
SmartPRO: A Smart Card Based Digital Content
Protection For Professional Workflow

Alain Durand, Marc Éluard, Sylvain Lelievre, and Christophe Vincent

Thomson R&D France
Technology Group, Corporate Research, Security Laboratory

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
{alain.durand, marc.eluard, sylvain.lelievre,

christophe.vincent}@thomson.net

Abstract. This paper introduces SmartPRO, a smart card based technology aim-
ing at protecting content in professional workflows. It gives an overview on how
SmartPRO works. It also explains the design constrains that led to the use of
smart cards and some of the extra difficulties implied by this choice in order to
get to an implementation that may be industrially deployed.

1 Introduction

Digital Rights Management (DRM) has been for a decade a widely studied subject.
Traditional goal for a DRM is to prevent an end-user to make an unauthorized use of
a piece of content (usually music or video). Piracy of digital content has actually been
a growing issue since the entrance in the digital era and the widespread of high-speed
communications. Black Market for DVDs are now important in most countries (see
e.g. [1]). The MPAA (Motion Picture Association of America), the association of the
seven major Hollywood studios, estimated to $6.1 billion the cost of video piracy in
2005 [2].

Generally, movie distribution obeys to different diffusion windows: film is first dis-
tributed in theaters, then in hotels or planes and DVD release occurs right after. It is
then distributed to television first on Pay-Per-View or Video-on-Demand systems, then
on Pay-TV and eventually on Free-To-Air channels. Table 1 shows average breakdown
of movie revenues along the different diffusion windows.

Different solutions protect the release windows shown on Table 1. For instance,
AACS [3] or CSS [4] protect home video / rental window while Conditional Access
systems protect Pay TV or Cable TV window. DCI (Digital Cinema Initiative) specifi-
cation [5] includes a protection scheme for digital theaters. Some systems (e.g., broad-
cast flag [6] or CPCM (Copy Protection and Content Management [7])) protect content
distributed in the syndication window.

One could thus think that content protection technologies coverage is sufficient.
This is however not the case. Roughly 10% of revenues loss is due to piracy operated
before the content release in theaters [8]. This happened for instance to the recent Ridley
Scott movie, American Gangster [9].

The traditional approach to overcome this threat is based on network security tech-
nologies and on physical access control to facilities. While these techniques may be

T
he

at
ri

ca
l

R
el

ea
se

A
ir

lin
e

/
H

ot
el H
om

e
V

id
eo

/R
en

ta
l

PP
V

/V
O

D
in

D
em

an
d,

D
ir

ec
tT

V

Pa
y

T
V

H
B

O
,S

ho
w

tim
e

N
et

w
or

ks
C

ab
le

T
V

Sy
nd

ic
at

io
n

Time Frame
(in month) 0 2-4

4-6
(ongoing)

6-9
(only for

30-45 days)
12-15 24-30 36-42

Typical/Approximate
Revenues

($10M + box-office movie)
25% 1% 56% 2.5% 10% 3% 2.5%

Table 1. Movie Revenues (Courtesy of Technicolor)

efficient against external attackers, this is not the case for insiders. This happened for
instance for the third episode of Star Wars [10] that has been actually stolen from post-
production facilities. It then passed through several go-betweens before being eventu-
ally made available on the Internet.

SmartPRO technology is a content protection system for professional workflows.
Its first real deployment aimed to prevent leakage from video production and post-
production facilities. SmartPRO is a smart card based technology that is for example
deployed in Nexguard CP [11] product line. Smart card offers a secure place to store
system keys and guarantees the integrity of the software using these keys. Any other
transportable security token could be also used.

The main underlying idea behind this technology is to upgrade technologies or tech-
niques that have been successful to protect the content in the consumer space to the
professional realm. We propose to base the system on smart cards as Conditional Ac-
cess systems do and we adapted the notion of consumer domain (see for instance [7])
to enable collaborative work

The rest of the paper is organized as follows. In the next section, we give an overview
of SmartPRO technology. Next we explain how smart cards are used in SmartPRO and
give some design rationales. Finally, we present examples of difficulties when designing
the system using secure processor.

