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Abstract. In the multiapplicative context of smart cards, a strict con-
trol of underlying information flow between applications is highly desired.
In this paper we propose a model to improve information flow usability
in such systems by limiting the overhead for adding information flow
security to a Java Virtual Machine. We define a domain specific lan-
guage for defining security policies describing the allowed information
flow inside the card. The applications are certified at loading time with
respect to information flow security policies. We illustrate our approach
on the LoyaltyCard, a multiapplicative smart card involving four loyalty
applications sharing fidelity points.

1 Introduction

Computer systems handle a considerable amount of data carrying sensitive in-
formation that should be protected from malicious users. Programs running on
such systems may access data either to perform computations or to transmit it
over an output channel. Thus they can violate the security of sensitive data ei-
ther by releasing it to unauthorized users or by modifying it. In order to prevent
such situations, tracing data manipulation throughout programs is mandatory.

Information flow analysis [16] consists in statically analyzing the code of a
program in order to detect illicit data manipulations. Concretely, data manip-
ulated by programs (e.g. objects, parameters) are tagged with security labels
and all information flows are traced. The assignment p:=s, where p is a public,
observable variable and s contains secret, confidential data, generates an explicit
flow from secret to public data. The code if(s) p:=0 contains an implicit flow
of information as an external observer, who has knowledge about the control flow
of the program, can learn information about the secret data s. Usually, informa-
tion flow is associated with non-interference [9] which prevents all information
flows from sensitive data to non-sensitive data. The examples above generate
illegal information flows w.r.t non-interference.

Information flow analysis does not guarantee security by itself: it is a powerful
mechanism that can be exploited to implement the desired security policies. The
difficulty is to ensure that local checks (mechanisms) actually implement the
global security policy. Information flow mechanisms are too coarse to express
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desired policy, thus one of their common pitfalls is to define and verify complex
policies, reflecting real attacking scenarios.

In this paper, we address the problems of defining security policies for in-
formation flow, enforcing them by an information flow analyser and helping the
programmer to build safe applications in case the verification fails. The target
devices are multiapplicative smart cards, running a Java Virtual Machine (Jvm).
The security policies express allowed data flow between applications, either due
to code reuse or collaborations (e.g. commercial agreement). To support our
approach, we consider the case study of LoyaltyCard, a multiapplicative smart
card containing four fidelity applets. The main contributions of this paper are:
– to define a specific language for specifying information flow security policies,
– to present how the policies are enforced in a standard Jvm,
– to make the information flow analysis practical w.r.t. software engineering,

by adding information flow contracts and giving hints for helping program-
mers to develop safe applications.
The rest of the paper is structured as follows: Section 2 presents the Loy-

altyCard example, while Section 3 introduces some aspects of information flow
analysis in the context of open, small systems and identifies challenges. In Section
4 we define a domain specific language for information flow policies, while Sec-
tion 5 presents a deployment and development environment. Section 6 discusses
related work, while Section 7 summarizes our contributions.

2 LoyaltyCard Example

In this section we present LoyaltyCard, a multiapplicative Java-enabled smart
card composed of four loyalty applications: two air companies (FlyFrance, Fly-
Maroc), a car renting company (MHz) and a hotel (Illtone). The applications
implement loyalty services and can share information. Three of these applica-
tions form a group of partners: confidential data flow between partners is secure,
while collaborations with external applications, as depicted in Figure 1, may
lead to illegal flows of information.

FlyFrance

MHz

FlyMaroc

Illtone

FlyFrance Parteners

Fig. 1. Illegal informa-
tion flow

Let us suppose that FlyFrance has a commercial
agreement with MHz and Illtone, so part of FlyFrance
points can be used to obtain MHz and Illtone loyalty
points. On the other hand, FlyFrance does not want
FlyMaroc to learn any information about the fidelity
status of its clients (e.g. the number of miles, or the
status: gold, silver client, etc). FlyMaroc has also an
agreement with MHz and offers a discount, based on
the fidelity status of the MHz client. Suppose that,
when asked by FlyMaroc, MHz returns not only its
fidelity points, but also fidelity points of its partners (FlyFrance). FlyMaroc can
infer, through MHz, information about the FlyFrance fidelity points, as depicted
in Figure 1. In such a way, an illegal information flow is established. Illtone also
offers a discount for MHz clients, but this time the flow of information is allowed,
as Illtone is one of the partners of FlyFrance.

