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Abstract. This paper proposes novel algorithms for computing double-
size modular multiplications with few modulus-dependent precomputa-
tions. Low-end devices such as smartcards are usually equipped with
hardware Montgomery multipliers. However, due to progresses of math-
ematical attacks, security institutions such as NIST have steadily de-
manded longer bit-lengths for public-key cryptography, making the mul-
tipliers quickly obsolete. In an attempt to extend the lifespan of such mul-
tipliers, double-size techniques compute modular multiplications with
twice the bit-length of the multipliers. Techniques are known for ex-
tending the bit-length of classical Euclidean multipliers, of Montgomery
multipliers and the combination thereof, namely bipartite multipliers.
However, unlike classical and bipartite multiplications, Montgomery mul-
tiplications involve modulus-dependent precomputations, which amount
to a large part of an RSA encryption or signature verification. The pro-
posed double-size technique simulates double-size multiplications based
on single-size Montgomery multipliers, and yet precomputations are es-
sentially free: in an 2048-bit RSA encryption or signature verification
with public exponent e = 2'® 4 1, the proposal with a 1024-bit Mont-
gomery multiplier is 1.4 times faster than the best previous technique.

Keywords: Montgomery multiplication, double-size technique, RSA, ef-
ficient implementation, smartcard.

1 Introduction

The algorithm proposed by Montgomery has been extensively implemented to
perform costly modular multiplications which are time-critical for public-key
cryptosystems such as RSA [Mon85,RSA78]. In particular, and unlike naive im-
plementations of classical modular multiplications, Montgomery multiplications
are not affected by carry propagation delays for computing the quotient of a
modular reduction, and as a result, are suitable for high-performance hardware
implementations. However, such accelerators are penalized by a strict restric-
tion: their operand size is fixed. In order to deal with recent integer factoring
records and ensure long-term security [Len04], official security institutions are
updating their standards to longer key sizes than the mainstream 1024 bits for



RSA [Nis07,EMV,Ecr06]; unfortunately, such bit lengths are not supported by
many cryptographic coprocessors.

This problem has motivated many studies for double-size modular multipli-
cation techniques using single-size hardware modular multipliers. On the one
hand, thanks to the Chinese Remainder Theorem, private operations (signa-
ture generation or decryption) can work with only single-size modular multi-
plications for computing double-size modular exponentiations [MOV96]. On the
other hand, the Chinese Remainder Theorem is no help for public operations,
and double-size techniques without using private keys are necessary. Following
Paillier’s seminal paper [Pai99], several solutions were proposed for simulating
double-size classical modular multiplications with single-size classical modular
multipliers [FS03,CJP03], and later, the techniques were adapted in order to sim-
ulate double-size Montgomery multiplications with the commonly used single-
size Montgomery multiplier [YOV07a]. Finally, the less common but nonethe-
less promising bipartite multiplier [KT05], which includes a Montgomery and a
classical multiplier working in parallel, was taking advantage of for simulating
double-size bipartite multiplications [YOV07b].

In the context of public operations, RSA signature verification for instance,
the verifier is unlikely to know the RSA modulus in advance; we refer to this event
as on-line verification. On the one hand, classical modular multiplications are
not affected by the fact that verification is performed off-line or on-line. With
a bipartite multiplier, some modulus-dependent precomputations are required
during on-line verification. However, when the parameters of the multiplier are
appropriately chosen, the cost of precomputations is negligible [KT05]. But on
the other hand, precomputations are far from being negligible when using Mont-
gomery multipliers, especially when the public exponent is small. Assuming the
2048-bit exponentiation X¢ mod Z, the basis X must be firstly converted to
its Montgomery representation, namely X * 2294® mod Z, which can be accom-
plished with 2048 successive shifts or eleven 2048-bit Montgomery multiplica-
tions; in the latter case, this amounts to 36% of the total verification time when
e = 216 1 1. This is especially unfortunate considering the fact that Montgomery
multipliers represent the most popular architecture for cryptographic coproces-
sors [NM96].