2 General Presentation

SmartPRO introduces the notion of Virtual Domain (VD). A VD is a set of devices that
can share private contents. It can represent a company or part of a company like a post
production facility. A VD is not bound to a person or a physical location. It can be used
for any content format and using any network technology or physical interface.

Inside a VD, content is scrambled, i.e. encrypted, with a cryptographic key1. This
key is protected so that only devices belonging to the VD can access to it, and thus

1 In the video content industry, the term scrambling is typically used rather than encryption for
content protection. This term make references to the first mechanisms for Pay-TV where some
parts of the content where re-ordered to achieve protection.

to the content. SmartPRO mainly brings a key management system implementing this
notion of Virtual Domain.

2.1 Actors in Virtual Domain

Fig. 1. Devices in a Virtual Domain

Figure 1 illustrates the basic elements of a VD. Acquisition devices are the entry
points of the VD. From that point on, the content is digital and protected. It can be
accessed, if allowed, by any renderer devices, or processing devices of the VD.

Renderer devices are the final points of the VD. After a renderer device, content does
not benefit anymore from SmartPRO protection. Special care will be needed within the
renderer devices to avoid theft of content once it is no longer SmartPRO protected. Con-
tent may be in the clear or protected by another copy protection scheme (for example
with watermark).

Processing devices modify SmartPRO content. Prior to applying the expected pro-
cess, device unprotects the content or part of it. Once processed, the device re-protects
the content. All these operations are performed in a secure environment (i.e. content
remains in the same VD). SmartPRO processing devices cannot create SmartPRO pro-
tected content from clear content.

Storage devices do not act on the content at all. They are simple bit buckets.

2.2 Content Protection

SmartPRO protected content is always scrambled. Scrambling mechanism is based on
robust cryptographic algorithm (AES-CTR [12]). The scrambling keys are called Con-
trol Words (CW). Usage and access rules of the SmartPRO protected content are called

Usage Rights. Control Words and usage rights are embedded in licenses called Local
Enforcement Copy Management (LECM). A given license is valid only in one Virtual
Domain for only one content. License is created in the acquisition device at the same
time as the content is acquired. Licenses are analyzed and enforced by devices before
they handle the content. A processing device can modify the license if granted in the
usage rights.

License is partially encrypted with a secret key called Domain Key (to ensure confi-
dentiality of CW) and signed (to ensure integrity of LECM). This key is unique to a VD
and is randomly generated at VD creation. All devices belonging to a given VD share
its Domain Key. A device belongs to only one VD.

2.3 Multiple Virtual Domains

A simple VD may not be sufficient for many cases. For instance, two firms A and B
may use SmartPRO. Each manages its own VD. In some cases, some protected data
may be transfered from domain A to domain B but data must remain protected during
this transfer. Thus, SmartPRO introduces the notion of Multiple VDs. Content is able
to flow through controlled devices, called Bridge devices, from one VD to another VD.
The owner of the source VD manages the usage rights of the delivered content to the
destination VD. Figure 2 illustrates this architecture.

Fig. 2. Example of multiple Virtual Domains

The bridging operation between two VDs is performed with two entities: The Sender
Bridge prepares and sends a content from source domain into a transfer domain. The
Receiver Bridge receives and transfers a content from the transfer domain to the des-
tination domain. This transfer domain is temporary and completely transparent for the
user. Content remains unchanged (i.e. scrambled) during the operation and only the li-
censes are processed. Usage Rights associated to the content may be modified by the
Sender Bridge.

Sender Bridge is able to send content to multiple VDs. Receiver Bridge is only able
to send back the content to the source domain.

3 Device: a Collaboration Between Host and Token

3.1 Overview

Fig. 3. Architecture of Virtual Domain with tokens

Since no software solution can be considered sufficiently secure, the management
of sensitive operations and secret data should be done by secure hardware. We choose
Smart cards (called tokens) as secure hardware to store secret data and run applica-
tions in a tamper resistant environment. Nevertheless, their processors do not permit to
encrypt or decrypt large amount of data in a reasonable time.

Thus, it is preferable to use a host with a powerful processor associated to a token.
The content is scrambled or descrambled by the host while the license is managed by
the token.

