
Fast Hash-Based Signatures

on Constrained Devices

Sebastian Rohde1, Thomas Eisenbarth1, Erik Dahmen2, Johannes Buchmann2,
and Christof Paar1

1 Horst Görtz Institute for IT Security
Ruhr University Bochum
44780 Bochum, Germany

{rohde,eisenbarth,cpaar}@crypto.rub.de
2 Technische Universität Darmstadt
Department of Computer Science

Hochschulstraße 10, 64289 Darmstadt, Germany
{dahmen,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Digital signatures are one of the most important applications
of microprocessor smart cards. The most widely used algorithms for digi-
tal signatures, RSA and ECDSA, depend on finite field engines. On 8-bit
microprocessors these engines either require costly coprocessors, or the
implementations become very large and very slow. Hence the need for
better methods is highly visible. One alternative to RSA and ECDSA is
the Merkle signature scheme which provides digital signatures using hash
functions only, without relying on any number theoretic assumptions. In
this paper, we present an implementation of the Merkle signature scheme
on an 8-bit smart card microprocessor. Our results show that the Merkle
signature scheme provides comparable timings compared to state of the
art implementations of RSA and ECDSA, while maintaining a smaller
code size.

Keywords: Embedded security, hash based cryptography, Merkle signa-
ture scheme, digital signatures.

1 Motivation

Smart cards are used in many areas of every day life. Application areas include
payment systems, electronic health cards and SIM cards for mobile phones. With
the advent of contactless smart cards, new and important fields of application
have recently emerged, like the electronic passport, which is now deployed in
many countries, especially in Europe and the US. Other countries, like Belgium,
also issue electronic ID cards to their citizens [11].

The most important application of smart cards is secure identification and
authentication. Many of the above mentioned applications have a need for strong
security. All these requirements are met by digital signatures. Digital signatures
provide authenticity, integrity and support for non-repudiation of data and are
often used in identification and authentication protocols for smart cards.



Since smart cards are usually provided in high quantities, there is also a
need to keep costs as low as possible. This is one of the reasons why most of the
microprocessor cards in use are still equipped with small and cheap 8-bit CPUs.
These small 8-bit microprocessors are constrained in program memory (flash or
ROM), RAM, clock speed, register width, and arithmetic capabilities.

Common signature schemes such as RSA and ECDSA require operations in a
finite field for the signature generation and verification. For efficient implementa-
tions in smart cards, costly coprocessors that implement the field arithmetic are
required. In 1979 Merkle proposed a signature scheme that requires only hash
function evaluations for the signature generation and verification [20]. Since soft-
ware implementations of hash functions are much more efficient than software
implementations of finite field arithmetic, the Merkle signature scheme (MSS)
is a good candidate for implementations on small microprocessors without cryp-
tographic coprocessors. Another benefit of the MSS is the fact that its security
relies only on the cryptographic properties of the used hash function and not on
additional number theoretic assumptions. If the hash function used for the MSS
is found insecure, it can be replaced by a secure one to obtain a new and secure
instance of the MSS.

Our Contribution. In this paper we present an implementation of the Merkle
signature scheme for 8-bit Atmel AVR microcontrollers, e.g. smart card proces-
sors from the AT90SCxxx family. Our implementation is highly scalable and can
be configured to provide an ideal tradeoff between security, execution times, and
memory requirements for the specific use case. We will show that our implemen-
tation of the MSS performs excellently when compared to RSA and ECDSA.
Our implementation has a smaller code size and faster verification times. The
signature generation is faster than RSA and comparable to ECDSA. Further
performance improvements are reached by utilizing a symmetric crypto engine
such as an AES hardware acceleration.

For the underlying hash functions we use constructions that are based on
the AES block cipher. Such hash functions have two advantages compared to
dedicated hash functions: (1) they have a small block size which is more suitable
for the MSS and (2) they are more efficient in size and speed.