In this paper, we solve the problem of costly on-line precomputations with
a radically new approach. Although we assume a multiplier based on the cele-
brated Montgomery multiplication technique, we simulate a bipartite double-size
multiplication, where on-line precomputations are essentially free. Although our
double-size bipartite multiplication technique is slightly slower than double-size
Montgomery multiplications, the penalty is largely counterbalanced by the ben-
efit in terms of precomputations, at least when the public exponent e is small.
When e = 26 + 1, which is by far the most common choice for RSA, our tech-
nique is 1.4 times faster than the best previous techniques, and even more when
e = 3. In addition, when the CPU and the coprocessor operate in parallel, which
is possible on some low-cost microcontrollers, our proposal can be further opti-
mized, leading to even greater speed. As a consequence, our simulated bipartite



multiplier is the fastest among double-size techniques for cryptographic devices
equipped with Montgomery multipliers, and allows the current generation of such
multipliers to comply with upcoming key-length standards of official institutes.

Notation: Let ¢ denote operand size of hardware modular multiplication units
and L equal to 2¢. Small letters such as x, y and z denote ¢-bit integers, and
capital letters such as X, Y and Z denote L-bit integers, where Z is an odd
modulus greater than 20~! like in the case of L-bit RSA.

2 Previous Double-Size Techniques

Montgomery multiplication algorithm has been extensively implemented as cryp-
tographic coprocessors to help low-end devices performing heavy modular mul-
tiplications. However, the coprocessors are designed to support the main stream
1024-bit RSA, and face with the upper limit of their bit length to comply with
upcoming key-length standards, such as the NIST recommendation; 2048-bit
RSA. The problem has motivated double-size techniques to compute modular
multiplication with twice the bit length of hardware multipliers.

2.1 Yoshino et al.’s Scheme

This subsection introduces Yoshino et al.’s work[YOV07a,YOV07b]: how to com-
pute a double-size Montgomery multiplication with single-size Montgomery mul-
tiplications.

The double-size techniques proposed by Yoshino et al. require not only re-
mainders but also quotients of single-size Montgomery multiplications. The equa-
tion zy = ¢mz + Tmc shows the relation among products of multiplier x and
multiplicand y, quotient g, and modulus z, and remainder r,, and constant
¢, where the constant c is usually selected as power of 2 for efficient hardware
implementations in practice, therefore this paper also assumes such c satisfying
c = 2¢ [MOV96].

Definition 1 shows an mu instruction for performing single-size Montgomery
multiplications, outputting only the remainder.

Definition 1. For numbers, 0 < z,y < z and z is odd, the mu instruction is
defined as r,, < mu(x,y, z) where rp,, = xyc™! (mod 2).

Their double-size techniques assumed that an mmu instruction is available,
which can be emulated with only 2 calls to single-size Montgomery multipliers,
and computes the reminder r,, and the quotient g, of Montgomery multiplica-
tions [YOV07a] satisfying the equation xy = gz + rmec.

Definition 2. For numbers, 0 < x, y < z and z is odd, the mmu instruction is
defined as (Gm,Tm) < mmu(x,y, 2) where ¢ = (vy — rmc)/z and vy = oyc™t

(mod z).



Yoshino et al.’s double-size techniques need two steps other than multiplier
calls. First, every L-bit integer X, Y and Z is represented with /-bit integers
which can be handled by mmu instructions:

X=z1(c—1)+ 20, Y =y1(c— 1)+ yocand Z = z1(c — 1) + zpc.

Second, all quotients g, and remainders r,, are sequentially gathered from mmu
instructions.

Double-size Montgomery multiplications compute a remainder R,,, such that
R,, = XYC~! (mod Z) where 0 < X, Y < Z, and the constant C is called
Montgomery constant, and twice bit length of the constant ¢: C' = 2L(= ¢?).
Algorithm 1 shows their double-size Montgomery multiplications requiring 6
calls to mmu instructions, and 12 calls to Montgomery multipliers in total.

Algorithm 1: Double-size Montgomery multiplication [YOV07b]

INPUT: X, Y and Z where 0 < X,Y < 7 ;
OuTPUT: XY C™! (mod Z) where C = 2%;

( ) — mmu(z1,y1,21)

(g2,72) < mmu(q1, z0,c — 1) /]e=2"
(g3,73) < mmu(zo + 1,90 + y1,¢ — 1)

(qa,74) < mmu(zo,yo,c — 1)

( ) —mmu(c—1,—g2 +q3 — qa +71,21)

(g6,76) < mmu(gs, z0,c — 1)

return (g2 +q1—qgs — 11 —r2+r3—ra+75)(c—1) 4+ (ro +r4a — r6)c (mod Z)

Nt W=

Thanks to Algorithm 1, one can set a new MU instruction to compute L-bit
Montgomery multiplications such that R, « MU(X,Y, Z) where R,, = XYC~!
(mod Z),0< X,Y < Z and C = 2.