2



We want to be able to show that the implementations of the FlyFrance, MHz,
FlyMaroc and Illtone enforce information flow policies, e.g. each program shares
data only with trusted applications.

class FlyFrance {
private int miles;
[..]
public void updates() {

int i=0;
for(;i<noLoyalties;i++)

update(loyalties[i]);
}

void update(Loyalty l){
l.update(miles);

}
}

class MHz extends Loyalty{
private int points;
private int ppoints;
[..]
public void update(int p){

this.ppoints += p;
}
public int getLevel_() {

if(points+ppoints>GOLD)
return LEVEL_GOLD;

return LEVEL_SILVER;
}

}

class FlyMaroc {
private int oldLevelMhz;
[..]
int makeGetLevel(MHz h) {

int newLevel = h.getLevel();
if(oldLevelMHz!=newLevel){

print("level changed!");
oldLevelMHz = newLevel;
return newLevel;

}
return ERROR;

}
}

Fig. 2. Excerpt from the Java implementation of LoyaltyCard

Figure 2 shows an extract of the Java code of FlyFrance, FlyMaroc and
MHz classes. The confidential data of FlyFrance is stored in the field miles.
The method update in FlyFrance updates the points of its partners (MHz and
Illtone). MHz stores its partner points in field ppoints. Method MHz.getLevel()
returns the fidelity level of MHz, based on MHz points and on partner points. This
method is called by FlyMaroc in order to offer a discount, which leads to an
unexpected flow of information to an application untrusted by FlyFrance. The
MHz.getLevel() method is also called by Illtone, but in this case, the flow of
information is authorized as FlyFrance has an agreement with Illtone.

3 Embedded Security and Information Flow

Ubiquitous computing is evolving towards post issuance and automatic execution
of untrusted code. Executing untrusted code implies many security risks. For
example, a malicious applet running on your mobile phone or smart card can
do a lot of harm: it can disclose confidential information, financial data, address
book, social security and medical files, etc. Moreover, if the system runs multiple
applications, which share data, then it must ensure data confidentiality for each
application by controlling the underlying information flow.

3.1 Information Flow model

In [6], a compositional information flow analysis enforcing non-interference for
Java programs running on small, open embedded systems has been presented.
The analysis consists in statically interpreting Jvm bytecode and inferring types
representing all possible information flows that may occur when executing the
program. The behaviour of a program, in terms of information flow, is defined
using contracts: a security contract [1] guarantees the maximal information flow
that may occur while executing the program. In this paper, we enrich this frame-
work with security policies which relax non-interference by describing allowed
flows of information between application.
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We now briefly describe the information flow model, which is needed for
better understanding the identified challenges and the proposed solutions. For
more details on the model, please refer to [6].

Information sources and security levels As in classical information flow,
each field is annotated by a security level: s for secret, sensitive data and p
for public, observable data. This work is based on the idea that confidential
data in small objects (e.g. loyalty points, PIN code) typically resides in instance
fields of objects [10]. We prevent information flow from high-security to low-
security instance fields. In order to have a reasonable size of information flow
annotations for embedded systems, the analysis is field independent but security
level sensitive: all the fields of an object having the same security level are
modeled as having the same location. Thus, considering the security levels s and
p, each object o is modeled as two sub-objects (parts): a secret part (os) and a
public part (op).

In the LoyaltyCard example, the confidential data (FlyFrance fidelity points),
is stored in the field FlyFrance.miles and the field ppoints of its partners (MHz
and Illtone). Hence these fields have security level s.

The flow relation We now define the flow relation. We say that there is a flow
from a to b if an observer of b can learn information about a.

Considering our split of objects and the dichotomy of Java types (elemen-
tary types and object types), the flows between two elements a and b have the

form a℘(p,s) r/v/i−→ b℘(p,s), where v denotes a flow arising from an assignment of
primitive type, r a reference flow (an alias), i an implicit flow; s and p denote
the security levels, secret or public, while ℘(p, s) denotes subsets of {p, s}.

For example, if an object a has a field s, of type int, labeled with security
level s and b has field p with security level p, the code b.p = a.s generates a
value flow from the secret part of a to the public part of b, denoted by bp v−→ as.

