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Abstract   This chapter introduces intelligent technologies applied in electronic 
healthcare systems and services. It presents an overview of healthcare 
technologies that enable the advanced patient data acquisition and management of 
medical information in electronic health records. The chapter presents the most 
important patient data classification methods, while special focus is placed on new 
concepts in intelligent healthcare platforms (i.e., advanced data mining, agents and 
context-aware systems) that provide enhanced means of medical data 
interpretation and manipulation. The chapter is concluded with the areas in which 
intelligent electronic healthcare systems are anticipated to make a difference in the 
near future. 

1 Introduction 

In this era of ubiquitous and mobile computing the vision in biomedical 
informatics is towards achieving two specific goals: the availability of software 
applications and medical information anywhere and anytime and the invisibility of 
computing [26]. Both these goals lead to the introduction of electronic healthcare 
computing concepts and features in e-health applications. Applications and 
interfaces that will be able to automatically process data provided by medical 
devices and sensors, exchange knowledge and make intelligent decisions in a 
given context are strongly desirable. Natural user interactions with such 
applications are based on autonomy, avoiding the need for the user to control 
every action, and adaptivity, so that they are contextualized and personalized, 
delivering the right information and decision at the right moment [27]. All the 
above recently introduced features provide added value in modern electronic 
healthcare systems. 
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These technologies can support a wide range of applications and services 
including automated diagnosis, personalized medicine, patient monitoring, 
location-based medical services, emergency response and management, ubiquitous 
access to medical data, and home monitoring. This chapter presents a special 
branch of artificial intelligence tools and applications called intelligent electronic 
healthcare systems. In general, the term intelligent electronic healthcare systems 
refers to automated systems that process medical data such as clinical 
examinations or medical images and provide estimated diagnoses. The estimations 
are often based on the analysis of details that elude the human eye as well as large 
amounts of medical history that humans cannot possibly consider or analyzing 
non-visual characteristics of medical data. Although such systems typically do not 
reach 100% success, which means that they cannot substitute the working 
physician, the input they provide is extremely helpful as an independent source of 
evidence concerning a correct medical decision.  

The development of intelligent health-care systems is a very promising area for 
commercial organizations active in the health monitoring domain. Currently, the 
cost effective provision of quality healthcare is a very important issue throughout 
the world since healthcare faces a significant funding crisis due to the increasing 
population of older people and the reappearance of diseases that should be 
controllable. Intelligent healthcare systems are capable of attacking all these 
challenges in an efficient and cost-effective way. Hardware and software is 
gradually becoming cost-affordable, can be installed and operated in numerous 
sites (frequently visited by patients), can be interfaced to a wide variety of medical 
information systems (e.g., patient databases, medical archives), thus involving 
numerous actors. Hence, the electronic health systems in general present a truly 
scalable architecture covering a wide spectrum of business roles and models [23]. 

This chapter aims at presenting the state of the art and new trends in intelligent 
healthcare systems. The chapter is structured as follows: Section 2 discusses the 
technologies that enable the use of healthcare computing (i.e., patient data 
acquisition methods and tools, medical data management, healthcare information 
systems and medical data exchange). Section 3 overviews the intelligent aspect 
that can be applied in electronic healthcare systems, while Section 4 focuses on 
new concepts in electronic healthcare applications such as intelligent agents and 
context-awareness and finally, Section 5 presents the challenges of the near future 
and concludes this chapter. 
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2 HealthCare Enabling Technologies 

2.1 Patient Biosignals and Acquisition Methods 

A broad definition of a signal is a ‘measurable indication or representation of an 
actual phenomenon’, which in the field of biosignals, refers to observable facts or 
stimuli of biological systems or life forms. In order to extract and document the 
meaning or the cause of a signal, a physician may utilize simple examination 
procedures, such as measuring the temperature of a human body or may have to 
resort to highly specialized and sometimes intrusive equipment, such as an 
endoscope. Following signal acquisition, physicians go on to a second step, that of 
interpreting its meaning, usually after some kind of signal enhancement or ‘pre-
processing’, that separates the captured information from noise and prepares it for 
specialized processing, classification and decision support algorithms.  