2.2 L-bit RSA Public Operations

The MU instruction (double-size Montgomery multiplications) introduced in last
subsection requires twelve single-size multiplications and other basic modular
operations; therefore the number of calls to the MU instruction should be as small
as possible to get better performance. This subsection explains the contributions
and weak points of previous double-size techniques to RSA public operations,
which is the most popular application for double-size techniques.

L-bit RSA public operations (signature verification and encryption) em-
ploy an L-bit modular exponentiation with a small exponent, following that
X¢ (mod Z), where the ciphertext or signature X, the public modulus Z, and
a small public exponent e. The binary method commonly used for RSA pub-
lic operations computes double-size Montgomery multiplications and squarings
according to the bit pattern of the public exponent e. Algorithm 2 shows a left-
to-right binary method, which scans e from the most significant bit e; to the
least significant bit ey bit-by-bit.



Algorithm 2: Binary method from the most significant bit

INPUT: X, Z and small public exponent e = (ex---e;---eg)2 where 0 < X < Z ;
OuTpPUT: X° (mod Z);

1. Y « C? (mod 2) //C =2
2. T — MU(X, Y, Z)
3. YT
4. for i from k — 1 down to 0 do
(a) T — MU(T,T, Z) //squaring
(b) if e; =1, do
i. if i #0 then T — MU(T,Y, 2) //multiplication
ii. if i =0 then T — MU(T, X, Z) //multiplication and reduction

5. return T

From the view of efficient computation and mathematical security, the ex-
ponent used for RSA public operations is much smaller than for private op-
erations [MOV96,RSA95]. Currently, by far the most common value of the
public exponent e is 2'6 4+ 1 having only two 1’s in its binary representation
(=(10000000000000001)2). In the case of public exponent e = 216 + 1, MU in-
struction is called only 18 times from Step 2 to Step 5 of Algorithm 2. In addition
to that, the Algorithm 2 Step 1 seems to be quite cheap, however, this simple
modular squaring is seriously expensive for double-size RSA public operations,
as it will be explained below.

2.3 Previous Approaches for On-line Precomputations

There are important differences between private and public operations: off-line
precomputations are possible in the former case whereas the latter case requires
on-line precomputations.

On-line precomputations in Algorithm 2; Step 1 consists of a simple L-bit
modular squaring which might look cheap at first sight; however this is not
true for low-end devices such as smartcards. There are two known approaches
with/without help from Montgomery multipliers; unfortunately, both are se-
riously slow, and damage performances of double-size techniques on low-end
devices.

(1) Approach with MU instruction:

In an attempt to benefit from hardware accelerators, Algorithm 3 employs
MU instructions to perform a L-bit modular squaring (C? (mod Z)) using the
binary method. Thanks to the cryptographic coprocessor, the approach looks
fast, but in fact, the calculation costs are quite heavy: in the case of a 2048-bit
modular squaring, Algorithm 3 takes 120 calls to the multiplier, since MU in-
struction requires 12 calls to the multiplier and is called 10 times by the binary
method. As a consequence, the approach with the MU instruction is very costly
considering that it only computes a simple modular squaring.



Algorithm 3: L-bit modular squaring (C? (mod Z)) with MU instructions

INPUT: bitlength b = (Lr—1--+L¢- -+ Lo)2 and modulus Z ;
OutpuT: C? (mod Z) where C = 2%;

1. D« 2C (mod Z) and T « 2C (mod Z2)
2. for i from |log, L] — 2 down to 0 do
(a) D — MU(D, D, Z)
(b) if L; =1 then D «— MU(D, T, Z)
3. return D

(2) CPU approach:

Theoretically, the CPU can compute any-bit modular multiplications with-
out help from hardware accelerators including the L-bit modular squaring (C?
(mod Z)). The approach of Algorithm 4 is taken by computers whose CPUs are
powerful enough not to need help from hardware accelerators, however, this is
not the case for the low-end devices where the performance gap between CPU
and arithmetic coprocessor is usually quite large. As a result, Algorithm 4 is
practically much slower than Algorithm 3 in these environments.