Related Work. Gura et al. showed the feasibility of public key cryptography
on constrained 8-bit microcontrollers. Their implementation of RSA-1024 and
RSA-2048 showed that digital signatures are feasible on 8-bit platforms even
without expensive crypto-coprocessors. Further research regarding digital signa-
tures on constrained 8-bit devices has been performed in the field of wireless
sensor networks. Liu and Ning published a full ECC engine called TinyECC
which also does not require a coprocessor. They implemented the 160-bit elliptic
curve secp160r1. Winternitz one-time signatures have also been proposed to be
used in wireless sensor networks for signing short messages (< 80 bit) [18]. The
proposed solution, however, uses a public key management that is not applicable
to smart cards. Others [24, 7] show possible use cases for MSS on constrained
devices without making any suggestions regarding the implementation.



Organization. The paper is organized as follows: Section 2 gives an overview
of the MSS and the used hash functions. Section 3 explains the target platform
and details about the implementation. Section 4 presents performance results
and a comparison. Section 5 elaborates a possible performance gain when using
an AES hardware acceleration. Section 6 states our conclusion.

2 Preliminaries

In this section we describe the details of the variant of the Merkle signature
scheme [20] we use for our implementation. In summary we use the Winternitz
one-time signature scheme (W-OTS) [9] to sign the data, the ideas for efficient
one-time signature key generation of [4] and the algorithm from [6] for the com-
putation of the authentication paths. We use two different hash functions based
on the AES block cipher, both with 128-bit block length. We use a 256-bit hash
function for the initial hashing (digest creation) of the data to be signed and
a 128-bit hash function for the one-time signature scheme and the Merkle tree.
Details on the construction of these hash functions are described in Section 2.2.

2.1 The Merkle Signature Scheme

We now describe the three algorithms for the key generation, signature gen-
eration, and verification. In the following, let F : {0, 1}∗ → {0, 1}128 and
G : {0, 1}∗ → {0, 1}256 be cryptographic hash functions.

Key Generation. The first step of the key generation is to decide how many
signatures should be generated with this key pair. We choose the parameter
H ≥ 2 to be able to generate 2H signatures. The next step is to generate 2H

W-OTS key pairs. For the W-OTS key generation, we apply the approach of [4]
and use the following forward secure pseudo random number generator.

PRNG : {0, 1}128 → {0, 1}128 × {0, 1}128,Seedin 7→ (Seedout,Rand).

As suggested in [5], we use the hash based PRNG proposed in [12], i.e.

Rand← F (Seedin),Seedout ← (1 + Seedin + Rand) mod 2128.

The MSS private key is an 128-bit seed Seed chosen uniform at random. This
seed is fed to the PRNG to compute the initial seed SeedW-OTS that we use to
generate first W-OTS signature key:

(Seed,SeedW-OTS) = PRNG(Seed). (1)

Doing so, Seed is updated and can be used to compute the initial seeds for
upcoming W-OTS signature keys. Depending on the Winternitz parameter w,
the W-OTS signature key consists of t = t1 + t2 128-bit strings, where

t1 =

⌈

256

w

⌉

, t2 =

⌈

⌊log2 t1⌋+ 1 + w

w

⌉

.



The W-OTS signature key is the sequence X = (x1, . . . , xt), that consists of t
bit strings each of length 128-bit. It is computed using the PRNG as

(SeedW-OTS, xi) = PRNG(SeedW-OTS) (2)

for i = 1, . . . , t. The W-OTS verification key is Y = F (y1 ‖ . . . ‖ yt), where
yi = F 2

w
−1(xi), i.e. the hash function F is applied 2w − 1 times to xi for

i = 1, . . . , t.
The 2H W-OTS verification keys are the leaves of the Merkle tree. The inner

nodes are computed using the following construction rule: a parent node is the
hash of the concatenation of its left and right children, i.e.

Nodeparent = F (Nodeleft child ‖ Noderight child).

By applying this rule iteratively the root of the Merkle tree, which is also the
MSS public key, is obtained.