Biosignals require a digitization step in order to be converted into a digital 
form. This process begins with acquiring the raw signal in its analog form, which 
is then fed into an analog-to-digital (A/D) converter. Since computers cannot 
handle or store continuous data, the first step of the conversion procedure is to 
produce a discrete-time series from the analog form of the raw signal. This step is 
known as ‘sampling’ and is meant to create a sequence of values sampled from the 
original analog signals at predefined intervals, which can faithfully reconstruct the 
initial signal waveform. The second step of the digitization process is 
quantization, which works on the temporally sampled values of the initial signal 
and produces a signal, which is both temporally and quantitatively discrete; this 
means that the initial values are converted and encoded according to properties 
such as bit allocation and value range. Essentially, quantization maps the sampled 
signal into a range of values that is both compact and efficient for algorithms to 
work with. The most popular biosignals utilized in electronic healthcare 
applications ([1], [3], [4], [10], [11], [16], [17], [19], [20], [23]) are summarized in 
Table 1. 

Table 1. Broadly used biosignals with corresponding metric ranges, number of sensors 
required and information rate. 

Biomedical 
Measurements 
(Broadly Used 
Biosignals) 

Voltage 
range 
(V) 

Number of 
sensors  

Information 
rate 
(b/s) 

ECG 0.5-4 m 5-9 15000 

Heart sound Extremely 
small 2-4 120000 

Heart rate 0.5-4 m 2 600 
EEG 2-200 µ 20 4200 
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EMG 0.1-5 m 2+ 600000 
Respiratory rate Small 1 800 
Temperature of 
body 0-100 m 1+ 80 

 
In addition to the aforementioned biosignals, patient physiological data (e,g., 

body movement information based on accelerometer values), and context-aware 
data (e.g., location, environment and age group information) have also been used 
by electronic healthcare applications ([1], [2], [3], [4], [6], [13], [14], [15], [18], 
[20], [21], [24]). The utilization of the latter information is discussed in the 
following sections. 

 

 
Fig. 1. Accelerometer sensor device that can be attached on patient’s body and transmit 
movement data wirelessly to the monitoring unit [21]. 

 

Fig. 2. CodeBlue [9]: A wearable ECG and pulse oximeter measurement device. 

In the context of healthcare applications, the acquisition of biomedical signals 
is performed through special devices (i.e. sensors) attached on the patients body 
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(see Fig. 1) or special wearable devices (see Fig. 2). Regarding the contextual 
information, most applications are based on data collected from video cameras, 
microphones, movement and vibration sensors. 

2.2 Healthcare Information Systems and Medical Data Exchange 

The use of healthcare information systems and potential applications are numerous 
nowadays. Medical platforms allowing doctors to access Electronic Health 
Records (EHR) are already set up in several countries [33], [34], [35]. An EHR is 
an electronic version of a patient’s medical history, that is maintained by the 
healthcare provider over time, and includes all of the key administrative clinical 
data relevant to that person’s care under a particular provider, including 
demographics, progress notes, problems, medications, vital signs, past medical 
history, immunizations, laboratory data, medical images and radiology reports.  

Table 2. Electronic Health Records (EHR) data modalities 

Digital Data 

Contrast / Resolution 
(No. of samples per 
second x bits per 
sample) 

Data Size  

Demographic Data  ~ 100 KB 
Clinical Data 

 (Biosignals)  ~ 100 KB / incident 

Digital audio 
stethoscope (Heart 
Sound)  

10000 x 12 ~ 120 kbps 

Electrocardiogram 
ECG 1250 x 12 ~ 15 Kbps 

Electroencephalogram 
EEG 350 x 12 ~ 10 Kbps 

Electromyogram EMG 50000 x 12 ~ 600 Kbps 
Ultrasound, 

Cardiology, 
Radiology  

512x512x8 256 KB (image size) 

Magnetic resonance 
image 512x512x8 384 KB (image size) 

Scanned x-ray 1024x1250x12 1.8 MB (image size) 
Digital radiography 2048x2048x12 6 MB (image size) 
Mammogram 4096x4096x12 24 MB (image size) 
Compressed and full 

motion video 
(telemedicine) 

- 384 kbps to 1.544 
Mb/s (speed) 
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The EHR automates access to information and has the potential to streamline 
the clinician's workflow. The EHR also has the ability to support other care-
related activities directly or indirectly through various interfaces, including 
evidence-based decision support, quality management, and outcomes reporting. 
The type of data included in EHR systems are presented in Table 2. 