To keep the domain key as secure as possible, it is managed by the token and never
leaves it. However the control words that protect content need to be used by tokens and
also by hosts. If an attack succeeds on a host, only control word may leak and so only
the corresponding content may be broken. The other contents of the domain remain
secure. If an attacker targets all contents of a domain, he must extract the domain key
from the token.

The host is not bound to any domain until a token is inserted. The host is then
temporary bound to the token’s domain. So, only the tokens belong to a Virtual Domain.

3.2 Token Management Center

Token Management Center (TMC) has a major role in key management. It performs the
enrollment or activation of tokens in a Virtual Domain. A special token, the progenitor
token, is associated to each Virtual Domain. There is only one progenitor in a Virtual

Domain. The activation of a new token to a VD requires the presence of its progenitor
token in the TMC.

TMC runs on standard computers. It supports simultaneously at least two tokens.
The TMC does not store any secret. The progenitor token handles all the secrets includ-
ing the domain key.

All progenitor token are delivered inactive to the user and activated using TMC.
During this activation, the progenitor generates a domain key and securely stores it.
During the activation of a token, the progenitor securely transfers the domain key to the
token.

SmartPRO supports revocation of domains, tokens and hosts (see section 4.1).
The progenitor token creates and maintains a database to store the serial numbers

of the tokens that has been activated or revoked in the domain.
The TMC does not need to be online with any device of the VD, or any back-office.

Nevertheless, online connection with devices may allow remote management of tokens.

3.3 Hosts and Tokens Interactions

Once the token is linked to a domain, it can deal with SmartPRO content. In an acquisi-
tion device, the host receives clear content to be scrambled, it requests the token to build
a license. The token picks up a random control word. It inserts the CW in the license
and encrypts the license with the domain key. Then, token sends both CW and license
to the host. The host scrambles the content with the CW.

To descramble a protected content, a renderer device needs the license correspond-
ing to the content. The host sends the license to the token. If the token and the content
are in the same domain, the license can be decrypted using the domain key. Then, the
decrypted CW can be sent to the host to descramble the content.

The domain key never leaves the token, only CW is provided to the host. The token
shall first ensure that the host is trustful, and compliant. Non-Compliant hosts could
divulgate the CW. A compliant host, even purely software, protects the CW and the
content upon its descrambling. Hence, some secure coding techniques (e.g.: code obfus-
cation, anti-debugger) are used to make difficult to modify host behavior. Furthermore,
before sending the CW to the host, the token authenticates the host. To that end, the
host needs to have a public/private key pair. Finally, the CW needs to be sent encrypted
since communications between the token and the host are easy to eavesdrop. For these
reasons, a Secure Authenticated Channel (SAC) is setup prior to any communication.

3.4 Secure Authenticated Channel

The SAC is used by progenitor token during token activation or token deactivation and
for CW transmission to the host (see section 3.3).

The protocol is based on Diffie-Hellman [13]. Each entity is given random private
key (Kpriv) and a certificate that embeds an identity (e.g., the certificate serial number)
and the public key (Kpub = gKpriv mod p where g and p are Diffie-Hellmann pa-
rameters shared by all entities). For the sake of simplicity, the notation mod p will be
omitted in the rest of the document but it shall be understood that all exponentiations of
g are performed modulo p.

Host Token
SAC establishment BEGIN

¬
Picks x

Init SAC
−−−−−−−−−−−−−−−−−−−−−→

CertH , gx

­
Verifies CertH ,
computes Kperm = ght ,
picks y,
computes gxy

Token Authentication
←−−−−−−−−−−−−−−−−−−−−−

CertT , Hash(gxy ‖ gy ‖ Kperm ‖
TokenSerialNumber)

®
Verifies CertT
computes gxy

computes Kperm = ght

Checks the hash
Host Authentication

−−−−−−−−−−−−−−−−−−−−−→
Hash(gxy ‖ gy ‖ Kperm ‖

HostSerialNumber)
¯
Checks the hash

SAC established
° ←−−−−−−−−−−−−−−−−−−−−− °

Computes Ksess Computes Ksess
Ksess = Hash(gxy ‖ Kperm) Ksess = Hash(gxy ‖ Kperm)

SAC establishment END

Fig. 4. Secure Authenticated Channel Protocol

1. The host picks a random x, computes the associated public value gx and sends the
result to the token together with its certificate CertH .