Signature Generation. To sign some data, the first step is to compute its 256-
bit digest: d = G(data). The W-OTS signature keys are used sequentially. We
describe the generation of the sth signature, s ∈ {0, . . . , 2H−1}. The sth W-OTS
signature key is computed from the seed Seed as described in Equations (1) and
(2). We always update the seed in the private key and therefore one invocation
of the PRNG suffices to obtain the initial seed SeedW-OTS to compute the
sth W-OTS signature key. The Winternitz signature of d is then computed as
follows: (1) split the binary representation d into t1 blocks b1, . . . , bt1 each of
length w. (2) Consider bi as the integer encoded by this block in binary and
compute c =

∑t1
i=1

(2w − bi). (3) Split the binary representation c into t2 blocks
bt1+1, . . . , bt each of length w. If the bit-length of c or d is no multiple of w
we pad with zeros to the left. The Winternitz signature of d is then given as
σW-OTS(d) = (σ1, . . . , σt), where σi = F bi(xi), for i = 1, . . . , t. The sth MSS
signature of d is given as

σs(d) =
(

s, σW-OTS(d), (a0, . . . , aH−1)
)

.

The sequence (a0, . . . , aH−1) is the authentication path for the sth leaf, i.e. the
sth W-OTS verification key. It is defined as the siblings of all nodes on the path
from the sth leaf to the root of the Merkle tree, see Figure 1. For the computation
of authentication paths we use the BDS algorithm from [6]. This algorithm
is constructed such that the authentication path for the currently used leaf is
already available and the upcoming authentication paths are prepared after the
MSS signature is computed. The BDS algorithm uses a parameter K ≥ 2 which
decides how many nodes close to the root are stored during the initialization to
reduce the computational cost. The initialization of this algorithm, that requires
certain tree nodes to be stored, is done during the MSS key generation.

Signature Verification. The first step of the signature verification is again to
compute the digest of the data that was signed: d = G(data). Then d and its



s

a0

a1

a2

Fig. 1. Example of the Merkle signature scheme for H = 3, s = 3. Dashed nodes denote
the authentication path for the sth leaf. The arrows indicate the path from the sth leaf
to the root.

Winternitz signature are used to compute the sth leaf as follows: Repeat steps
(1)-(3) of the Winternitz signature generation to obtain b1, . . . , bt. The sth leaf
ϕ is computed as

ϕ = F
(

F 2
w
−1−b1(σ1) ‖ . . . ‖ F 2

w
−1−bt(σt)

)

Then the path from the sth leaf to the root and the root itself is recomputed
using the authentication path and the index s:

ϕ =

{

F (ϕ ‖ ah) , if s/2h ≡ 0 mod 2
F (ah ‖ ϕ) , if s/2h ≡ 1 mod 2

for h = 0, . . . ,H − 1. If the computed root matches the signers public key, the
signature is valid.

Time and Memory Requirements. We now estimate the number of evalua-
tions of F required for the key generation, signature generation and verification.
We also estimate the storage requirements of the public and private key and the
signatures.

The MSS key generation requires the computation of 2H leaves or W-OTS
key pairs and 2H − 1 evaluations of F to compute the root. The computation
of one leaf costs t(2w − 1) + 1 evaluations of F and t + 1 calls to the PRNG.
Using that one call to the PRNG costs as much as one evaluation of F , the key
generation in total requires 2H(t2w + 3) − 1 evaluations of F . The public key
requires 128 bits of memory.

For each signature, the BDS algorithm requires at most (H − K)/2 + 1
leaves, 3(H − K − 1)/2 + 1 evaluations of F and H − K calls to the PRNG
to compute upcoming authentication paths. If s is even the BDS algorithm
requires (H − K)/2 + 1 leaves to be computed. One of these leaves is the sth
leaf. Since the Winternitz signature of the data just signed using the sth W-
OTS key is an intermediate value during the computation of the sth leaf, the
generation of this Winternitz signature needs no additional calculations in this
case. If s is odd, the BDS algorithm requires only (H − K)/2 leaves to be
computed and the Winternitz signature of the data must be computed separately.
Since the generation of a Winternitz signature requires less computations than



a leaf, the above cost for the BDS algorithm also represent the total cost for
signing. Hence, the total cost for signing in terms of evaluations of F is at
most t2w(H −K − 2)/2 + (7H − 7K + 3)/2. The BDS algorithm needs to store
3.5H−3K +2K−2 nodes of the Merkle tree and 2(H−K) seeds which we store
as part of the private key. Together with the 128-bit seed used to generate the
signature keys, the size of the private key is given as (5.5H − 5K + 2K − 1) · 128
bits. The size of the signature is given as (t + H) · 128 bits. t · 128 bits for the
Winternitz signature and H · 128 bits for the authentication path.

