
Evaluation of Java Card Performance

Samia Bouzefrane1, Julien Cordry1, Hervé Meunier3, and Pierre Paradinas3

1 CNAM 292 rue Saint-Martin 75003 Paris France
firstname.lastname@cnam.fr

2 INRIA POPS Parc Scientifique de la Haute Borne Bt. IRCICA 50, avenue Halley -
BP 70478 59658 Villeneuve d’Ascq, FRANCE

herve.meunier@lifl.fr
3 INRIA Rocquencourt 78150 Le Chesnay France

Pierre.Paradinas@inria.fr

Abstract. With the growing acceptance of the Java Card standard,
understanding the performance behaviour of these platforms is becom-
ing crucial. To meet this need, we present in this paper, a benchmark
framework that enables performance evaluation at the bytecode and API

levels. We also show, how we assign, from the measurements, a global
mark to characterise the efficiency of a given Java Card platform, and to
determine its performance according to distinct smart card profiles.

1 Introduction

The advent of the Java Card standard has been a major turning point in smart
card technology. It provides a secure, vendor-independent, ubiquitous Java plat-
form for smart cards. It shortens the time-to-market and enables programmers
to develop smart card applications for a wide variety of vendors’ products.

In this context, understanding the performance behaviour of Java Card plat-
forms is important to the Java Card community. Currently, there is no solu-
tion on the market which makes it possible to evaluate the performance of a
smart card that implements Java Card technology. In fact, the programs which
realize this type of evaluations are generally proprietary and not made avail-
able to the whole of the Java Card community. Hence, the only existing and
published benchmarks are used within research laboratories (e.g., SCCB project
from CEDRIC laboratory [3, 6], or IBM Research [11]). However, benchmarks
are important in the smart card area because they contribute in discriminating
companies products, especially when the products are standardised.

Our purpose is to describe the different steps necessary to measure the per-
formance of the Java Card platforms. In this paper, the emphasis is towards
determining the optimal parameters to enable measurements that are as accu-
rate and linear as possible. We also show, how we assign, from the measurements,
a global mark to characterise the efficiency of a given Java Card platform, and
to determine its performance according to distinct smart card profiles.

The remainder of this paper is organised as follows. In Section 2, we describe
the Java Card technology. Subsequently, we detail in Section 3 the different

2

modules that compose the framework architecture. Section 4 presents a state of
the art of the benchmarking attempts in smart card area before concluding the
paper in Section 5.

Key words: Java Card, Benchmark, Performance, Test

2 Java Card and benchmarking

2.1 Java Card technology

Java Card technology provides means of programming smart cards [2, 8] with a
subset of the Java programming language. Today’s smart cards are small com-
puters, providing 8, 16 or 32 bits CPU with clock speeds ranging from 5 up
to 40MHz, ROM memory between 32 and 128KB, EEPROM memory (writable,
persistent) between 16 and 64KB and RAM memory (writable, non-persistent)
between 3 and 5KB. Smart cards communicate with the rest of the world through
application protocol data units (APDUs, ISO 7816-4 standard). The communi-
cation is done in master-slave mode. It is always the terminal application that
initialises the communication by sending the command APDU to the card and
then the card replies by sending a response APDU (possibly with empty con-
tents). In the case of Java powered smart cards, the cards ROM contains, in
addition to the operating system, a Java Card Virtual Machine (JCVM), which
implements a subset of the Java programming language, hence allowing Java
Card applets to run on the card.

A Java Card applet should implement the install method responsible for
initializing the applet (usually calle by the applet constructor) and a process

method for handling incoming command APDUs and sending the response APDUs
back to the host. More than one applet can be installed on a single card, however
only one can be active at a time (the active one is the most recently selected
by the Java Card Runtime Environment – JCRE). A normal Java compiler is
used to convert the source code into Java bytecodes. Then a converter must be
used to convert the bytecode into a more condensed form (CAP format) that
can be loaded onto a smart card. The converter also checks that no unsupported
features (like floats, strings, etc.) are used in the bytecode. This is sometimes
called off-card or off-line bytecode verification.

2.2 Addressed issues

Our research work falls under the MESURE project [12], a project funded by the
French administration (ANR 4), which aims at developing a set of open source
tools to measure the performance of Java Card platforms.