EHR systems provide the hospitals with the infrastructure to collaborate 
efficiently at a technical level. Hospitals are sufficiently rich in their infrastructure 
to handle the internal administrative and clinical processes and the need to 
integrate the processes of geographically distributed and organizationally 
independent organizations is evident. At business level, however, the need to 
integrate the processes of geographically distributed and organizationally 
independent organizations led the design of architecture of health information 
systems to combine the principles of different approaches to interoperability: 
Workflow Management Systems (WfMSs), the Middleware approaches to 
interoperability such as Message Oriented Middleware, the Semantic Web and 
Visual Integration. A brief reference to the above approaches is given in the 
following paragraphs. 

 
Workflow is defined [36] as the computerized facilitation or automation of a 

business process, in whole or part and a Workflow Management System is a 
system that completely defines, manages and executes “workflows” through the 
execution of software whose order of execution is driven by a computer 
representation of the workflow logic. Interoperability among workflow products 
concerns a standardized set of interfaces and data interchange formats between 
such components in the health care sector. 

2.2.1 The Semantic Web – Web Services 

The World Wide Web was initially designed for unstructured information 
exchange, but that led to lack of uniformity for accessing web services. To 
facilitate access to complex services, a group of companies standardized on SOAP 
(Simple Object Access Protocol) as a light-weight protocol based on XML for 
exchanging messages over the Web. Similarly higher-level service layers have 
been defined such as WSDL (Web Service Description Language) and UDDI 
(Universal Description, Discovery and Integration). The use of ontology is 
suggested and languages for specification and representation of knowledge in the 
semantic web like OWL, OIL, DAML+OIL, UDDI are used.  

2.2.2 Message Oriented Standards – HL7 

Health Level Seven, Inc. ([37]) is a not-for-profit, ANSI-Accredited Standards 
Developing Organization that provides standards for the exchange, management 
and integration of data that supports clinical patient care and the management, 
delivery and evaluation of healthcare services. Data exchange is implemented by 
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exchanging messages. HL7 corresponds to the conceptual definition of an 
application-to-application interface placed in the 7th layer of the OSI model. HL7 
achieves interoperability through syntactically and semantically standardized 
messages. In the US and in many European countries the HL7 standard has 
become the main communication standard for healthcare system integration. 

2.2.3 Message Oriented Standards – CEN/TC 251 health informatics 

CEN is a European collaboration of the formal standards bodies of 19 countries 
with strong links to the politics of the European Union and with Eastern European 
countries as associate members. The standardization of Health Informatics started 
in 1990 and has resulted in a number of message standards based on information 
models, most often implemented in Edifact, but since 1999, also implementable in 
XML. The standards work of CEN/TC 251 complements HL7 work in the areas of 
security, healthcare record architecture and device communication. The standard 
that has been defined for the field of health informatics is a messaging standard 
and also provides the architecture concept for the middleware layer for healthcare-
specific applications. 

2.2.4 Message Oriented Standards – DICOM 

The great majority of equipment that deals with digital medical imaging and 
communication supports DICOM. It supports operation in a networked 
environment using the industry standard networking protocol TCP/IP. The 
standard specifies how devices react to commands and data being exchanged. The 
creation of DICOM Structured Reporting (DICOM-SR), in the year 2000, has 
established a method for constructing and transferring information objects that 
encode structured documents. Structured reports ease the search for specific 
information, report translation and comparison between different findings. The 
standard explicitly describes how reports are structured, using controlled 
terminology like SNOMED. 