The signature verification on average requires t(2w − 1)/2 evaluations of F
to compute the sth leaf and H evaluations of F to recompute the path to the
root and the root itself. The signature generation and verification also require
one evaluation of G to compute the initial digest d of the data.

The above formulas show that the Winternitz parameter w provides a time-
memory trade-off of the signature size and the key and signature generation
times. However, the key and signature generation times of the W-OTS keys are
exponential in w, while the signature size decreases only linearly in w. Therefore
w should not be chosen too large. Also the output length of the hash functions
F and G must be chosen carefully since the size of a Winternitz signature lin-
early depends on their product. Our choice of 128 and 256 bit yields moderate
signature sizes and, as we will explain in the following, high practical security.

Security. The MSS is provably secure against adaptive chosen message attacks,
if the used hash function is collision resistant [8]. However, to forge a MSS
signature in practice the attacker is required to compute preimages and second-
preimages. Therefore the practical security of the MSS currently relies on the
preimage and second-preimage resistance of the used hash function [21]. From
a practical point of view, the 128-bit hash function F we use for the W-OTS
and the Merkle tree provides 128-bit security. Collision resistance is definitely
required for the initial hashing of the data to sign. This is why we use the 256-bit
hash function G, which provides 128-bit security against collision attacks that
exploit the birthday paradox.

2.2 Hash Functions

In this section we present the hash functions that are used in our scheme. Further-
more we show that single and double block length constructions are the better
choice when used in conjunction with digital signatures. Relatively short input
block lengths and the resulting speed make them better suited for implementa-
tions on constrained devices. Public key and private key sizes are proportionally
dependent on the hash length of F . As stated earlier, a short value of 128 bit
offers adequate security for this scenario while staying within reasonable mem-
ory limits. For our scheme, we used the AES algorithm which is specified with a
block length of 128 bit. Using AES in a double block length construction leads
to a hash length of 256 bit.

Using block ciphers as hash functions in digital signature schemes is also
appealing because one primitive can be used for three applications: encryption,



generation of hashes, and digital signatures. In addition block ciphers are much
better known and analyzed than dedicated hash functions.

Single Block Length Construction. The single block length hash in our
scheme is constructed using a Matyas-Meyer-Oseas (MMO) construction [19].
The MMO construction is recursively defined as fi+1 = Efi

(Mi) ⊕Mi with E
being the encryption function, Mi as the current message block and f0 being an
initialization vector (See Figure 2). In a hash signature scheme this variant for
constructing the hash benefits from the fact that the encryption function always
uses the same key (an initialization vector) for the first block.

fi fi+1

Mi

E

Fig. 2. Single block length compression function due to [19]. The output of the block
cipher E is xored with the message block Mi. fi, fi+1, and Mi are each of bit length
128.

Double Block Length Construction. For applications such as the initial
digest generation in a signature scheme, collision resistance is needed and the
security of single block length (SBL) constructions is not sufficient. For our imple-
mentation, we use MDC-2 double length construction specified in the ISO/IEC
10118-2 standard. The standard envisions the usage of DES, but there is a vari-
ant using AES-128 [23], as depicted in Figure 3. This construction takes a block
cipher with block length n bit and produces a hash function with 2n bit output
length. In [22] the authors show, that an adversary needs at least 23n/5 oracle
queries to find a collision. However, the best practical attacks require 2n queries.

The double block length construction is only used for initial digest generation.
It can easily be replaced by a dedicated hash function resulting in a negligible
performance loss but an increased code size.