2. The token extracts the public key gh from the host certificate. It verifies that the
certificate is valid. It then computes secret key Kperm = ght where t is the token
certificate secret key. The token also picks a random y, computes the associated
public value gy . It computes as well the hash value of the concatenation of gy , gxy ,
Kperm and its serial number. It sends the result of both computations together with
its certificate to the host.

3. The host extracts the public key gt and verifies that the certificate is valid. It then
computes secret key Kperm = ght and gxy . It also checks whether the received
hash value is correct. It computes then the hash value of the concatenation of gx,
gxy , Kperm and its serial number and sends the result to the token.

4. The token verifies the correctness of received hash value.
5. Both token and host compute the session key Ksess as the hash value of gxy and

Kperm. Ksess will be used to secure further communication between the host and
the token.

4 Using Secure Processor

4.1 Revocation Mechanism

The security of SmartPRO is based on a removable secure processor (a token). It guar-
antees that all the secret data are securely stored and processed.

Nevertheless, we know that no security system is 100% secure. Hackers use more
and more sophisticated tools that will eventually defeat any security mechanism. Thus,
it is important to have a revocation mechanism that will prevent a compromised element
from working. In case of major hack, the replacement of all tokens should be planned.

The revocation mechanism defined in the SmartPRO specification is based on two
revocation lists:

– The Internal Revocation List (IRL) contains the elements revoked in a given domain
and is managed (created and updated) by the domain manager (progenitor token).
The IRL only addresses token elements and contains the Certificate Serial Number
(SN) of the revoked tokens.

– The External Revocation List (ERL) contains the elements revoked in all Smart-
PRO system. The ERL addresses token, host and VD elements. The ERL contains
serial number of host and token, and Virtual Domain identifier (VDID) for Virtual
Domain.

Revocation List Usage During the first messages of the SAC establishment, the host
and the token exchange their certificate. At this moment, each entity checks that the
serial number of their peers certificate is not present in the revocation list. If so, the
SAC establishment continues as specified in Section 3.4.

Host Token
SAC establishment BEGIN

Host Certificate ‖ . . .
Select the issuer CardManager −−−−−−−−−−−−−−−−−−−−−→ Check Host certificate signature

Launch RL check (Host SN)
ERL payload request

←−−−−−−−−−−−−−−−−−−−−−
ERL payload

−−−−−−−−−−−−−−−−−−−−−→ Check host SN presence in ERL
Check payload integrity
if Host SN in ERL then STOP

Error or
←−−−−−−−−−−−−−−−−−−−−−

Token Certificate ‖ . . .
if Error then STOP

Check if Token SN is in ERL or in IRL

SAC establishment CONTINUE

Fig. 5. Revocation List Usage Protocol

The difficulties to implement our revocation mechanism were:

– The token has a given limited amount of memory. It cannot store an ever increasing
list.

– The token and the host must always hold the same version of the lists.

Revocation List Format Each list has a header and a payload. The header contains an
ever increasing index of the list, and for each element type (host, token or VD), the
number of revoked elements and a digest (SHA-1) of the list of revoked elements. The
header is signed by a root revocation key for the ERL and the progenitor revocation

key for the IRL. The payload gives for each element type, the SN (or VDID for virtual
domain) of the revoked elements.

The lists indexes have been integrated in the messages exchanged between the host
and the token during the SAC establishment. Thus, the SAC will not be established if
the host and the token are not synchronized on the same lists.

Revocation List Storage The token only stores the list headers. When it receives its
host certificates (during the SAC establishment), it requests the list to the host prior to
checking if the certificate is in the list. It checks the validity of the received list using
the digest value contained in the header.