2.2.5 CORBA 

Distributed application frameworks required to build complex services have 
been around for a while. Popular ones are (or have been) COM (Component 
Object Model), DCOM (Distributed COM), and COM+ which are Microsoft 
specific, EJB (Enterprise Java Beans) which is Java specific, and CORBA 
(Common Object Request Broker Architecture) [37] which is both platform and 
language independent. CORBA is created and maintained by the Object 
Management Group (OMG), an international, non-profit software organization 
driven and supported by information system vendors’ software developers and 
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technology users. To address the needs of the rapidly changing healthcare 
industry, the OMG established a Healthcare Task Force, the CORBAmed. A key 
difference between CORBA and Web Service Technologies 
(UDDI/WSDL/SOAP) is that CORBA provides true object-oriented component 
architecture unlike the Web services, which are primarily message–based [38]. 
Moreover CORBA also comes with a standard set of services (Events, Naming, 
Trading) that allow application writers to focus on the business logic rather than 
on the details of the communication infrastructure. 

The above mentioned standards enable the interoperability of electronic 
healthcare systems and in addition facilitate the collection of large medical 
datasets describing logical organization of same or similar pathological conditions 
for one or many patients. These medical datasets are the basis for the development 
of intelligent systems, allowing the advanced processing and interpretation of 
physiological, clinical and image medical data. These systems are encountered 
mostly as advanced Medical Decision Support Systems (MDSS) that could help 
medical professionals as diagnostic adjuncts promoting the quality of medical 
services, especially in underserved populations, where expert medical knowledge 
is unavailable. This aspect of electronic healthcare systems is discussed in the next 
section. 

3 Artificial Intelligence in Electronic Healthcare Systems 

The objective of computer-assisted decision making in healthcare aims to allow 
the medical professional to use the computer as a tool in the decision process. The 
most important processes in the development and operation of Medical Decision 
Support Systems (MDSS) are (i) the acquisition of information regarding the 
diagnosis classes and (ii) the actual classification of a given case to a diagnosis. 
The two steps are actually closely related to each other, as the type of classifier 
chosen in most cases also indicates the training methodology to use. Although 
there is an extremely wide variety of classification methodologies that one may 
choose to apply, the most well known and widely applied genres of approaches 
can be briefly summarized and categorized as follows: 
 

1. The examined case is compared directly to other cases in the EHR and 
similarities are used in order to provide a most probable diagnosis.  

2. Different types of classifiers are trained based on available health 
records, so that the underlying data patterns are automatically identified 
and utilized in order to provide more reliable classification of future data. 

3. Information extracted automatically from medical history, or provided 
manually by human experts, is organized so that diagnosis estimation is 
provided in a dialogical manner through a series of question/answer 
sessions. 

4. Multiple simple classifiers are combined in order to minimize the error 
margin. 
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5. Information provide by human experts in the form of simple rules is 
utilized by a fuzzy systems in order to evaluate the case in hand. 

 
The following subsections discuss briefly the data classification methods used 

in MDSS and the corresponding evaluation methodologies. 

3.1 Patient Data Classification Methods 

Data classification is an important problem in a variety of engineering and 
scientific disciplines such biology, psychology, medicine, marketing, computer 
vision, and artificial intelligence [30]. Its main object is to classify objects into a 
number of categories or classes. Depending on the application, these objects can 
be images or signal waveforms or any type of measurements that need to be 
classified. Given a specific data feature, its classification may consist of one of the 
following two tasks: a) supervised classification in which the input pattern is 
identified as a member of a predefined class; b) unsupervised classification in 
which the pattern is assigned to a hitherto unknown class. 

In statistical data classification, input data are represented by a set of n features, 
or attributes, viewed as an n-dimensional feature vector. The classification system 
is operated in two modes: training and classification. Data preprocessing can be 
also performed in order to segment the pattern of interest from the background, 
remove noise, normalize the pattern, and any other operation which will contribute 
in defining a compact representation of the pattern. In the training mode, the 
feature extraction/selection module finds the appropriate features for representing 
the input patterns and the classifier is trained to partition the feature space. The 
feedback path allows a designer to optimize the preprocessing and feature 
extraction/selection strategies. In the classification mode, the trained classifier 
assigns the input pattern to one of the pattern classes under consideration based on 
the measured features. 

There is a vast array of established classification techniques, ranging from 
classical statistical methods, such as linear and logistic regression, to neural 
network and tree-based techniques. In the following we review the main 
categories of classification systems that find application in an MDSS framework. 