Comparison to Dedicated Hash Functions. SBL and DBL constructions
are much better suited for hash-based signature schemes than dedicated hash
functions. A hash function with 512 bit (e.g. whirlpool) length would yield a
highly inefficient signature scheme. At the same time it is also interesting to
note that dedicated hash functions are optimized for large amounts of data as
can be seen by the comparatively large block size (512 bit). With the MSS, the
input for the hash function has mainly the same size as the output value. This is



g0
i

g1
i

Mi

(A ‖ B)

(C ‖ D)

g0
i+1 = C ‖ B

g1
i+1 = A ‖ D

E

E

Fig. 3. Double block length compression function due to [23]. The outputs of the block
cipher E are xored with the message block Mi and permuted. g0

i , g1
i , g0

i+1g
1
i+1, and Mi

are each of bit length 128.

one of the reasons why dedicated hash functions provide suboptimal performance
for appliances in hash based signature schemes.

In addition large block sizes reduce the speed of implementations on the
AVR microcontroller platform since the state cannot be held completely in the
registers of the processor. In Table 1 we provide a comparison of various hash
functions and their performance. The results for the dedicated hash functions
are taken from [13] and [15].

Table 1. Performance of hash function implementations on the AVR platform

bit length per msec per cycles per
Hash function output block block block byte

SHA1 [13] 160 512 3.9 63,000 984
SHA1 [15] 160 512 2.6 41,113 642
SHA256 [15] 256 512 3.4 54,196 847
MD5 [13] 128 512 1.5 23,568 368

AES-SBL 128 128 0.3 4,081 255
AES-DBL 256 128 0.5 8,104 507

Concerning the cycles required to hash one block, the block cipher based
hash functions provide much better performance. This is due to the large block
size of 512 bit used by dedicated hash functions to allow efficient hashing of large
amounts of data. This is clarified by the column “cycles per byte” which shows
that dedicated hash functions and block cipher based hash functions require a
similar time to hash one input byte. However, for the Merkle signature scheme
and our choice of parameters most of the time only blocks of length up to 256
bits must be hashed, which requires about 8,000 cycles when using the SBL
construction. Hence, SBL constructions are a better choice than dedicated hash
functions for the Merkle signature scheme on the target platform.



3 Implementation Details and Target Platform

Target Platform. Our implementation is designed for 8-bit AVR microcon-
trollers, a popular family of 8-bit RISC microcontrollers. The Atmel AVR pro-
cessors offer clock speeds of up to 16MHz, a few KBytes of SRAM, up to tens of
KBytes of EEPROM and additional flash or mask ROM for program memory.
Besides the AVR smart card processors AT90SCxxx [2], AVRs are also available
as general purpose microcontrollers with a wide use in many embedded applica-
tions. One example is the Atmel ATmega128 microcontroller [3] often used for
wireless sensor networks.

The devices of the AVR family have 32 general purpose registers of 8-bit
word size. Most of the 130 instructions of the microcontroller are one-cycle.
AVR microcontrollers can be programmed in AVR-assembler and in C.

The implementation of this project is designed to be executable on any AVR
processor providing 4 KBytes SRAM, about 4 KBytes EEPROM and at least
8 KBytes of program memory. However, for platforms that are even more con-
strained in available SRAM, our scheme can also be altered to operate on systems
with less SRAM. For our implementation the AVR was clocked within specifi-
cation limits at 16 MHz. We chose to use assembler for performance critical
routines such as some cryptographic primitives and C to glue these routines
together.

AES Implementation. An efficient AES implementation for the AVR platform
is available at [1]. It is licensed under the GPL. We modified this implementation
to make it even smaller and faster. In this section we describe our modifications
and improvements concerning this AES algorithm.

The RijndaelFurious algorithm is pure assembly code that can be compiled
using the Atmel AVR compiler. Some modifications made it compilable using
the avr-gcc. In addition the decryption functionality has been removed as it is
not necessary for hash function constructions. If an AES decryption is needed, it
can be easily added by the cost of a small increase in code size. Furthermore, we
contributed our own implementation of the MixColumns function that is better
in respect to performance and code size.