The code if(a.s) b.p=0 generates an implicit flow bp
i−→ as.

The security contract of a method A security contract[19] carries rele-
vant information for a later usage of the method: it contains flows, potentially
generated by the execution of the method, between sources of information flow
(abstract values) visible outside the method. We identify thus the following ab-
stract values:
– the parameters of a method m,
– the return value of the method, denoted by the abstract value R,
– input/output channels: all the channels are abstracted by a single value, IO ,
– static fields, which are modeled as fields of a single object, denoted by the

abstract value Static,
– exceptions: all thrown values flow to the abstract value Ex .

Let Σm be the set of abstract values of a method m. We define now the security
contract of a method m as
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Sm = {a r/v/i−→ b | a, b ∈ Σm × ℘(p, s) and the execution
of m potentially generates a flow from a to b}.

For example, considering that FlyFrance.miles and MHz.ppoints have se-
curity level s, the method MHz.update from the LoyaltyCard (Figure 2) generates
a flow from the parameter p to a secret field of this. Thus, the security contract
of the method is Supdate = {thiss v→ p}. The information flow analysis infers the
security contracts in Figure 3 for the rest of the methods in Figure 2.

FlyFrance : Supdate = {ls v→ thiss}
MHz : Supdate = {thiss v→ p}
MHz : SgetLevel = {R

i→ thiss,p, R
v→ Static}

FlyMaroc : SmakeGetLevel = {thisp i→ hs,p, R
i→ hs,p, R

v→ Static}

Fig. 3. Security contracts for LoyaltyCard

3.2 Challenges

The real challenge in information flow analysis is applying its results in practice.
We identify some of the major problems in making the analysis usable for which
we give solutions in the next sections.

Defining policies that explore security contracts In literature, confiden-
tiality is often seen as a non-interference [9] problem, as public outputs cannot
depend on secret inputs. Non-interference policies do not allow any flows from
secret to public values, but only flows from secret to secret. Nevertheless, non-
interference does not make any distinction between the source of secrets. It is
a transitive and symmetric relation. Policies defined with such relation are too
restrictive, and not the desired policies in most of the cases, and especially in
multiapplicative smart cards [8]. Our aim is to refine non-interference by defin-
ing more complex intransitive and asymmetric policies. In the LoyaltyCard, the
security policies of an applet running on the smart card (FlyFrance) allow secret
information to be released to some other applet (MHz) but not to FlyMaroc.

In order to escape from non-interference strictness, we define, in Section 4, a
specific language, which describes the allowed flow of information between appli-
cations. Programs are certified by verifying that the security contracts respect
the desired security policies.

Integration to existing systems (Jvm) Another important challenge, which
prevented information flow mechanisms from being used in real systems, is get-
ting the certification process and information flow policies to correctly and eas-
ily interact with existing systems. JFlow [13] and Flow Caml [18] are powerful
languages, that offer support to a reliable development by defining a new pro-
gramming language which mixes source code and security policies in a coherent
set. However, they do not address the problems raised by mobile code and open
environments, and do not fit into the Java paradigm of dynamic class loading.
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Integrating information flow policies for mobile code in Java-enabled small
open embedded systems requires, at least, (i) separation of code and security
policies and (ii) certification at load time. In Section 5.1 we present how the
enforcement process of information flow policies is integrated in a Jvm.

Developing safe interacting applications The security of a system depends
on the security of each component. A key in computer security is not only de-
tecting and preventing attacks, but also helping the developer to build safe ap-
plications, components. Contracts can be used as a support for creating secure
applications, as developers can express, by their means, the expected behaviour
of unknown or untrusted applications. In this paper, we express information flow
in a program using contracts and we introduce an approach, based on reverse
engineering, to help building applications that respect information flow policies.

4 A DSL for information flow policies

A domain-specific language (DSL) is a small, usually declarative, language that
targets a particular kind of problem. The key characteristic of DSLs is their
focused expressive power. DSLs are usually concise, offering only a restricted
suite of notations and abstractions, thus adapted to express security policies.

4.1 DSL definition

In order to express security policies describing collaborations and information
flows between applications, we thus define a domain-specific language in Figure
4. The security policies that can be expressed with the DSL are simple, but
have enough power to model collaborations schemes in a smart card. The DSL
was designed for multiapplication smart cards, but it can be extended to other
applications, if necessary.