3.1.1 k- Nearest Neighbours 

The k-Nearest Neighbours methodology, often referred to as k-NN, constitutes 
a breed of classifiers that attempt to classify the given patient data by identifying 
other similar cases in his or other health records. The simplest, as well as most 
common, case is when all considered features extracted by medical data are 
scalars. The k-NN methodology has found many applications in the field of 
MDSSs [44], [45], [46]. 
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3.1.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are the main representatives of a more 
robust approach to classification; these classifiers, prior to being put to use, 
process available medical data in EHRs in order to extract useful information 
concerning the underlying data patterns and structure, thus also acquiring the 
information required in order to optimize the classification process. Following a 
massively parallel architecture, quite similar to that of neurons in the human brain, 
ANNs construct powerful processing and decision making engines through the 
combination of quite trivial processing units – also named neurons. ANNs are 
exhaustively used in MDSS. For instance, the following works are based on 
applications of ANNs [47], [48], [49], [50], while [51] reviews the benefits of 
ANN application in medicine in general. 

The characteristic that makes ANNs so popular is the fact that given a set of 
labeled data (extracted by the EHR) an ANN will tune itself in an automated 
manner so as to match these data in the best possible way. Unfortunately, this 
training process is not a trivial one. Numerous methodologies are presented in the 
literature for training ANNs, each one focusing on a different feature or situation. 
Thus, different training methodologies (as well as network structure) can be used 
when the amount of training data is small, computing resources are limited, some 
or all of the medical data are unlabelled. Therefore the adoption of the standards 
discussed in section 2 is considered a necessity. 

3.1.3 Self Organizing Maps 

The fact that one needs to have a clear idea concerning the structure of the 
network (count of layers, count of neurons) before even training and testing can 
start is a very important limitation for ANNs. Kohonen’s Self Organizing Maps 
(SOMs) constitute a more interesting and robust approach to training a network 
with no prior knowledge of the underlying data structures. A number of details 
about the selection of the parameters, variants of the map, and many other aspects 
have been covered in the monograph [52]. Due to their excellent properties and 
characteristics, SOMs have found numerous applications in MDSSs, such as [53], 
[54], [55], [56]. 

3.1.4 Support Vector Machines 

The Support Vector Machine (SVM) is a novel algorithm for data classification 
and regression. It was introduced by Vapnic and is clearly connected with 
statistical learning theory [57], [58], [59]. The SVM is an estimation algorithm 
that separates data in two classes, but since all classification problems can be 
restricted to consideration of the two-class classification problem without loss of 
generality, SVMs can be applied to classification problems in general. SVMs 
allow the expansion of the information provided by a training data set as a linear 
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combination of a subset of the data in the training set (support vectors). These 
vectors locate a hypersurface that separates the input data with a very good degree 
of generalization. The SVM algorithm is a learning machine; therefore it is based 
on training, testing and performance evaluation, which are common steps in every 
learning procedure. Training involves optimization of a convex cost function 
where there are no local minima to complicate the learning process. Testing is 
based on the model evaluation using the support vectors to classify a test data set. 
Performance is based on error rate determination as test set data size tends to 
infinity. Due to the fact that SVMs focus on maximizing the margin between 
classes, thus minimizing the probability of misclassification, they are extremely 
popular in MDSSs, where the cost of a misclassification may have a direct impact 
on human life. The following works are just a few examples of works in the 
medical field that are based on SVM learning [60], [61], [62], [63], [64]. 

3.1.5 Decision Trees 

Physicians using MDSSs are often reluctant to leave important medical 
decisions to a sub-symbolic, and thus generally incomprehensible, automated 
engine. Decision trees offer an alternative computing methodology which reaches 
a decision through consecutive, simple question and answer sessions. 

In the learning phase (when the decision tree is constructed) exactly one of the 
available features needs to be selected as the root feature, i.e. the most important 
feature in determining the diagnosis. Then data are split according to the value 
they have for this feature, and each group of data is used in order to create the 
corresponding child (sub-tree) of the root. If all of the data in a group belongs to 
the same diagnosis, then that child becomes a leaf to the tree and is assigned that 
diagnosis. Otherwise, another feature is selected for that group, and data are again 
split leading to new groups and new children for this node. Decision trees are also 
widely used for the development of MDSS [65], [66], [67], [68], [69]. A review of 
decision tree applications in medicine is available in [70]. 