The used hash function constructions often apply the initialization vector as
the encryption key. For a further speed-up we also implemented an alternative
method with a pre-expanded key. This allows to save many key expansions in
the process of creating one-block hashes.

Memory Management. The Merkle signature scheme is key evolving, which
means that after every signing process a modification of the private key is re-
quired. The private key needs to be stored in nonfluent memory when the power
is lost. Our implementation stores the private key in EEPROM, since the max-
imum amount of erase/write cycles allowed on the flash memory are usually
much more limited than on the EEPROM. Our target platform is specified for
at least 100.000 erase/write cycles [2, 3]. Therefore the maximum value for the



height of the Merkle tree supported by our implementation is H = 16, which
allows 216 = 65.536 signatures to be generated. We store the whole signature
in the SRAM during creation. However, for platforms that are even more con-
strained concerning SRAM our scheme can easily be altered to support signature
generation and verification with much less RAM.

The memory constraints also enforce a very economical way of organizing the
data of the private key. Despite of heavy optimizations, some implementation
details force the actual size of the private key to be slightly larger than the
calculated results from Section 2.1. The main reason is that these formulas count
only the number of hash values that must be stored. For example, the stacks
used by the BDS algorithm were implemented as arrays of fixed size. In addition
to the stack, we need to store the index of the array element that denotes the
top node on the stack. Also the size of the signatures is slightly larger than
estimated, because the index of the signature must be added as well.

Key Generation. Due to the heavy computations required, the key generation
is not done on the microcontroller but on a standard PC. For the generation of
test data, we created a PC version of the project that uses mostly the same code
base. In contrast to the AVR implementation it uses a different implementation
of the AES algorithm and it supports key generation. The key generation is
computationally far too costly to run on the microcontroller which is why it has
been disabled in the AVR implementation. The speed of the PC version has also
been used to verify the correct behavior of our code by iterating through all
possible signatures.

Side Channel Resistance. For smart card implementations, resistance against
side channel attacks is of high importance. All parts of an implementation han-
dling sensitive data need to be protected against a possible leakage. The W-OTS
signature keys X and their seeds Seed are the only critical data. Since the keys
X and their seeds are used as one-time keys, the values are being processed very
few times, rendering non-template based attacks difficult. However, the analysis
of the vulnerability against side channel attacks and, if necessary, the develop-
ment of efficient countermeasures are an interesting field for future work.

4 Choice of Parameters and Timings

In this section we present the timings of our implementation and the exact mem-
ory requirements for the microcontroller. We also compare these values to im-
plementations of state of the art signature schemes on the same microcontroller
platform. For the height of the Merkle tree we chose H = 16 and H = 10 which
allows 216 and 210 signatures to be generated with one key pair, respectively.
The reason for the choice of H = 16 is, that 216 is near to the maximum number
of allowed write cycles for the EEPROM of the microcontroller [2, 3]. The values
for H = 10 were included to clarify the impact of the tree height on the signa-
ture generation time. For the Winternitz parameter w and the parameter K for



the BDS algorithm, we tested three combinations (w,K) = (2, 2), (2, 4), (4, 4).
The value t, that denotes the number of 128-bit strings in the W-OTS signature
key and the one-time signature, is t = 133 for w = 2 and t = 67 for w = 4.
Table 2 summarizes the results. spub, spriv, ssig, and sROM denote the memory
requirements for the public key, the private key, and the signature as well as
the code size in bytes, respectively. tverify and tsigning denote the average time in
milliseconds required for verification and signature generation, respectively.

Table 2. Timings and memory requirements of our implementation and comparison
to state of the art signature schemes on the same platform.