Multiapplicative smart cards allow data sharing and service sharing in order
to optimize the use of resources (e.g. API) and to allow collaborative schemes
(e.g. agreements or contracts between applications). In a smart card, the entities
exchanging or sharing data are the applications, thus the DSL contains rules
defining trust relations between applications.

S ::= (Class|Package)[,S]
F ::= Field [,F ]
Rc ::= Class secret F ;
Rs ::= S shares with S;
Rp ::= S strict secret ;
P ::= (Rc|Rs|Rn)[,P ]

Fig. 4. A DSL for informa-
tion flow policies

Applications are addressed either by package
or class names, using elements in the sets of ter-
minals Class and Package; Field denotes a set of
terminals containing field names.

As we consider that confidential data resides in
class fields, rule Rc expresses the secrets of a class,
by listing the fields that should remain confiden-
tial, and thus that have the security level s. The
main rule of the DSL is Rs which describes the
allowed information flows. For example, the signi-
fication of S1 shares with S2; is that all elements in S1 can share their secrets
with all elements in S2.
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By default, an element in S can share its secret with other elements having
the same type (e.g. class A shares its secrets with all instances of class A). Rule
Rp = S strict secret ; refines the security policies by specifying that an element
A in S must not share its secrets with other objects of type A. While the rule
Rs defines type-based policies, rule Rp refers to instance-based policies, in the
case when the instances have the same type.

The sharing relation can be associated to the trust relation defined in [8]
by Girard: one application transmits its secrets only to trusted applications.
As the trust relation, the sharing relation is neither symmetric nor transitive. If
A shares with B then not necessarily B shares with A. An application would
not trust another application only because one of its trusted applications does.
Detecting data leaks due to transitivity, or propagation, is one of the main
concerns of information flow security. Allowing transitivity would make no dis-
tinction between information flow and access control.

4.2 DSL verification

The certification process of an information flow policy has two parts:

1. verifying simple class sharing : an application gives its secrets only to trusted
applications,

2. verifying transitivity (or data propagation): an application trusted by A does
not share confidential data with applications untrusted by A.

Simple class sharing The rule Pi shares with Pj , where Pi and Pj are two
packages, can be read as ”any class in package Pi trusts any class in pack-
age Pj”. Hence, the DSL in Figure 4 can be reduced to rules having the form
A shares with B, where A and B are class names in Class. We can compute a
function share : Class → ℘(Class) which associates to each class the classes it
trusts. By default, a class trusts ifself, thus A shares with A; and A ∈ share(A).
Verifying the security policy of a class A ∈ Class reduces to verifying that secrets
of A flow only to elements in share(A). Hence, we verify security policies at the
granularity level of classes.

Transitivity Once a class A shares confidential data with a trusted class B,
A loses control over its propagation. The secret of A becomes the secret of B.
The policy of A holds if the policy of B is more restrictive: B does not share its
secrets with applications untrusted by A. Formally, verifying transitivity can be
summed up to verifying that, for all B ∈ share(A), share(B) ⊆ share(A) holds.

Security policies and security contracts We now show how policies defined
using the DSL are enforced by the information flow analysis described in Section
3. Confidential data resides in object fields. Let fieldss : Class → ℘(Field) be a
function that associates to each class the fields having the security level s, thus
fields in the rule Rc = Class secret Field ; the function fields : Class → ℘(Field)
gives all fields of a class.
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Secrets can be made accessible either by direct access to fields or through
method invocations and operations performed by the method. In order to prevent
direct access, secret fields of a class A in fieldss(A) must be declared using the
Java access modifier private. This restricts the access to secret fields only in the
class where they have been declared and thus to which they belong. Based on
this, certifying a class A with respect to an information flow policy consists of
verifying every method in A and methods that use the class A. Let Method be
the set of method names and methods : Class → ℘(Method) a function that
gives the list of methods for each class.