Only features related to the normal use phase of Java Card applications will
be considered here. Are excluded features like installing, personalizing or deleting
an application since they are of lesser importance from user’s point of view and
performed once.

4 http://www.agence-nationale-recherche.fr/

3

Hence, the benchmark framework enables performance evaluation at three
levels :

– The VM level: to measure the execution time of the various instructions of
the virtual machine (basic instructions), as well as subjacent mechanisms of
the virtual machine (e.g., reading and writing the memory).

– The API level: to evaluate the functioning of the services proposed by the
libraries available in the embedded system (various methods of the API,
namely those of Java Card and GlobalPlatform).

– The JCRE level: to evaluate the non-functional services, such as the trans-
action management, the method invocation in the applets, etc.

The set of tests are supplied to benchmark Java Card platforms available
for anybody and supported by any card reader. The various tests thus have
to return accurate results, even if they are not executed on precision readers.
We reach this goal by removing the potential card reader weakness (in terms
of delay, variance and predictability) and by controlling the noise generated by
measurement equipment (the card reader and the workstation). Removing the
noise added to a specific measurement can be done with the computation of an
average value extracted from multiple samples. As a consequence, it is important
on the one hand to perform each test several times and to use basic statistical
calculations to filter the trustworthy results. On the other hand, it is necessary
to execute several times in each test the operation to be measured in order to
fix a minimal duration for the tests (> 1 second) and to expect getting precise
results.

We will not take care of features like the I/Os or the power consumption
because their measurability raises some problems such as :

– For a given smart card, distinct card readers may provide different I/Os
measurements.

– Each part of an APDU is managed differently on a smart card reader. The
5 bytes header is read first, and the following data can be transmitted in
several way: 1 acknowledge for each byte or not, delay or not before noticing
the status word.

– The smart card driver used by the workstation generally induces more delay
on the measurement than the smart card reader itself.

3 General benchmarking framework

3.1 Introduction

We defined a set of modules as part of the benchmarking framework. The general
framework is illustrated in the figure 1.

The benchmarks have been developed under the Eclipse environment based
on JDK 1.6, with JSR268. The underlying ISO 7816 smart card architecture
forces us to measure the time a Java Card platform takes to answer to a command
APDU, and to use that measure to deduce the execution time of some operations.

4

The benchmarking development tool covers two parts: the script part and the
applet part. The script part, entirely written in Java, defines an abstract class
that is used as a template to derive test cases characterized by relevant measuring
parameters such as, the operation type to measure, the number of loops, etc. A
method run() is executed in each script to interact with the corresponding test
case within the applet. Similarly, on the card is defined an abstract class that
defines three methods:

– a method setUp() to perform any memory allocation needed during the
lifetime test case.

– a method run() used to launch the tests corresponding to the test case of
interest, and

– a method cleanUp() used after the test is done to perform any clean-up.

The testing applet is capable of recognizing all the test cases and launching
a particular test by executing its run method.

Our Eclipse environment integrates the Converter tool from Sun MicroSys-
tems, which is used to convert a standard Java Card applet class into a JCA file
during a first step. This file is completed pseudo-automatically by integrating
the operations to be tested with the Java Card Assembly instructions, as we
explain in the following paragraph. The second step consists in capgenerating
the JCA file into a CAP file, so that the applet could be installed on any Java
Card platform.

Fig. 1. Overall Architecture

3.2 Modules

In this section, we describe the general benchmark framework that has been de-
signed to achieve the MESURE objective. The methodology consists of different

5

steps. The objective of the first step is to find the optimal parameters used to
carry out correctly the tests. The tests cover the VM operations and the API
methods. The obtained results are filtered by eliminating non-relevant measure-
ments and values are isolated by drawing aside measurement noise. A profiler
module is used to assign a mark to each benchmark type, hence allowing us to
establish a performance index for each smart card profile used. In the following
subsections, we detail every module composing the framework.