Host Token
RL synchronization BEGIN

ERL index
Select the issuer CardManager −−−−−−−−−−−−−−−−−−−−−→ Check ERL index

IRL index ‖ ERL status
Check IRL index and ERL status ←−−−−−−−−−−−−−−−−−−−−−

if host needs to be updated, then STOP
ERL header

−−−−−−−−−−−−−−−−−−−−−→ Check ERL header signature/consistency
Store ERL header
Launch self check (Token SN + VD ID)

ERL payload request
←−−−−−−−−−−−−−−−−−−−−−

ERL payload
−−−−−−−−−−−−−−−−−−−−−→ Check Token SN and VD ID presence in ERL

Check payload integrity
IRL header

−−−−−−−−−−−−−−−−−−−−−→ Check IRL header signature/consistency
Store IRL header
Launch self check (Token SN)

IRL payload request
←−−−−−−−−−−−−−−−−−−−−−

IRL payload
−−−−−−−−−−−−−−−−−−−−−→ Check Token SN presence in IRL

Check payload integrity

RL synchronization END

Fig. 6. Revocation List Synchronization Protocol

Revocation List Synchronization The host sends to the token its external RL index and
the token responds with its internal RL index and an External Status indicating if an
update is needed. If the token needs an update, the host sends the new RL header. If the
host needs an update, it must retrieve the new RL before any further collaboration with
the token.

4.2 Bridging Implementation

Another key issue in our implementation was the bridging mechanism. It transfers con-
tent from a source domain to one or several other destination domains. One solution
would be to send the license of the domain source to the relay token which would de-
crypt it and re-encrypt it for each destination domain. This means that the relay token
should contain secret keys of all the potential destination domains!

Our solution uses two kinds of host/token:

– The Master Bridge (MB, host and token): It only knows source Domain Key. It con-
verts the license for the source domain into a license for a transfer domain. It then
generates descrambling information specific for each destination domains (CDI for
Content Descrambling Information). The Master Bridge token is initialized in the
source domain. It holds a certificate containing its serial number (MB SN).

– The Simple Bridge (SB, host and token): It processes the license from the transfer
domain and generates a license for a destination domain. A Simple Bridge token is
initialized twice. First it is activated in the destination domain. Then it must be reg-
istered in the source domain: It receives the information needed to process the CDI
generated by the Master Bridge token. These information include an initialization
index. This index is ever increasing in the source domain and is used by the Master
Bridge token to generate the CDI. The Simple Bridge holds a certificate containing
its serial number (SB SN).

The source domain progenitor generates and manages the following elements:

– A master key for Master bridge (MKMB) used to calculate derived key for Master
bridge (DKMB): DKMB = E{MKMB}(MB SN).

– A master key for Simple Bridge (MKSB) used to calculate derived Key for Simple
Bridge (DKSB): DKSB = E{MKSB}(SB SN ‖ SB index).

– The Authorization Mask is a bit mask where the position of each bit corresponds
to a SB index. If the bit is ”1”, the corresponding SB is registered and not revoked
in the IRL of the source domain. The Authorization Mask is generated and up-
dated by the progenitor and signed with the progenitor revocation private key. The
Authorization Mask is transmitted to all Master Bridge hosts. The Authorization
Mask will be used by the Master Bridge to know if it can generate CDI for a given
Simple Bridge. The use of Authorization Mask simplifies the operation in the Mas-
ter bridge token: all checks relative to Simple Bridge registration or revocation are
performed by the progenitor.

The Master Bridge token holds the following information received from the progen-
itor during its activation:

– MKSB ,
– DKMB calculated by the progenitor.

The Master Bridge token also stores the latest version of the Authorization Mask.
The update of the Authorization Mask is performed by the Master Bridge host before
any bridging operation in order to take into account new registered or revoked Simple
Bridge tokens.

The Simple Bridge token holds the following information received from the pro-
genitor during its registration:

– MKMB ,
– DKSB calculated by the progenitor,
– an initialization index.