Algorithm 4: L-bit modular squaring with only CPU instructions

INPUT: bitlength L = (Lp—1---L¢ -+ - Lo)2 and modulus Z;
OutpuT: C? (mod Z) where C = 2%;

1. D—C—-Z
2. for i from ¢ — 1 down to 0 do
(a) D« 2D
(b) if D>C, then D — D — Z.
3.if D>Z,then D — D — Z.
4. return D

3 New Double-Size Bipartite Multiplication

L-bit RSA public operations require a simple but expensive on-line modular-
dependent precomputation for low-end devices with ¢-bit Montgomery multi-
pliers. This section presents new double-size techniques for such environments,
which derive their high performance from Montgomery multipliers while elimi-
nating almost all precomputations.

3.1 Overview

The proposal mixes two different modular multiplication algorithms which are
executable with the usual Montgomery multipliers. Fig. 1 shows a design of our
techniques: first, L-bit integers X, Y and Z are divided into ¢-bit integers, and



inputted to a hardware accelerator outputting the ¢-bit remainder r,, of Mont-
gomery multiplications. In addition to single-size Montgomery multiplications,
the new techniques employ single-size classical multiplications. Second, their re-
mainders (r,, and r.) and quotients (g, and q.) are computed based on only
the remainder r,,. Last, the remainders and quotients are assembled to build a
double-size remainder R satisfying

R=XYc¢ ' (mod 2),

where 0 < X, Y < Z. The new modular multiplication is accompanied by the
constant ¢, which is only half the bit length of the Montgomery constant C,
contributing to the fact that our new on-line precomputations can be performed
at much cheaper cost.

split X, Y and Z, and
input z1, o, Y1, Yo, 21 and 2o

Single-size hardware
Montgomery multiplier
(mu instruction)

outputs 7, | outputs T;n

v v

Extended Extended
Montgomery multiplication classical multiplication
(mmu instruction) (cmu instruction)

outputs g, and 7y, outputs ¢g. and 7.

\4 \4

Double-size
bipartite multiplication
(BU instruction)

l outputs R(= XYc¢™! (mod %))
Fig. 1. Configuration of New Double-Size Bipartite Multiplication

3.2 How to Divide L-bit Integers for The ¢-bit Multiplier

In order to benefit from hardware accelerators which can handle only /¢-bit
arithmetic operations, L-bit integers can be simply divided into upper and
lower ¢ bits such that X = z1¢ + xg, where x1 is upper and zg is lower £
bits of X. However, Montgomery multiplications require odd moduli'. In or-

! In fact, it is possible to perform Montgomery multiplications with even modulus
[Koc94]. However, the technique requires other arithmetic operations in addition to
the multiplications in hardware: this costly technique is not considered in our paper.



der to prepare odd moduli, Algorithm 5 derives from the following equation:
Z =z1c+z0=(21+ 1)c— (¢ — 2).

Algorithm 5: L-bit modulus division with odd ¢-bit moduli

INPUT: odd Modulus Z;
OUTPUT: odd moduli z; and 2o such that Z = z1¢c + 2o with ¢ = 2° ;

1. 21 < |Z/c] and 29 <+ Z (mod c).
2. if z; is even, z1 «— z1 +1 and zg «— 20 — c.
3. return (z1,20)

3.3 New £-bit Instructions based on an ¢-bit Multiplier

This subsection defines new instructions to output quotients and remainders of
classical multiplications and Montgomery multiplications, which can be built on
the usual Montgomery multiplier.

Similar with Definition 2 in Section 2.1, the equation; xy = g.z+r. shows the
relation between the remainder r. and the quotient ¢, of classical multiplications,
which can be implemented with only three calls to the mu instruction.

Definition 3. For numbers, 0 < x, y < z and z is odd, the cmu instruction is
defined as (g, r.) < cmu(z,y, z) where g. = (xy —1.)/z and r. = xy (mod z).

Algorithm 6 shows how to simulate the cmu instruction with the mu instruc-
tion; and the correctness is proven in Appendix A.1.

Algorithm 6: The cmu Instruction based on The mu Instruction

INPUT: z, y, z and t with 0 < , y < 2, z is odd and t = ¢ (mod z) ;
OUTPUT: g. and 7, where gc = (zy — rc)/z and r. = zy (mod z2);

1. 2’ — mu(z,t,2) //= xc (mod z2)
2. re — mu(z’,y,2) //= zy (mod z)
3. re e mu(a,y, 2 +2) //=wy (mod (z +2))
4. qe — (re —17)

5. (a) if ¢. is odd, then g. — (¢ + 2z +2)/2

(b) else if ¢. is even and negative, then ¢. «— ¢./2+ z + 2
6. return (gc,rc)

3.4 How to Build an L-bit Remainder with ¢-bit Instructions

Finally, this subsection presents how to build a remainder of new double-size
modular multiplication on the remainders and the quotients of single-size mod-
ular multiplications.