1: for all m in methods(A) do

2: if ∃ap f→ bs ∈ Sm then
3: return false
4: end if
5: for all as f→ bs ∈ Sm do
6: t1 = T (a), t2 = T (b)
7: if t1 /∈ share(t2) then
8: return false
9: end if

10: end for
11: end for
12: return true

Fig. 5. Certifying the policy of
class A

Let us remind that the information flow
model in Section 3 computes, for each
method m ∈ Method , a security contract Sm

containing all the possible flow of informa-
tion between abstract values in Σm (param-
eters, IO , Ex , Static, R). A flow is denoted

by at1
r/v/i−→ bt2 with t1, t2 ∈ {s, p} denoting

the security level. Flows can be from pub-
lic/secret parts of an abstract value to pub-
lic/secret parts of another abstract value. Se-
curity is concerned with protecting flows from
the secret parts to public/secret parts. As a
general rule, flows from secret to public are
forbidden, while flows from public to public
are always allowed. A class A shares its se-
crets with classes in share(A), thus only flows from secret parts of parameters
of type A to parameters with type in share(A) and to return (R) are allowed.
Let T be a function which associates to an abstract value its definition type, in
Class. The algorithm that verifies method in a class A is depicted in Figure 5.
To permit the flows to return, we consider that R ∈ share(A).

for all f in fieldss(A) do
if T (f) /∈ share(B) then

return false
end if

end for
for all f in fields(A) \ fieldss(A)
do

if scrC(T (f)) then
return encfield(T (f), B)

end if
end for
return true

Fig. 6. encfield(A,B)

Encapsulation The split of objects and
the definition of secret/public part may
open a door to bypassing security checks
through encapsulation. For example the
code A.p.r=A.s, where s and r have se-
curity level s and T (p) /∈ share(A), gener-
ates a flow As v→ As, allowed by our anal-
ysis, but illegal as the secret of A flows to
an untrusted type (p). In order to avoid
such leaks, we define the following en-
capsulation property: All secret fields and
sub-fields of a class A must be trusted by
A, where sub-fields refer to fields of fields
and etc.
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The verification of this property consists in unfolding the fields of each
class and verifying that, for each secret field f , we have T (f) ∈ share(A). Let
encfield(A,B) be a function which verifies, recursively, that all secret fields of
class A are trusted by B (encfield : Class × Class → {true, false}). The algo-
rithm is depicted in Figure 6.

If we take in consideration that only few classes contain secret fields, we can
label the classes containing only public fields and stop the unfolding when we
meet such classes. Let scrC : Class → {true, false} be a function which tests
if a class contains some secret fields or not; scrC(A) refers not only to secrets
defined in A but also to secrets defined in fields of A, etc.

Thus, to verify that a class A respects the encapsulation property, a call to
encfield(A,A) is sufficient.

4.3 Example

FlyFrance secret miles;
MHz secret ppoints;
Illtone secret ppoints;
FlyFrance shares with
MHz,Loyalty,Illtone;
MHz shares with Illtone;

Fig. 7. Security policy for Loy-
altyCard

Figure 7 presents the information flow policy
for the LoyaltyCard presented in Section 2. The
first three rules define the confidential data,
while the last two rules define the allowed in-
formation flow. The policy respects transitiv-
ity, as the policies of applications trusted by
FlyFrance (MHz, Illtone) are smaller than the
policy of FlyFrance. The verification fails while
trying to validate the method makeGetLevel

defined in FlyMaroc, as it contains a flow thisp i→ hs, where h denotes the MHz
application.

4.4 Discussion

Conflict resolution While rule Rc and Rs are permissive, the rule Rp is re-
strictive and thus can generate conflicts. Let us consider the following policy for
a class x.A, where x is the package to which A belongs:

x.A strict secret ;x.A shares with x. ∗ ;.

In the first rule, x.A does not trust itself, while in the second rule x.A trusts
all classes in package x, and thus it trusts itself. To solve such conflicts, we con-
sider that the rules Rp ( strict secret ) prevail over rules Rs ( shares with ).
Thus, we first construct the function share, and only after we take into consid-
eration the fact that a class is strict secret or not.

Support for overloading One of the most powerful attributes of object-
oriented programming, and thus Java, is code reuse and factorisation, by the
means of inheritance. But, apart from providing this powerful functionality, in-
heritance provides also means for leaking information. To prevent such leaks, we
define some relations between policies of subclasses and superclasses.