The bulk of the benchmark consists in performing time execution measure-
ments while we send APDUs from the computer through the Card Acceptance
Device (CAD) to the card. Each test (run) is performed a certain number of
times (Y) to ensure reliability of the collected execution times , and withing
each run method, we perform on the card a certain number of loops (L). L is
coded on the byte P2 of the APDUs which are sent to the on-card applications.
The size of the loop performed on the card is L = (P2)

2.

The Calibrate Module The calibrate module computes the optimal param-
eters (such as the number of loops) needed to obtain measurements of a given
precision.

Benchmarking the various different bytecodes and API entries takes time. At
the same time, it is necessary to be precise enough when it comes to measuring
those execution times. Furthermore, the end user of such a benchmark should
be allowed to focus on a few key elements with a higher degree of precision.
It is therefore necessary to devise a tool that let us decide what are the most
appropriate parameters for the measurement.

Fig. 2. Raw measurement and standard deviation

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 5000 10000 15000 20000 25000 30000

m
ic

ro
 s

ec
on

ds
 (

m
ea

n)

loop size

mean

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5000 10000 15000 20000 25000 30000

ba
se

d
on

 n
an

o
se

co
nd

 d
at

a

loop size

std dev

Figure 2 depicts the evolution of the raw measurement, as well as its standard
deviation, as we take 30 measurements for each available loop size of a test
applet. As we can see, the measured execution time of an applet grows linearly
with the number of loops being performed on the card (L). On the other hand,
the perceived standard deviation on the different measurements varies randomly

6

as the loop size increases, though with less and less peaks. Since a bigger loop
size means a relatively more stable standard deviation, we can use both the
standard deviation and the mean measured execution time as a basis to assess
the precision of the measurement as follows.

Fig. 3. A sample calibration

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 500 1000 1500 2000 2500 3000

tim
e

(n
an

o
se

co
nd

s)

loop size

calibration

To assess the reliability of the measurements, we compare the value of the
measurement with the standard deviation. The end user will need to specify this
ratio between the average measurement and the standard deviation, as well as
an optional mininum accepted value, which is set at one second by default.

With both the ratio and the minimal accepted value, as specified by the end
user, we can test and try different values for the loop size to binary search and
approach the ideal value. In figure 3, we try to calibrate a test by first trying
out a loop size of 2500. The program decided that the set of 30 obtained values
was too precise and therefore too time demanding. It then tried to evaluate the
precision of the test for a loop size of 625. Since the measurements were below
the minimum value, the program then tried to perform the same evaluation
for a loop size of 1369, and so on, until we reached a loop size for which both
conditions were satisfied.

The Bench Module For a number of cycles, defined by the calibrate module,
the bench module performs the measurements for:

– The VM byte codes
– The API methods
– The JCRE mechanisms (such as transactions)

The developement of some of the test applets is detailed in [18].

7

The Filter Module Experimental errors lead to noise in the raw measurement
experiments. This noise leads to imprecision in the measured values, making
it difficult to interpret the results. In the smart card context, the noise is due
to crossing the platform, the CAD and the terminal (measurement tools, OS,
hardware).

The issues become: how to interpret the varying values and how to compare
platforms when there is some noise in the results. The filter module uses a sta-
tistical design to extract meaningful information from noisy data. From multiple
measurements for a given operation, the filter module uses the mean value µ of
the set of measurements to guess the actual value, and the standard deviation
σ of the measurements to quantify the spread of the measurements around the
mean. Moreover, since the measurements respect the normal Gaussian distri-
bution (see figure 4), a confidence interval [µ − (n × σ), µ + (n × σ)], within
which the confidence level is of 1−a, is used to help eliminate the measurements
outside the confidence interval, where n and a are respectively the number of
measurements and the temporal precision, and they are related by traditional
statistical laws.

Fig. 4. The distribution of 10000 measured execution time

 0

 50

 100

 150

 200

 250

 300

 350

 8600 8700 8800 8900 9000 9100 9200 9300 9400

m
ea

su
re

m
en

ts

nano seconds

distribution

The Extractor Module The extractor module is used to isolate the execution
time of the features of interest among the mass of raw measurements that we
gathered so far.