Definition 4 shows the BU instruction for computing L-bit bipartite multipli-
cation.



Definition 4. For numbers, 0 < X,Y < Z, the BU instruction is defined as
R « BU(X,Y,Z) where R= XYc ! (mod Z) and c = 2°.

The BU instruction performs L-bit modular multiplication; XYc¢~! (mod Z)
accompanied with only the ¢-bit constant ¢, which is only half the size of the
Montgomery constant C', contributing to the fact that our new precomputations
can be performed at much cheaper cost.

Algorithm 7 shows how to use the mmu instruction and the cmu instruction
to build the BU instruction; the correctness is proven in Appendix A.2.

Algorithm 7: The BU Instruction based on The mmu and cmu Instructions

INpUT: X, Y and Z, where X = zic+ zo,Y =yic+ yo and Z = zic+ 20 ;
OuTpPUT: XY ! (mod Z);

1. (q1,7m1) «— cmu(z1,y1,21)
2. (q2,72) < mmu(q1, zo,c — 1)
3. (g3, r3) < mmu(zo, yo,c — 1)
4. (a) if 2o is positive, (g4, 74) < mmu(g2 + ¢3,¢c — 1, 20)
(b) if zo is not positive, (q4,74) < mmu(—g2 + ¢g3,¢c — 1, 20)
5. (g5,75) < mmu(qa, z1,¢— 1)
6. (g6,76) <— mmu(x1 + xo,y1 + yo,c — 1)
7. (a) if zo is positive,

R — (=ri4re+r3+ratqe+gz+gs—qs)+(ri—r2—r3—rs+16 —g2—q3—gs+qs )
(b) if 20 is not positive,
R« (=r1—r2—7r3+r4—q2+q3—q5—qs) +(r1+r2+r3+7r5+7r6+q2—q3+q5+qs )C
8. return R (mod Z)

Since the cmu instruction based on Algorithm 6 requiring three calls to the
Montgomery multiplier is costlier than the mmu instruction requiring only two
calls [YOVO07a], Algorithm 7 minimizes calls to the cmu instruction, which ap-
pears only once in Step 1.

Fig. 2 shows a design of our double-size modular multiplication: the first
three lines show components of the product XY, which is computed by the
mmu instruction. There are two kinds of modular reductions in the other steps:
One is to subtract Z from the most significant (left) side, which is based on
the cmu instruction, and the other adds Z from the least significant (right) side
based on the mmu instruction. Finally, one can discard each ¢-bit integer from
the most and least significant side, and get the L-bit remainder located in the
middle.

4 Evaluation

This section shows how the proposal speeds up on-line precomputations. NIST
recommends using 2048-bit RSA instead of the mainstream 1024-bit RSA from
2010 though 2030 [Nis07]; this paper follows the NIST recommendation, and
evaluates the proposed techniques with 2048-bit RSA on smartcards which can
only handle 1024-bit Montgomery multiplications.
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Fig. 2. Sketch of Double-Size Bipartite Multiplications

4.1 Few On-line precomputations

L-bit RSA public operations consist of an L-bit modular exponentiation: X©
(mod Z), with the ciphertext or signature X, the public modulus Z, and the
small public exponent e. The RSA public operations can be performed by Algo-
rithm 8, which is a left-to-right binary method with the BU instruction presented
in Definition 4, and looks similar to Algorithm 2 with the MU instruction requir-
ing heavy precomputations. However, a precomputation of Algorithm 8 (Step 1)
is essentially free thanks to the following equation: ¢* (mod Z) = C — Z, where
2 =C=2Fand 281 < Z < 2L,

Algorithm 8: Binary method from the most significant bit based on BU instruction

INPUT: X, Z and small public exponent e = (ex---e;---eg)2 where 0 < X < Z ;
OuTpUT: X¢ (mod Z);

1. Y « ¢* (mod Z2) //=C—-Z
2. T — BU(X,Y, Z)
3.Y T
4. for ¢ from k£ — 1 down to 0 do
(a) T «— BU(T,T, Z) //squaring
(b) if e; =1, do
i. if i #0 then T — BU(T,Y, 2) //multiplication
ii. if i =0 then T «— BU(T, X, Z) //multiplication and reduction

5. return T

The BU instruction requires other on-line precomputation ¢ (mod z) for

cmu instruction, which is called at Algorithm 7 Step 1. This precomputation can
easily be performed using Algorithm 9 with only several calls to the hardware
multiplier.