The first restriction regards inherited fields: their security level cannot be
changed by a subclass. Doing so, the security contracts of inherited methods
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change, and the superclass must be reanalyzed. This is not convenient for our
compositional approach, and for open systems. Nevertheless, a child class can
declare new fields even with security level s.

While overloading a class, for example B extends A, the security policy of
B must not only enforce security for B, but also for A and classes already
verified using A. If the policy of B is greater than the policy of A, formally
share(B) ⊇ share(A), then the confidentiality of A is not respected anymore,
as B can trust and share its secrets (and thus those of A) with classes which
A does not trust. If the policy of B is smaller than the policy of A, formally
share(B) ⊆ share(A), in order to certify B we must reanalyse A, as A, and thus
a part of B, have been certified using a greater policy. From these examples,
we can conclude with: the security policy of a class B must be the same as the
security policy of its superclass A, share(B) = share(A).

1: if fieldss(B) \ fieldss(A) ∩
fields(A) 6= ∅ then

2: return false
3: end if
4: if fieldss(A) 6= ∅ ∧

share(B) 6= share(A) then
5: return false
6: end if
7: return true

Fig. 8. Certifying the policy of
class B extends A

The constraint above is too strict for API
classes, which are public classes (we use this
term to denote classes which do not contain
secrets, hence classes for which scrC returns
false). In order to deal with API, we relax
the policy above in the following way: the pol-
icy of a subclass must be the same as the pol-
icy of the inherited class only if the inherited
class contains secret fields. Thus, the policy of
a subclass can be any policy, if the inherited
class is a public class. Problems may arise if
we cast a public class to a class which con-
tains secrets. To deal with such situations, we extend the flow signature with
the types in which public classes are cast inside the method, and we take into
consideration all these types while verifying the method.

For example, let us consider that we have C extends B. There are 2 cases:
Security issues arise when class B does not contain any secrets (fieldssB = ∅)
and C declares secret fields (fieldss(C) 6= ∅). In this case, the leak occurs only
when a cast from B to C is made inside a method m. To solve this problem, while
analysing m, we store the types in which classes of type B are cast inside m; for
example, if parameter p1 of type B is cast in C or in D, then we associate a list
to p1 ( p1 ⇒ (C,D)). This list must be kept only for types which do not contain
secret fields, thus for which the function scrC does not hold. Flow signatures
are extended with such lists. For simplicity, we do not consider this case in the
algorithm presented below.

We can now extend the certification algorithm presented in Figure 5 to take
into consideration overloading. The extension is presented in Figure 8. Readers
should not confuse security policies with security contracts, for which we have
different restrictions.

Extending policies (Declassification) The DSL and the security policies can
be extended to express more detailed rules about the release of information. The
current DSL expresses policies that apply to entire program, and does not specify
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where the information release is permitted. We can define rules that delimit the
methods where the information flow may occur, for example

Rm ::= S shares with (IO | S) in Method ;

where Method represents a method name or a list of methods and IO is a keyword
(terminal) standing for the abstract value IO . The declassification adds power
of expression as it allows also to send data on input/output channels.

Declassification relaxes the security policies in certain method. To support
polymorphism and dynamic class loading, all the overriding classes must agree
on the declassification contract, e.g. the declassification rule must be defined by
every class in the class hierarchy.

Information flow policies as contracts The DSL in Figure 4 allows the dec-
larations of information flow policies for applications sharing confidential data.
Not only this language has a declarative value, but it also has a contractual value.
For example, with the rule FlyFrance shares with MHz, FlyFrance imposes
a contract to MHz: FlyFrance agrees to share its secrets with MHz only if MHz
does not share its secrets with applications not trusted by FlyFrance. Thus, the
policies defined using the DSL are contracts that applications must respect. An
application accepts the contract of a trusted application only if it is smaller than
its own contract. In order to deal with openness and overriding, the DSL im-
poses that the contracts of classes extending classes containing confidential data
do not change, with respect to the contract of overridden class.

5 Integrating information flow in a development and
deployment schema

Even if information flow is a well studied area, there are not enough mechanisms
guaranteeing security for existing systems. The main difficulty for practical in-
formation flow is to integrate it in a real development and deployment schema.