Benchmarking bytecodes and API methods within Java Card platforms re-
quires some subtle means in order to obtain execution results that reflect as
accurately as possible the actual isolated execution time of the feature of inter-
rest. This is because there exists a significant and non-predictable elapse of time

8

between the beginning of the measure, characterized by the starting of the timer
on the computer, and the actual execution of the bytecode of interest. This is
also the case the other way around. Indeed, when performing a request on the
card, the execution call has to travel several software and hardware layers down
to the card’s hardware and up to the card’s VM (vice versa upon response). This
non-predictability is mainly dependent on hardware characteristics of the bench-
mark environment (such as the card acceptance device (CAD), PC’s hardware,
etc), the OS level interferences, services and also on the PC’s VM.

To minimize the effect of these interferences, we need to isolate the execu-
tion time of the features of interest, while ensuring that their execution time is
sufficiently important to be measurable.

The maximization of the bytecodes execution time requires a test applet
structure with a loop having a large upper bound, which will execute the byte-
codes for a substantial amount of time. On the other hand, to achieve execution
time isolation, we need to compute the isolated execution time of any auxiliary
bytecode upon which the bytecode of interest is dependent. For example if sadd
is the bytecode of interest, then the bytecodes that need to be executed prior to
its execution are those in charge of loading its operands onto the stack, like two
sspush. Thereafter we subtract the execution time of an empty loop and the
execution time of the auxiliary bytecodes from that of the bytecode of interest
to obtain the isolated execution time of the bytecode. As presented in figure 5,
the actual test is performed within a method (run) to ensure that the stack is
freed after each invocation, thus guaranteeing memory availability.

Fig. 5. Test framework for a bytecode op0

Applet framework Test Case

process() { run() {
i = 0 op0

While i <= L op1

DO {
...

run() opn−1

i = i+1 opn

} }
}

In figure 5 :

– L represents the chosen loop upper bound;
– opn represents the operation of interest;
– opi for i ∈ [0..n− 1] represents the auxiliary bytecodes necessary to perform

the operation opn.

To compute the mean isolated execution time of opn we need to solve a
system with the following equations :

9

M(opn) =
mL(opn) − mL(Emptyloop)

L
−

n−1∑

i=0

M(opi)

Where :

– M(opi) is the mean isolated execution time of the operation opi.
– mL(opi) is the mean global execution time of the operation opi, including

interferences coming from other operations performed during the measure-
ment, both on the card and on the computer, with respect to a loop size L.
These other operations represent for example auxiliary bytecodes needed to
execute the operation of interest, or OS and JVM specific operations. The
mean is computed over a significant number of tests. It is the only value that
is experimentally measured.

– Emptyloop represents the execution of a case where the run method does
nothing.

The formula presented above implies that prior to computing M(opn) we
need to compute M(opi) for i ∈ [0..n − 1]. The system can be solved as long as
the dependency relation between the operations is well founded, and that there
is a set of operations that do not depend on any other operation.

The Profiler Module In order to define performance references, our frame-
work provides measurements that are specifically adapted to one of the following
application domains :

– banking applications
– transport applications
– identity applications.

A Java Card VM is instrumented in order to count the different operations
performed during the execution of a script for a given application. More precisely,
this virtual machine is a simulated and proprietary VM executing on a work-
station. This instrumentation method is rather simple to implement compared
to a static analysis based methods, and can reach a good level of precision, but
it requires a detailed knowledge of the applications and of the most significant
scripts.

Some features related to bytecodes and API methods appeared to be neces-
sary and the simulator was instrumented to give useful information such as:

– for the API methods :
• the types and values of method parameters
• the length of arrays passed as parameters,

– for the bytecodes :
• the type and duration of arrays for array related bytecodes (load, astore,

arraylength),
• the transaction status when invoking the bytecode.

10

A simple utility tool has been developed to parse the log files generated by
the instrumented Java Card VM, which builds a human-readable tree of method
invocations and bytecode usage.

Thus, with the data obtained from the instrumented VM, we attribute for
each application domain a number that represents the performance of some
representative applets of the domain on the tested card. Each of these numbers
is then used to compute a global performance mark.

We use weighted means for each domain dependent mark. Those weights are
computed by monitoring how much each Java Card feature is used within a
regular use of standard applets for a given domain. For instance, if we want to
test the card for a use in transport applications, we will use the statistics that we
gathered with a set of representative transport applets to evaluate the impact
of each feature of the card.