Algorithm 9: /-bit modular squaring with mu instructions

INPUT: bitlength ¢ = (€¢—1---£;- - - )2 and modulus z ;
OuTPUT: ¢ (mod z) where ¢ = 2°;

1. d < 2¢ (mod z) and ¢t < 2¢ (mod 2)
2. for i from |log, ¢| — 2 down to 0 do
(a) d«— mu(d,d,z)
(b) if ¢4; =1 then d «— mu(d,t, 2)
3. return d

4.2 Performance Improvement

The proposed double-size techniques are evaluated for smartcards which can
only handle 1024-bit Montgomery multiplications in the case of 2048-bit RSA
public operations with the common exponent e = 216 4 1 to follow the NIST
recommendation [Nis07]. Table 1 includes the performance of the 2048-bit RSA
with three columns; on-line precomputations, a modular exponentiation and
the total, which are evaluated by the binary (square-and-multiply) methods
following Algorithm 2 or Algorithm 8.

Table 1. Calls to the multiplier in the 2048-bit RSA public operation

Scheme On-line . Modul‘ar. Total
precomputations|exponentiation

YOVO0T7a 140 252 392

YOVO07b 120 216 336

This paper 9 234 243

The proposal eliminates almost all on-line precomputations, and contributes
to improve the total performance: One of the on-line precomputation; C' (mod Z)
is replaced with a subtraction; C'— Z, and the other precomputation; ¢ (mod z)
requires only 9 calls to the Montgomery multipliers, therefore the proposal ad-
vantages in the on-line precomputations. As a result, the proposed method costs
only 70%(~ 243/336) of the best previous method.

Figure 3 depicts how the cost, expressed in number of calls to the single-
size Montgomery multiplier, varies with the exponent e in the case of a 2048-
bit RSA encryption. For exponents of less than 32 bits, our proposal is always
better than previous techniques. The turnover when double-size Montgomery
multiplications [YOV07a] becomes more competitive than our proposal occurs
for the 65-bit exponent e = (11...11)s. However, we argue that in practice,
small RSA exponents of less than 32 bits represent the overwhelming majority
of cases [RSA95].

4.3 Further Performance Improvement

Some micro processor can perform modular operations in parallel with help of
cryptographic coprocessors and CPU: while the coprocessors work, CPU can
compute other arithmetic modular operations. Despite gap between the speed



1200 T T T T T
YOVO07b]| ——
YOVO07a] ---x---
our proposal---*---
., 1000 | .
.2
=
=
=
= 800 -
[} » !
= T argest
- L 32-bit e
2 T
w600 | .
= - average
8 32-bit e
R=
% 400 |- g
o - smallest
= ) 32-bit e
& 200} T e .
x e=2"+1
xe=3
o 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Number of double-size multiplications in Algorithm 2 or 8

Fig. 3. Calls to the Montgomery multiplier for several exponents e

of those processors, such environments can accelerate double-size modular mul-
tiplication assigning some step of Algorithm 8 in the arithmetic processor and
the other steps in CPU such as Step 1-5 in the coprocessor and Step 6 in CPU,
or Step 1,2,4,5 in the coprocessor and the others in CPU. Therefore, parallel
operations help to optimize our proposal, leading to even greater speed.

5 Conclusion

This paper proposed novel double-size modular multiplication algorithms with
few modulus-dependent precomputations for on-line RSA public operations,
which gave birth to double-size bipartite multiplication on the most commonly
used single-size Montgomery multipliers in order to eliminate heavy precomputa-
tions required by all previous double-size Montgomery multiplication techniques.
Although the proposed double-size bipartite multiplication technique is slightly
slower than the best technique of double-size Montgomery multiplication, the
penalty is largely counterbalanced by the benefit in terms of precomputations:
when the public exponent is e = 26 + 1, which is by far the most common
choice for RSA, our method is 1.4 times faster than the best previous tech-
niques. In addition, when the CPU and the coprocessor operate in parallel,
which is possible for some low-cost micro controllers, our proposal can be fur-
ther optimized, leading to even greater speed. As a consequence, our double-size
bipartite multiplication technique is the fastest among all double-size techniques
for the cryptographic devices equipped with hardware Montgomery multipliers.
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A Proof for Correctness