Memory in bytes Time in msec
Scheme spub spriv ssig sROM tverify tsigning

Our MSS-128 implementation using H = 16
(w, K) = (2, 2) 16 1440 2350 6600 85 1230
(w, K) = (2, 4) 16 1472 2350 6600 85 1072
(w, K) = (4, 4) 16 1472 1330 6600 127 1665

Our MSS-128 implementation using H = 10
(w, K) = (2, 2) 16 848 2290 6600 82 756
(w, K) = (2, 4) 16 876 2290 6600 82 598
(w, K) = (4, 4) 16 876 1234 6600 124 946

RSA-1024 [14] 131 128 128 7400 215 5495
RSA-2048 [14] 259 256 256 10600 970 41630
ECDSA-160 [10] 40 21 40 43200 423 423
ECDSA-160 [17] 40 21 40 17900 1218 1001

Table 2 shows that our implementation features smaller code size and smaller
public keys. The above figures already include the code size of the hash function
needed for digest generation and the AES engine. Also the signature verification
times are faster than those of RSA and ECDSA. The signature generation time
of our implementation is much faster than the RSA implementations and com-
parable to the ECDSA implementations. In case of H = 10 our implementation
is even faster than the memory efficient ECDSA variant from [17]. The main
drawbacks of the MSS are the large memory requirements for the signature and
the private key. However, both the private key and the signature easily fit into
the EEPROM and the SRAM of the Atmel, respectively.

We finally remark that our implementation provides a practical security of
128 bits and hence offers long term security until the year 2090 [16]. RSA with an
1024-bit modulus offers comparable symmetric security of only 72 bit, i.e. until
the year 2006. The security of 2048-bit RSA is at most 95-bit, i.e. until the year
2040. ECDSA using 160-bit elliptic curves offers only 80 bit of security, i.e. until
the year 2018. This shows that our implementation is not only very competitive
to currently used schemes, but also offers higher practical security [16].



5 Hardware Accelerated AES

The most performance critical part of our MSS implementation is the AES based
hash function. Hence, a natural approach to improve the scheme’s overall per-
formance is to accelerate the AES implementation. Many recent low-/mid- bud-
get smart card processors offer hardware acceleration for symmetric encryption
schemes like the AES. One publicly available platform offering an AES hardware
acceleration is the Atmel ATxmega 128A1 processor.

In contrast to the software implementation of the SBL construction using
AES that requires 4,081 cycles per block, the hardware accelerated version re-
quires only 1069 cycles per block. However, the AES engine itself needs only
375 cycles on the target platform. Besides the overhead for the hash function
construction the remaining cycles are mainly required for the necessary memory
management. Table 3 illustrates the performance of the MSS when utilizing AES
hardware acceleration. This table shows, that speeding up the hash function by
a factor ≈ 3.82 results in a speed up of the Merkle signature scheme by roughly
the same factor.

Table 3. Timings and memory requirements of our implementation with and without
AES hardware acceleration.

Memory in bytes Time in msec
Scheme spub spriv ssig sROM tverify tsigning

Our MSS-128 implementation using H = 16 / Software AES
(w, K) = (2, 2) 16 1440 2350 6600 85 1230
(w, K) = (2, 4) 16 1472 2350 6600 85 1072
(w, K) = (4, 4) 16 1472 1330 6600 127 1665

Our MSS-128 implementation using H = 16 / Hardware AES
(w, K) = (2, 2) 16 1440 2350 6100 24 362
(w, K) = (2, 4) 16 1472 2350 6100 24 317
(w, K) = (4, 4) 16 1472 1330 6100 38 504

6 Conclusion

We presented an implementation of the Merkle signature scheme on a low-cost
8-bit microcontroller platform. Our implementation shows that MSS is a com-
petitive signature scheme compared to commonly used signature schemes such
as RSA and ECDSA. Our implementation has smaller code size and faster verifi-
cation times than efficient implementations of RSA and ECDSA. The signature
generation times are faster than RSA and comparable to ECDSA.

When employing an available symmetric crypto coprocessor, even further
speed up can be reached.

Our implementation gives a positive answer to the question whether highly
secure and efficient signature schemes can be implemented on constrained de-
vices.