We are considering the measurement of the feature f on a card c for an
application domain d. For a set of nM extracted measurements M1

c,f , ..., MnM

c,f

considered as significant for the feature f , we can determine a mean Mc,f mod-
eling the performance of the platform for this feature.

Given nC cards for which the feature f was measured, it is necessary to
determine the reference mean execution time Rf , which will then serve as a
basis of comparison for all subsequent tests.

Hence the “mark” Nc,f of a card c for a feature f , is the relation between
Rf and Mc,f :

Nc,f =
Rf

Mc,f

However, this mark is not weighted. For each pair of a feature f and an ap-
plication domain d, we associate a coefficient αf,d , which models the importance
of f in d . The more a feature is used within typical applications of the domain,
the bigger the coefficient :

αf,d =
βf,d

nF∑
i=1

βi,d

where :

– βf,d is the total number of occurrences of the feature f in typical applications
of the domain d.

– nF is the total number of features involved in the test.

Therefore, the coefficient αf,d represents the occurrence proportion of the
feature of interest f among all the features.

Hence, given a feature f , a card c and a domain d , the “weighted mark”
Wc,f,d is computed as follows :

Wc,f,d = Nc,f × αf,d

11

The “global mark” Pc,d for a card c and for a domain d is then the sum of
all weighted marks for the card. A general domain independant note for a card
is computed as the mean of all the domain dependant marks.

3.3 Unused features

The document [19] details the included and the excluded features. Only fea-
tures related to the normal use phase of Java Card applications are considered
here. Measuring the performance when installing, personalizing or deleting an
application, is of less importance from the user’s point of view. Moreover, these
management operations are only performed once. As a consequence, the con-
structors of the Java Card API, as well as methods such as Applet.register(),
etc. are not measured. Besides, we focus on success paths and not on the failure
ones, on account of their relevance. Then, failure cases such as the comparison
methods of the Java Card API.equals(...) on a bad AID (OwnerPIN.check(...)
on a bad PIN ...), as well as Exception classes are not taken into account. In
the same respect, some bytecodes, that are never used in a regular application
are not measured here.

4 State of the art

Currently, there is no standard benchmark suite which can be used to demon-
strate the use of the JCVM and to provide metrics for comparing Java Card plat-
forms. In fact, even if numerous benchmarks have been developed surrounding
the JVM (see 3), there are few works that attempt to evaluate the performances
of smart cards. The first interesting initiative has been done by Jordi et al. in
[17] where they study the performance of micro-payment for Java Card plat-
forms, i.e., without PKI. Even if they consider Java Card platforms from distinct
manufacturers, their tests are not complete as they involve mainly computing
some hash functions on a given input, including the I/O operations. A more
recent and complete work has been undertaken by Erdmann in [15]. This work
mentions different application domains, and makes the distinction between I/O,
cryptographic functions, JCRE and energy consumption. Infineon Technologies
is the only provider of the tested cards for the different application domains.
The software itself is not available. The work of Fischer in [16] compares the
performance results given by a Java Card applet with the results of the equiva-
lent native application. Another interesting work is that carried out by the IBM
BlueZ secure systems group and concretized through a Master thesis [11]. JCOP
framework has been used to perform a series of tests to cover the communication
overhead, DES performance and reading and writing operations into the card’s
memory (RAM and EEPROM). Markantonakis in [9] presents some performance
comparisons between the two most widely used terminal APIs, namely PC/SC
and OCF. Papapanagiotou et al. in [10] evaluate the performance of two on-
line certificate revocation and validation protocols on two different Java Card
platforms in order to determine which protocol is more efficient for smart card

12

use. Chaumette et al. in [13, 14] show the performance of a Java Card grid with
respect to the scalability of the grid and with different types of cards.

5 Conclusion

In this paper, we have proposed a methodology aiming at characterizing the
performance of Java Card platforms by measuring different levels of bench-
marks using measurement techniques to analyze the platform’s performance.
This work was undertaken as part of a project funded by the French admin-
istration MESURE. The Java Card Benchmarking framework is now accessible
on-line (see [12]) since it is published as an open-source tool. Our work focuses on
measuring the excution time of the virtual machine bytecodes, the API methods
and the JCRE mechanisms.