3.2 Performance Evaluation of Classification Systems 

The performance of each classifier is tested using an ideally large set of 
manually classified data. A subset of them, e.g., 80% is used as the training set 
and the remaining 20% of the samples are used for testing using the trained 
classifier. The training and test data are exchanged for all possible combinations to 
avoid bias in the solution. Classification performance of MDSS is typically based 
on a true/false and positive/negative scheme. When adopted in the medical case, 
true positive (TP) is correct illness estimation, true negative (TN) a correct healthy 
estimation, false positive (FP) illness estimation for a healthy case and a false 
negative (FN) a healthy estimation for an ill case. Based on these, accuracy is 
defined as follows: 



Ilias Maglogiannis 

 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
   (Equation 1) 

The simplistic approach of simply counting correct and incorrect 
classifications in order to estimate accuracy, although generally accepted in other 
expert systems and classifiers, is not sufficient for the case of medical systems, 
where one type of mistake may be much more important – as far as the possible 
consequences are concerned – compared to another. For example a false positive 
estimation has the result of a patient taking extra tests in order to verify their 
health status, whereas a false negative diagnosis may deprive them of early 
diagnosis and treatment. Finally, classes in a medical setting are rarely balanced; it 
is typical that only a small percentage of people examined will actually be ill. As a 
result, a system that always provides a “healthy” diagnosis reaches high 
classification rates.  

In order to compensate for this, a more flexible consideration of errors needs 
to be used, in order for class probabilities to be considered as well. A simple 
approach that is commonly followed in this direction is the utilization of 
specificity and sensitivity measures, defined as follows: 

TNSpecificity
TN FP

=
+

 (Equation 2) 

TPSensitivity
TP FN

=
+

 (Equation 3) 

 

where specificity and sensitivity are actually measures of accuracy, when 
considering only healthy or only ill cases, respectively, thus decoupling the 
measures from class probabilities. 

A graphical representation of classification performance is the Receiver 
Operating Characteristic (ROC) curve (see Fig. 3), which displays the “tradeoff” 
between sensitivity (i.e. TPF) and specificity (i.e. TNF) that results from the 
overlap between the distribution of lesion scores for ill and healthy data. A good 
classifier is one with close to 100% sensitivity at a threshold such that high 
specificity is also obtained. The ROC for such a classifier will plot as a steeply 
rising curve. When different classifiers are compared, the one whose curve rises 
fastest should be best. If sensitivity and specificity were weighted equally, the 
greater the area under the ROC curve (AUC), the better the classifier. An 
extension of ROC analysis found in the literature [39] is the three-way ROC 
analysis that applies to trichotomous tests. It summarizes the discriminatory power 
of a trichotomous test in a single value, called the volume under surface (VUS) by 
analogy to the AUC value for dichotomous tests. Just as the AUC value for 
dichotomous tests is equivalent to the probability of correctly ranking a given pair 
of normal and abnormal cases, the VUS value for trichotomous tests is equivalent 
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to the probability of correctly distinguishing three cases, where each case is from a 
different class.  

 

 
Fig. 3. Example of ROC curve. X-axis represents the false positive rate (1-Sp, where Sp is 
the specificity) and the Y-axis the true positive rate (or Sensitivity, Se). 

4 New concepts: Intelligent Agents and Context Awareness 

As can be seen from the above section, several research efforts dealing with 
machine intelligence techniques on clinician settings providing advanced 
healthcare services exist in the literature. All of the surveyed works present 
corresponding clinical trials of the effects and patient outcomes from the 
application of such Medical Decision Support Systems (MDSS). State of the art 
works in the field of intelligent electronic healthcare systems, report that the new 
concepts and approaches deal with advanced data mining and intelligent agents, 
while context awareness is the new desirable feature of e-health applications. The 
next two subsections analyze the aforementioned newly introduced approaches. 