References

1. Rijndaelfurious implementation, 01 2008. http://point-at-infinity.org/

avraes/.
2. Atmel. Overview of secure avr microcontrollers 8-/16-bit risc cpu, 2007. http:

//www.atmel.com/products/SecureAVR/.
3. Atmel. Specifications of the atmega128 microcontroller, 2007. http://www.atmel.

com/dyn/resources/prod_documents/doc2467.pdf.
4. J. Buchmann, C. Coronado, E. Dahmen, M. Döring, and E. Klintsevich. CMSS

- an improved merkle signature scheme. In R. Barua and T. Lange, editors, IN-
DOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages 349–363.
Springer, 2006.

5. J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume. Merkle
signatures with virtually unlimited signature capacity. In J. Katz and M. Yung,
editors, ACNS, volume 4521 of Lecture Notes in Computer Science, pages 31–45.
Springer, 2007.

6. J. Buchmann, E. Dahmen, and M. Schneider. Merkle tree traversal revisited.
Manuscript, 2008. http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/
dahmen.html.

7. X. Cheng, W. Li, and T. Znati, editors. Wireless Algorithms, Systems, and Appli-
cations, First International Conference, WASA 2006, Xi’an, China, August 15-17,
2006, Proceedings, volume 4138 of Lecture Notes in Computer Science. Springer,
2006.

8. C. Coronado. On the security and the efficiency of the merkle signature scheme.
Cryptology ePrint Archive, Report 2005/192, 2005. http://eprint.iacr.org/.

9. C. Dods, N. P. Smart, and M. Stam. Hash based digital signature schemes. In
N. P. Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer
Science, pages 96–115. Springer, 2005.

10. B. Driessen, A. Poschmann, and C. Paar. Comparison of Innovative Signature
Algorithms for WSNs. In Proceedings of the First ACM Conference on Wireless
Network Security (to appear).

11. ePractice.eu. Belgian electronic ID card officially launched, April 2003. http:

//www.epractice.eu/document/2139.
12. Digital signature standard (DSS). FIPS PUB 186-2, 2007. Available at http:

//csrc.nist.gov/publications/fips/.
13. P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Si-

chitiu. Analyzing and modeling encryption overhead for sensor network nodes. In
WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sen-
sor networks and applications, pages 151–159, New York, NY, USA, 2003. ACM.

14. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing elliptic
curve cryptography and rsa on 8-bit cpus. In M. Joye and J.-J. Quisquater, ed-
itors, CHES, volume 3156 of Lecture Notes in Computer Science, pages 119–132.
Springer, 2004.

15. D. Labor. Crypto-avr-lib. Available through http://www.das-
labor.org/wiki/Crypto-avr-lib, 01 2008.

16. A. K. Lenstra. Key lengths. Contribution to The Handbook of Information Secu-
rity, 2004. http://cm.bell-labs.com/who/akl/key_lengths.pdf.

17. A. Liu and P. Ning. TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. Technical Report TR-2007-36, North Carolina
State University, Department of Computer Science, November 2007.



18. M. Luk, A. Perrig, and B. Whillock. Seven cardinal properties of sensor network
broadcast authentication. Proceedings of the fourth ACM workshop on Security of
ad hoc and sensor networks, pages 147–156, 2006.

19. A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, 1996.

20. R. C. Merkle. A certified digital signature. In G. Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer, 1989.

21. D. Naor, A. Shenhav, and A. Wool. One-time signatures revisited: Have they
become practical. Cryptology ePrint Archive, Report 2005/442, 2005. http://

eprint.iacr.org/.
22. J. P. Steinberger. The collision intractability of mdc-2 in the ideal-cipher model.

In M. Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer
Science, pages 34–51. Springer, 2007.

23. J. Viega. The AHASH Mode of Operation. Manuscript available from
http://www.cryptobarn.com/, 2004.

24. S. Yu-long, M. Jian-feng, and P. Qing-qi. An Access Control Scheme in Wire-
less Sensor Networks. Network and Parallel Computing Workshops, 2007. NPC
Workshops. IFIP International Conference on, pages 362–367, 2007.


