay

tolerant networks. IEEE SECON 2008, San Francisco, California, June 16-20 (2008).
9. Jet Propulsion Laboratory: ION: Interplanetary Overlay Network. https://ion.ocp.ohiou.edu.
10. The Delay-Tolerant Networking Research Group (DTNRG): http://www.dtnrg.org/.
11. Bertsekas, D. P., Gallager, R.: Data Networks. Prentice Hall (1991).
12. Little, J. D. C.: A Proof of the Queueing Formula L = λ W. Operations Research, 9, (1961).
13. Network Simulator, http://www.isi.edu/nsnam/ns/ (1997).
14. Mamatas, L, Tsaoussidis, V: Differentiating services with Non-Congestive Queuing (NCQ).

IEEE Transactions on Computers, 58(5):591–604 (2009).
15. Samaras, C. V., Komnios, I., Diamantopoulos, S., Koutsogiannis, E., Tsaoussidis, V.,

Papastergiou, G., Peccia, N.: Extending Internet Into Space - ESA DTN Testbed
Implementation and Evaluation. Mobilight 2011, Athens, Greece, 18-20 May (2009).

