A Black Hen Lays White Eggs

Bipartite Multiplier out of Montgomery One for On-Line
RSA Verification

Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume

Hitachi, Ltd., Systems Development Laboratory, Kawasaki, Japan.
{masayuki.yoshino.aa,katsuyuki.okeya.ue,camille.vuillaume.ch}@hitachi.com

Abstract. This paper proposes novel algorithms for computing double-
size modular multiplications with few modulus-dependent precomputa-
tions. Low-end devices such as smartcards are usually equipped with
hardware Montgomery multipliers. However, due to progresses of math-
ematical attacks, security institutions such as NIST have steadily de-
manded longer bit-lengths for public-key cryptography, making the mul-
tipliers quickly obsolete. In an attempt to extend the lifespan of such mul-
tipliers, double-size techniques compute modular multiplications with
twice the bit-length of the multipliers. Techniques are known for ex-
tending the bit-length of classical Euclidean multipliers, of Montgomery
multipliers and the combination thereof, namely bipartite multipliers.
However, unlike classical and bipartite multiplications, Montgomery mul-
tiplications involve modulus-dependent precomputations, which amount
to a large part of an RSA encryption or signature verification. The pro-
posed double-size technique simulates double-size multiplications based
on single-size Montgomery multipliers, and yet precomputations are es-
sentially free: in an 2048-bit RSA encryption or signature verification
with public exponent e = 2'® 4 1, the proposal with a 1024-bit Mont-
gomery multiplier is 1.4 times faster than the best previous technique.

Keywords: Montgomery multiplication, double-size technique, RSA, ef-
ficient implementation, smartcard.

1 Introduction

The algorithm proposed by Montgomery has been extensively implemented to
perform costly modular multiplications which are time-critical for public-key
cryptosystems such as RSA [Mon85,RSA78]. In particular, and unlike naive im-
plementations of classical modular multiplications, Montgomery multiplications
are not affected by carry propagation delays for computing the quotient of a
modular reduction, and as a result, are suitable for high-performance hardware
implementations. However, such accelerators are penalized by a strict restric-
tion: their operand size is fixed. In order to deal with recent integer factoring
records and ensure long-term security [Len04], official security institutions are
updating their standards to longer key sizes than the mainstream 1024 bits for

RSA [Nis07,EMV,Ecr06]; unfortunately, such bit lengths are not supported by
many cryptographic coprocessors.

This problem has motivated many studies for double-size modular multipli-
cation techniques using single-size hardware modular multipliers. On the one
hand, thanks to the Chinese Remainder Theorem, private operations (signa-
ture generation or decryption) can work with only single-size modular multi-
plications for computing double-size modular exponentiations [MOV96]. On the
other hand, the Chinese Remainder Theorem is no help for public operations,
and double-size techniques without using private keys are necessary. Following
Paillier’s seminal paper [Pai99], several solutions were proposed for simulating
double-size classical modular multiplications with single-size classical modular
multipliers [FS03,CJP03], and later, the techniques were adapted in order to sim-
ulate double-size Montgomery multiplications with the commonly used single-
size Montgomery multiplier [YOV07a]. Finally, the less common but nonethe-
less promising bipartite multiplier [KT05], which includes a Montgomery and a
classical multiplier working in parallel, was taking advantage of for simulating
double-size bipartite multiplications [YOV07b].

In the context of public operations, RSA signature verification for instance,
the verifier is unlikely to know the RSA modulus in advance; we refer to this event
as on-line verification. On the one hand, classical modular multiplications are
not affected by the fact that verification is performed off-line or on-line. With
a bipartite multiplier, some modulus-dependent precomputations are required
during on-line verification. However, when the parameters of the multiplier are
appropriately chosen, the cost of precomputations is negligible [KT05]. But on
the other hand, precomputations are far from being negligible when using Mont-
gomery multipliers, especially when the public exponent is small. Assuming the
2048-bit exponentiation X¢ mod Z, the basis X must be firstly converted to
its Montgomery representation, namely X * 2294® mod Z, which can be accom-
plished with 2048 successive shifts or eleven 2048-bit Montgomery multiplica-
tions; in the latter case, this amounts to 36% of the total verification time when
e = 216 1 1. This is especially unfortunate considering the fact that Montgomery
multipliers represent the most popular architecture for cryptographic coproces-
sors [NM96].

In this paper, we solve the problem of costly on-line precomputations with
a radically new approach. Although we assume a multiplier based on the cele-
brated Montgomery multiplication technique, we simulate a bipartite double-size
multiplication, where on-line precomputations are essentially free. Although our
double-size bipartite multiplication technique is slightly slower than double-size
Montgomery multiplications, the penalty is largely counterbalanced by the ben-
efit in terms of precomputations, at least when the public exponent e is small.
When e = 26 + 1, which is by far the most common choice for RSA, our tech-
nique is 1.4 times faster than the best previous techniques, and even more when
e = 3. In addition, when the CPU and the coprocessor operate in parallel, which
is possible on some low-cost microcontrollers, our proposal can be further opti-
mized, leading to even greater speed. As a consequence, our simulated bipartite

multiplier is the fastest among double-size techniques for cryptographic devices
equipped with Montgomery multipliers, and allows the current generation of such
multipliers to comply with upcoming key-length standards of official institutes.