A.1 Algorithm 6: The cmu Instruction based on a mu Instruction

Algorithm of Montgomery multiplications is different from classical multiplica-
tions; however, one can simulate classical multiplications easily using the ¢-bit
mu instruction implementing Montgomery multiplications thanks to the follow-
ing equation:

re =xy (mod z) =z'yc™' (mod z)

where 0 < z,y < z and ' = zc¢ (mod z). Therefore, the mu instruction can
output the classical remainder r. according to the following two intuitive steps:

1. 2’ « mu(z, ¢® (mod 2))

2.7 — mu(z',y, 2)

Thanks to these steps, one can compute 7. with help from the multipliers.

There is a requirement for Montgomery multiplications: only odd moduli
are available. The following proof show how to compute classical quotient g, =
(xy — r.)/z from two different classical remainders.

Proof. For numbers, where 0 < z, y < z and z is odd, classical multiplication
outputs a quotient g, and a remainder r., which satisfy the following equation:
Yy = qez + v where ¢, = (zy — r.)/z and r. = zy (mod z). Equivalently,

TY = qc2 +Te
= qe(z+2) + (—2¢c +7¢) (1)
=q.(z+2)+7; (2)

From the equation (1) and (2),
Ge = (re = ¢ +0(2+2))/2

holds with some integer 4.
Since 0 < z,y < z holds, ¢, r. and 7/, satisfy the following conditions: 0 <

ge < 2,0 <7, < zand 0 <7/ < z+2. From the equation —(z+2) < (r.—r.) < z,
the following condition holds:

even and non negative, then § =0

If value of (r. —r.) is odd, then d=1
even and negative, then ¢ =2

! Algorithm 9 can help to precompute the equation ¢? (mod z).



A.2 Algorithm 7: The BU Instruction based on a mmu and cmu
Instruction

Algorithm 7 builds the BU instruction on a cmu instruction and an mmu instruc-
tion, and needs to process branches in Step 4 and Step 7 whether z( is positive
or not. This paper only introduces a proof in the case that zg is positive, but
one can follow the other case similarly.

Proof. L-bit modulus Z is represented by Algorithm 5 as the followings:
Z =zic+ 2

where 0 < z; < cand —c < zp < ¢, and the other L-bit integers X and Y are
simply divided into upper and lower ¢-bit integers.

X =zic+x9 and Y = y1¢c+ yo.
where 0 < 1, 2o, y1, Yo < ¢. Then, the following equation holds.
XY = ziyic(c— 1) + (21 + @0)(y1 + yo)c — zoyo(c — 1) (3)
The first term of Equation (3) is transformed into the following equations with
the first call to a cmu instruction and the second call to an mmu instruction.
xiyrc(c—1) = (qrz1 +1r1)c(c — 1)
=(—quzo +ric)(c—=1) (. z1c=—2 (mod 7))
= (g2 + (r1 —r2 — q2)c)(c— 1)

The third term of Equation (3) is also transformed into the following equation
with a call to the mu instruction.

zoyo(c — 1) = (—gz + (r3 + g3)c)(c — 1)
Therefore, the first and third term of Equation (3) are combined with twice the
help from the mmu instruction.
x1y1¢(c — 1) + zoyo(c — 1)
=(@+a@)lc—1)+(n—ra—rs—q—gc(c—1)
= (qa2z0 +74¢) + (11 =712 =73 — g2 — g3)c(c — 1)
=(—quz1+ra)ct+(r1—ro—1r3—qa —q3)c(c—1) (20 = —2z1¢ (mod 2))
=((g5 +74) = (g5 + r5)c)c+ (r1 —r2 —r3 — g2 — g3)c(c — 1)

The second term of Equation (3) is transformed into the followings with last call
to the mu instruction.

(1 + 20)(y1 +yo)c = (g6 + (16 + g6 )c)c

Finally, Equation (3) consisting of three terms are concluded with the following
equations.

XY= (—rm+ro+rs+rat+g+qg+q¢—ag)
+(ri—ro—r3—75+76 —q2—q3— g5+ gs)c (mod Z).