All the measured features are based on the Java Card 2.2 platforms. With the
publication of the Java Card 3.0 specifications [20], two versions are proposed.
While the Connected Edition features a new virtual web-oriented machine, the
Classic Edition is based on an evolution of the Java Card Platform, Version 2.2.2
and targets more resource-constrained devices that support traditional applet-
based applications. Hence, the majority of the features measured in Mesure tool
will be reused in this edition. However, all the new features such as those based
on 32-bit integers are not considered.

Currently, we are working on the prediction of the execution time of the
applications, by using formal methods.

References

1. Clemens H. Cap and Nico Maibaum and Lars Heyden : Extending the Data Storage
Capabilities of a Java-based Smart card, Sixth IEEE Symposium on Computers and
Communications (ISCC01), IEEE, 2001.

2. Zhiqun Chen, Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide, Addison Wesley 2000

3. Jean-Michel Douin and Pierre Paradinas and Cédric Pradel : Open Benchmark for
Java Card Technology, e-Smart Conference September 2004

4. GemXpresso Reference Manual, Gemplus, 1998

5. Sm@rtCafe Reference Manual Giesecke & Devrient 1999

6. Gilles Grimaud and Pierre Paradinas and Eric Vétillard : Measuring the perfor-
mance of the Java Card Platform, Java One, May 2006

7. Vincent Guyot and Nadia Boukhatem and Guy Pujolle : Smart Card performances
to handle Session Mobility, ICI, IFIP/IEEE, September 2005

8. Java Card 2.2.2 Specification, http://java.sun.com/products/javacard/, April
2006

9. Constantinos Markantonakis : Is the performance of smart card cryptographic func-
tions the real bottleneck?, 16th international conference on Information security:
Trusted information: the new decade challenge, pages 77 - 91, volume 193, Kluwer
2001

13

10. Konstantinos Papapanagiotou and Constantinos Markantonakis and Qing Zhang
and William G. Sirett and Keith Mayes : On the Performance of Certificate Revoca-
tion Protocols Based on a Java Card Certificate Client Implementation, 20th IFIP
International Information Security Conference (Sec 2005) - Small Systems Security
and Smart cards, May 2005

11. Karima Rehioui : Java Card Performance Test Framework, Université de Nice,
Sophia-Antipolis, IBM Research internship, September, 2005

12. The MESURE project website : http://mesure.gforge.inria.fr/Eng/Index,
MESURE

13. Serge Chaumette and Pascal Grange and Achraf Karray and Damien
Sauveron and Pierre Vignéras : Secure distributed computing on
a Java Card Grid., LaBRI, Université Bordeaux 1, 1331-04, 2004,
http://www.labri.fr/publications/paradis/2004/CGKSV04

14. Eve Atallah and Franck Darrigade and Serge Chaumette and Achraf
Karray and Damien Sauveron : A Grid of Java Cards to Deal with
Security Demanding Application Domains, 6th edition e-Smart con-
ference & demos, September 2005, Sophia Antipolis, Frensh Riviera,
http://www.labri.fr/publications/paradis/2005/ADCKS05

15. Monika Erdmann : Benchmarking von Java Card, LudwigMaximilians-Universität
München, Institut für Informatik, May 2004

16. Mario Fischer : Vergleich von Java und Native-Chipkarten Toolchains, Benchmark-
ing, Messumgebung, LudwigMaximilians-Universität München, Institut für Infor-
matik, 2006

17. Jordi Castellà-Roca and Josep Domingo-Ferrer and Jordi Herrera-Joancomart́ı and
Jordi Planes : A Performance Comparison of Java Cards for Micropayment Imple-
mentation, CARDIS,19-38, 2000

18. Pierre Paradinas and Julien Cordry and Samia Bouzefrane : Performance Evalua-
tion of Java Card Bytecodes WISTP, pages 127-137,May 2007

19. Functionalities of the MESURE tools :
http://mesure.gforge.inria.fr/pub/documents/\

F2.1 Functionalities 1.0.pdf

20. Java Card 3.0 http://java.sun.com/javacard/3.0/