5.1 Enforcing security policies for Jvm

We present here how information flow policies defined in previous section may
be enforced by any Jvm. As the compiled Jvm bytecode is downloaded through
an unsecured channel, the information flow certification must be done oncard,
preferably at loading time in order to avoid run-time overhead. Both security
contracts and policies must be enforced. As computing security contracts requires
many resources (both in memory and time), we perform a two step analysis: (i)
an external phase [6] (supposed to have access to infinite resources) which com-
putes the type inference and annotates the bytecode with some proof elements,
and (ii) an embedded phase [7], which verifies, at loading time, the security con-
tracts obtained during the external phase. The verification operation is linear
in code size and uses constant memory. This technique lies on the same simple
idea as proof-carrying code [15] that it is easier to verify a result already com-
puted. We deal here only with the verification of information flow policies. The
verification of security contracts is described in [7].
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In order to make the analysis practical and integrable with any existing Jvm
system, we (i) load policies to be certified as attributes of .class files; systems not
enforcing information flow can ignore these attributes, and (ii) verify security
policies with a custom class loader, that can be installed on any system.

Extending .class files with information flow security policies The policy
of a class A is the list of classes with which it can share confidential data (denoted
by share(A)). The .class attribute for the policy of A contains thus a list of class
names. The class names are represented by their index in the ConstantPool of the
class A. Considering that in a smart card the number of installed applications
is not significant, thus the sharing policies are quite simple, the newly added
attribute contains usually only few entries. The small size of the attribute is
acceptable for a small system.

As classes are loaded one by one, it is possible to load A before loading all
the classes used by A. While validating a class A, we also validate the policies
of classes used in A. Thus, to be able to validate A, we also load the policies of
classes used in A. If B is a class used by A, when loading A either (i) we take
in consideration the policy of B, if B has already been loaded or (ii) use the
policy of B that A announces and we keep it oncard, in a repository, in order to
validate (and remove) it when B is loaded.

Verifying security policies using a custom class loader The loading pro-
cess in a Jvm is performed by the class loaders. In order to integrate the in-
formation flow analysis on any Jvm, the verification is performed by custom a
class loader (SafeClassLoader), which can be built in the single class loader
of KVM or installed as a user-defined class loader for a standard Jvm. The
SafeClassLoader must verify both security contracts, as described in [7], and
information flow policies.

Classes are loaded one by one. Once the security contracts of the class have
been verified, the SafeClassLoader validates the information flow policy, using
the security contracts. The difficulty may arise from the fact that the loaded
class A wants to share its secret with a class B not yet loaded. As the class
is not present in the system, we do not have its security policy and we cannot
verify the transitivity, formally share(B) ⊆ share(A). In order to verify this
condition when B is loaded, we keep a repository with rules having the form
share(B) ⊆ share(A). If B is used by another class C, the rule share(B) ⊆
share(C) must be added to repository. In this case, the final rule kept in the
repository is share(B) ⊆ share(A) ∩ share(C), as the policy of B should be
more restrictive than both policies of A and C. Thus, when the load B, we also
verify that share(B) ⊆ X with X denoting the intersection of security policies
of classes that trust B. Moreover, we verify that the loaded class has the same
policy as its super class: share(B) = share(B′) with B extends B′.

Verifying encapsulation The same problem may arise when verifying encap-
sulation: A has a field of type B, but B is not yet loaded. In order to verify while
loading B that all secret fields of B are trusted by A, we keep the following rule
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to the repository: encfield(B,A). When loading B, if a rule encfield(B,A) is
found in the repository, than the function encfield(B,A) (see Figure 6) is exe-
cuted. If the test succeeds, the rule is deleted from repository and the loading
process continues, by performing other checks.

The result of encfields(B,A) depends on scrC(B) (the function which tests
if B or fields B contain secret fields). The value returned by scrC(B) depends
also on fields of B. Hence, the final value of scrC(B) can be computed only
when all fields, fields of fields, etc. have been loaded. To ensure the correctness
of scrC computation, we extend the repository with rules of type scrC(B) =
scrC(C1) ∨ scrC(C2) ∨ . . . ∨ scrC(Cn), where C1 . . . Cn represent the type of
fields of B not yet loaded. This rule is deleted from repository when a class Ci is
loaded with scrC(Ci) = true or when all classes C1 . . . Cn are loaded. Moreover,
to avoid the computation of scrC each time when it is needed, the known values
of scrC are stored on the card, in a special repository.