TRANSFER
DOMAIN

CONTENT + LECMt + {CDI}

Master Bridge
Host

Master Bridge
Token

LECMs

LECMt

{(SNSB, index, VD ID)}

{CDI}
SOURCE
DOMAIN

CONTENT + LECMs

Fig. 7. Master Bridge

On the Master Bridge side During a bridging operation, the Master Bridge host sends
the license of the content to its token. The license is converted into a license for a
transfer domain, encrypted by a transfer license key (TKLECM). Then, for each des-
tination domain, information on the Simple Bridge is sent to the Master Bridge token
(SB SN, SB index and VD ID). The Master Bridge token creates CDI. A CDI con-
tains TKLECM encrypted with a bridge key (BK). The Bridge Key is calculated from
DKMB and DKSB : BK = DKMB ‖ DKSB . The Master Bridge token calculates
DKSB with MKSB and the Simple Bridge token information. The CDI also contains
the serial number of the targeted Simple Bridge token. The scrambled content, the trans-
fer license and the list of CDIs are transmitted to each SB device.

TRANSFER
DOMAIN

CONTENT + LECMt + {CDI}

Simple Bridge
Host

Simple Bridge
Token

LECMd

(LECMt , CDI, SNMB)

DESTINATION
DOMAIN

CONTENT + LECMd

Fig. 8. Simple Bridge

On the Simple Bridge side When receiving these data, the Simple Bridge host sends
the license and its CDI to the Simple Bridge token. The token calculates DKMB with
MKMB and the Master Bridge token information. It can then calculate the bridge key
and retrieve TKLECM . It then converts the transfer license into a license for its domain.

The content is not processed and remains scrambled during the bridging operation.

5 Conclusion

SmartPRO is a content protection scheme preventing content leakage in professional
workflows. A main design criteria was to achieve high security and renewability. Hence,
the choice of a smart card based implementation was straightforward.

This choice however led to a greater system complexity due to lack of computational
power and bandwidth of smart cards. We had to design original mechanisms to deal with
flexible cards and hosts revocation.

SmartPRO only cares about basic layers of content protection. Other techniques
may be plugged in the upper layers. For example, Nexguard Content Protection [11]
uses watermarking technology allowing to trace back the origin of the content leakage.
Adding a rights expression language or an access control technology would allow to
further control the distribution of the protected content, e.g., by setting a content license
expiration time or a user-based access granularity. Whatever the technology plugged
above SmartPRO is, the system designer will face the same constraints to use adequately
the protection offered by the smart card without impeding the whole system.

References

1. http://news.bbc.co.uk/1/hi/entertainment/film/4099696.stm, last visited May 2008.
2. MPA 2005 US piracy fact sheet, http://www.mpaa.org/USPiracyFactSheet.pdf, last visited

Feb. 2008.
3. Advanced Access Content System for Pre-recorded Book (AACS), v0.91, February 17, 2006,

http://www.aacsla.com/specifications/, last visited Feb. 2008.
4. CSS Description, http://en.wikipedia.org/wiki/Content Scramble System, last visited Feb.

2008.
5. DCI Specifications, http://www.dcimovies.com/specification/index.tt2, last visited Feb. 2008.
6. Broadcast Flag Description, http://en.wikipedia.org/wiki/Broadcast flag, last visited Feb.

2008.
7. CPCM Description, http://www.dvb.org/technology/dvb-cpcm/, last visited Feb. 2008.
8. Simon Byers, Lorrie Cranor, Eric Cronin, Dave Kormann and Patrick McDaniel, ”Analysis of

security vulnerabilities in the movie production and distribution process”, ACM workshop on
Digital rights management, October 27, 2003.

9. http://o.seattletimes.nwsource.com/html/movies/2004016889 gangster16.html, last visited
Feb. 2008.

10. http://news.bbc.co.uk/1/hi/entertainment/4650956.stm, last visited Feb. 2008.
11. NexGuard Content Protection, http://www.thomson.net/GlobalEnglish/Products/content-

tracking-and-security/nexguard/nexguard-content-protection/Pages/default.aspx, last visited
Feb. 2008.

12. Joan Daemen and Vincent Rijmen, ”The design of Rijndael: AES the Advanced Encryption
Standard”, Springer-Verlag, 2002.

13. Whitfield Diffie and Martin E. Hellman, ”New Directions in Cryptography”, IEEE Transac-
tions on Information Theory, vol. IT-22, number 6, pages 644-654, November 1976.