4.1 Data Mining and Intelligent Agents 

The proliferation of healthcare data has resulted in a large number of efforts to 
inductively manipulate, interpret and discover ‘useful’ knowledge from the 
collected data. Interesting results have been reported by health informatics 
researchers using a variety of advanced Data Mining (DM) algorithms [31], [32]. 
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The most important anticipated tasks for the medical repositories are summarized 
into the following: 

• Problem analysis and specification, which guides the choice of 
‘appropriate’ DM 

• Establishing a communication channel to enable remote access to the 
data repositories of multiple hospitals. Technically this involves the 
exchange of messages. 

• Collection of ‘relevant’ data to complete each individual task need to be 
first identified and subsequently retrieved from the respective data 
repositories. 

• Synthesis of heterogeneous data originating from multiple data 
repositories. 

• Preparation of the data according to the specification of the DM service 
packages. 

• Execution of the DM algorithm. 
• Generation of a DM report for the end-user. 

 
Due to the existence of multiple heterogeneous data repositories in a healthcare 
enterprise, a distributed data community should be established, such that any DM 
effort draws upon the ‘holistic’ data available within the entire healthcare 
enterprise. Multi Agent-Based Data Mining Info-Structures (ADMI), responsible 
for the generation of data-mediated diagnostic-support and strategic services have 
been proposed. The latter takes advantage of a multi-agent architecture, which 
features the amalgamation of various types of intelligent agents. 
Intelligent agents can be viewed as autonomous software (or hardware) constructs 
that are proactively involved in achieving a predetermined task and at the same 
time reacting to its environment. According to [29], agents are capable of: 

• performing tasks (on behalf of users or other agents). 
• interacting with users to receive instructions and give responses. 
• operating autonomously without direct intervention by users, including 

monitoring the environment and acting upon the environment to bring 
about changes. 

• showing intelligence – to interpret monitored events and make 
appropriate decisions. 

 
Agents can be proactive, in terms of being able to exhibit goal-directed 

behavior, reactive; being able to respond to changes in the environment, including 
detecting and communicating to other agents, autonomous; making decisions and 
controlling their actions independently of others. Intelligent agents can be also 
considered as social entities where they can communicate with other agents using 
an agent-communication language in the process of carrying out their tasks. 
Software agents can also be used in order to perform distributed analysis of vital 
data and give an alarm indication to previously-selected physicians and family 
members [11]. Agents may also assist patients or treatment experts to perform 
basic tasks like meal preparation and medication [11], [12]. 
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Additional Agent-based techniques [7] can often be utilized for modeling 
application components as somewhat autonomous agents that easily reflect 
healthcare institutions’ decentralized networks. Medical agent interfaces ([5], 
[23]) provide continuous and more direct access to the aforementioned 
information. Software agents are installed either on mobile devices (e.g., PDAs) or 
on interactive devices within the treatment center (e.g. PCs or LCD monitors, or 
smart walls [11]). Information retrieval and presentation can be either performed 
by user request or reactively (e.g, based on user’s location or patient’s state). 
Queries regarding patient data or medical information (e.g., medication 
procedures, diseases symptoms, etc.) are parsed through specific agents (i.e. query 
optimization agents) and forwarded to knowledge retrieval agents for research. 
The information retrieval can be performed either from the local hospital 
information system or remote medical knowledge repositories. Information 
retrieval, knowledge adaptation and presentation to the user are performed by 
related agents using medical ontologies for proper knowledge data representation 
[8].  

Using such advanced knowledge representation and medical data retrieval 
methods, to access multiple healthcare information is feasible, even from mobile 
devices. Proper access restriction to sensitive information can be applied and 
direct access to important information in cases of emergency can be established 
[25]. 