The algorithm verifying encapsulation at loading time is similar to the exter-
nal one (encfield)presented in Figure 6, except that it must also verify that the
class T (f) has been loaded; if not, if should add encfield(B,A) to the repository.

5.2 Reverse Engineering tool

The certification must be done oncard due to the fact that the applications are
loaded using an unsecured channel and must be adapted to the limited resources
of the system. In the same time, the external analysis is supposed to be done on
an system offering of unlimited resources comparing with a small system. Thus
optimization and complexity are not an issue. Moreover, the external resources
can be used for other purposes, for example for offering an easy development
environment to programmers.

Security must be insured for different attacks against computing systems, for
both deliberate or accidental attacks. Information flow insecurity may arise from
malicious, untrusted code or from our own code. In the later case, the insecurity
is due to bad conception of the application or to bad implementation. When
the information leak comes from a bad implementation due to human error, it
is not always obvious for the developer to correct the application in order to
make it safe. The development environment should detect illicit flows and help
the developer to correct his mistakes by offering all the necessary information.

The point of failure in the program certification is not usually the real source
of information leak. For example, the certification of LoyaltyCard fails while
analysing the method FlyMaroc.makeGetLevel. But the illegal information flow
comes from the implementation of method getLevel in class MHz, where the com-
putation of fidelity level for MHz takes into consideration the points of partners.

To detect the failure source, we propose a backward iterative algorithm,
which, at each step, tries to detect an information flow in a method. The algo-
rithm is similar to tracking thrown exceptions in Java programs. Let us assume
that we have a recursive method detect(m, f, pc) which detects where the flow
f occurred in method m by performing a backward analysis starting from the
program point pc. If the flow f was created due to another flow f1, the method
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detect(m, f1, pc) is called recursively. If the flow f was created in a method m1

invoked at pc, the algorithm calls detect(m1, f, pcf ), where pcf is the program
counter corresponding to the return instruction in method m1.

This approach is memory consuming and thus cannot be performed oncard,
but it can explore the unlimited resources of the external analyser.

6 Related Work

Information flow [16] has been largely studied in the last decades and many mod-
els have been proposed [2, 10]. Unfortunately, these models are mostly theoretical
and almost impossible to apply in practice. Complex programming systems [13,
18] enforcing information flow security exist, but they failed in showing how
they can be successfully applied to real problems [20]. Most of the systems en-
force standard non-interference and expressive, useful information flow security
policies lack. The Pacap framework [4] involves a technique based on model
checking to verify interactions for Java smart-cards, but the verification is lim-
ited to predefined scenarios, and it cannot be trusted in an open environment.

Several works have developed policies for downgrading data [17]. JFlow [13],
a powerfull programming language, implemented as an extension of the Java
language, implements the decentralized label model (DLM) [14] which uses the
notion of ownership; data can be release only by one of the owners only if all the
owners agree. This approach is similar to our contracts on declassification: data
can be released in a method if all classes in the hierarchy agree on the release.
JFlow adds reliability to software implementation, but not to deployment and
linking on a platform. Moreover, source programs must be annotated with se-
curity labels, and hence they must be re-coded. Many other forms and systems
that declassify information have been presented [5, 12] but most of them are
certified by a security type system and are based on the assumption that poli-
cies are known statically at compile time. All these work have solid theoretical
foundations, but failed to be successfully applied in practice.

On the other hand, many domain specific languages and practical systems
expressing security policies exist [3, 11], but they do not address information
flow issues and most of the time they are dynamically enforced. Domain specific
languages [11] limit themselves to specifying access control rules and do not
address data propagation.

7 Conclusion

Motivated by the LoyaltyCard example, we present an approach to detect illegal
information flows in multiapplicative smart cards. The desired security policies
are specified using a simple, but expressive domain specific language and are
enforced are loading time. On the one hand, this work bridges the gap between
information flow models and current running systems. While the foundations of
information flow models are solid, their practical side is still to be proved. Our
approach limits the overhead for adding information flow security to existing
Jvm, as security labels and policies are separated from the code, and the illegal
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information flow is detected by a custom class loader, installed on any Jvm.
On the other hand, our work bridges the gap between information flow security
requirements and actual security policies, which do not take into consideration
data propagation due to information flow.
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