4.2 Context Awareness 

Context awareness is the capability of ehealth applications to be aware of the 
existence and characteristics of the patient's activities and environments. In rapidly 
changing scenarios, such as the ones considered in the fields of biomedical 
informatics, systems have to adapt their behaviour based on the current conditions 
and the dynamicity of the environment they are immersed in ([28]). A system is 
context-aware if it can extract, interpret and use context information and adapt its 
functionality to the current context of use. The challenge for such systems lies in 
the complexity of capturing, representing and processing contextual data. To 
capture context information generally some additional sensors and/or programs 
are required [22]. The main goal of context aware computing is to acquire and 
utilize information about the context of a medical device to provide services that 
are appropriate to particular people, place, time, events, etc. ([42]). According to 
the latter, the work presented in [40] describes a context-aware mobile system for 
inter-hospital communication taking into account patient’s and physician’s 
physical location for instant and efficient messaging regarding medical events. J. 
Bardram presents in [41] additional cases of context-awareness used within 
treatment centres and provides design principles for such systems. The project 
‘AWARENESS’ (presented in [43]) provides a more general framework for 
enhanced telemedicine and telediagnosis services depending on patient status and 
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location. 
The way context-aware applications make use of context can be categorized 

into the three following classes: presenting information and services, executing a 
service, and tagging captured data. 

Presenting information and services refers to applications that either present 
context information to the user, or use context to propose appropriate selections of 
actions to the user. 

Automatically executing a service describes applications that trigger a 
command, or reconfigure the system on behalf of the user according to context 
changes. 

Attaching context information for later retrieval refers to applications that tag 
captured data with relevant context information. 
The patient state can be determined through a number of biosensors (i.e. heart rate 
and body temperature sensors) and corresponding vital signals. Defined threshold 
values in the latter signals determine the case of an immediate medical data 
transmission (alarm event) to the monitoring unit. In case of normal patient status, 
periodical summarized data transmission might occur at lower detail. Data coding 
and transmission can also vary according to network availability and quality: 
Context awareness can be used for instance in cases of remote assessment or 
telesurgery. According to the network interface used, appropriate video coding is 
applied to the transmitted medical data, avoiding thus possible transmission delays 
and optimizing a telemedicine procedure. 

5 Discussion and Conclusions 

As clinical machine intelligence techniques mature, it seems they can offer 
increasingly exciting prospects for improving the effectiveness and efficiency of 
patient care and the development of more reliable intelligent electronic healthcare 
systems. According to a recent review [71] published studies of clinical machine 
intelligence systems are increasing rapidly, and their quality is improving. It 
seems that they may enhance clinical performance for drug studies, preventive 
care, and other aspects of medical care, but not convincingly however in all cases 
for diagnosis and prognosis. The potential reason for this is that rigorous 
evaluations of MDSSs are usually more difficult to conduct than evaluations of 
drug studies, for instance, because clinical settings often preclude complete 
separation of the intervention and control groups. The studies of patient outcomes 
require also large numbers of participants and significant budgets, which are not 
always easy to find. Without the existence of such rigorous patient outcomes 
studies physicians may not be convinced to introduce the use of MDSSs in the 
routine practice of healthcare.  

Clearly, the goal is to reach a stage where intelligent electronic healthcare 
systems are integrated in the process of everyday clinical work, but without being 
assigned roles they are not made for, such as the role of the actual clinician. It 
seems that a number of parameters will have an effect in this process, ranging 
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from purely financial issues to degree of automation, from availability at the time 
and location it is needed to the ease of the user interface and from the adoption of 
standards in medical data acquisition components to the success of the system 
development and integration procedures. The areas in which intelligent electronic 
healthcare systems could make a difference are many. The following Table 
provides a summary of the most important ones in the author’s view. 

Table 3. Potential users and uses for intelligent electronic healthcare systems  

User Application  
Pharmacists Drug levels, drug/drug interactions, culture 

& sensitivity results, adverse drug events 
Physicians Advanced Medical Data Processing Tools, 

Extraction of Features, Quantification of 
Pathological Phenomena 

Non-Expert Physician Computer Supported Diagnosis 
Remote Physician Advanced Telemedicine Systems 
Biologists Simulation of pathogenetic mechanisms 
Nurses Critical lab results, drug/drug interactions 
Dietary  Patient transfers, lab support for tube 

feedings 
Epidemiology/infection 
control 

Epidemiological results, reportable 
organisms 

Homecare Patient Monitoring at Home 
Billing Excessively expensive tests and treatments 
Administration  Patient chart administration 
Patient Drug/drug interactions, drug dosing, 

missing tests 
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