Notation: Let ¢ denote operand size of hardware modular multiplication units
and L equal to 2¢. Small letters such as x, y and z denote ¢-bit integers, and
capital letters such as X, Y and Z denote L-bit integers, where Z is an odd
modulus greater than 20~! like in the case of L-bit RSA.

2 Previous Double-Size Techniques

Montgomery multiplication algorithm has been extensively implemented as cryp-
tographic coprocessors to help low-end devices performing heavy modular mul-
tiplications. However, the coprocessors are designed to support the main stream
1024-bit RSA, and face with the upper limit of their bit length to comply with
upcoming key-length standards, such as the NIST recommendation; 2048-bit
RSA. The problem has motivated double-size techniques to compute modular
multiplication with twice the bit length of hardware multipliers.

2.1 Yoshino et al.’s Scheme

This subsection introduces Yoshino et al.’s work[YOV07a,YOV07b]: how to com-
pute a double-size Montgomery multiplication with single-size Montgomery mul-
tiplications.

The double-size techniques proposed by Yoshino et al. require not only re-
mainders but also quotients of single-size Montgomery multiplications. The equa-
tion zy = ¢mz + Tmc shows the relation among products of multiplier x and
multiplicand y, quotient g, and modulus z, and remainder r,, and constant
¢, where the constant c is usually selected as power of 2 for efficient hardware
implementations in practice, therefore this paper also assumes such c satisfying
c = 2¢ [MOV96].

Definition 1 shows an mu instruction for performing single-size Montgomery
multiplications, outputting only the remainder.

Definition 1. For numbers, 0 < z,y < z and z is odd, the mu instruction is
defined as r,, < mu(x,y, z) where rp,, = xyc™! (mod 2).

Their double-size techniques assumed that an mmu instruction is available,
which can be emulated with only 2 calls to single-size Montgomery multipliers,
and computes the reminder r,, and the quotient g, of Montgomery multiplica-
tions [YOV07a] satisfying the equation xy = gz + rmec.

Definition 2. For numbers, 0 < x, y < z and z is odd, the mmu instruction is
defined as (Gm,Tm) < mmu(x,y, 2) where ¢ = (vy — rmc)/z and vy = oyc™t

(mod z).

Yoshino et al.’s double-size techniques need two steps other than multiplier
calls. First, every L-bit integer X, Y and Z is represented with /-bit integers
which can be handled by mmu instructions:

X=z1(c—1)+ 20, Y =y1(c— 1)+ yocand Z = z1(c — 1) + zpc.

Second, all quotients g, and remainders r,, are sequentially gathered from mmu
instructions.

Double-size Montgomery multiplications compute a remainder R,,, such that
R,, = XYC~! (mod Z) where 0 < X, Y < Z, and the constant C is called
Montgomery constant, and twice bit length of the constant ¢: C' = 2L(= ¢?).
Algorithm 1 shows their double-size Montgomery multiplications requiring 6
calls to mmu instructions, and 12 calls to Montgomery multipliers in total.

Algorithm 1: Double-size Montgomery multiplication [YOV07b]

INPUT: X, Y and Z where 0 < X,Y < 7 ;
OuTPUT: XY C™! (mod Z) where C = 2%;

() — mmu(z1,y1,21)

(g2,72) < mmu(q1, z0,c — 1) /]e=2"
(g3,73) < mmu(zo + 1,90 + y1,¢ — 1)

(qa,74) < mmu(zo,yo,c — 1)

() —mmu(c—1,—g2 +q3 — qa +71,21)

(g6,76) < mmu(gs, z0,c — 1)

return (g2 +q1—qgs — 11 —r2+r3—ra+75)(c—1) 4+ (ro +r4a — r6)c (mod Z)

Nt W=

Thanks to Algorithm 1, one can set a new MU instruction to compute L-bit
Montgomery multiplications such that R, « MU(X,Y, Z) where R,, = XYC~!
(mod Z),0< X,Y < Z and C = 2.

2.2 L-bit RSA Public Operations

The MU instruction (double-size Montgomery multiplications) introduced in last
subsection requires twelve single-size multiplications and other basic modular
operations; therefore the number of calls to the MU instruction should be as small
as possible to get better performance. This subsection explains the contributions
and weak points of previous double-size techniques to RSA public operations,
which is the most popular application for double-size techniques.

L-bit RSA public operations (signature verification and encryption) em-
ploy an L-bit modular exponentiation with a small exponent, following that
X¢ (mod Z), where the ciphertext or signature X, the public modulus Z, and
a small public exponent e. The binary method commonly used for RSA pub-
lic operations computes double-size Montgomery multiplications and squarings
according to the bit pattern of the public exponent e. Algorithm 2 shows a left-
to-right binary method, which scans e from the most significant bit e; to the
least significant bit ey bit-by-bit.

Algorithm 2: Binary method from the most significant bit

INPUT: X, Z and small public exponent e = (ex---e;---eg)2 where 0 < X < Z ;
OuTpPUT: X° (mod Z);

1. Y « C? (mod 2) //C =2
2. T — MU(X, Y, Z)
3. YT
4. for i from k — 1 down to 0 do
(a) T — MU(T,T, Z) //squaring
(b) if e; =1, do
i. if i #0 then T — MU(T,Y, 2) //multiplication
ii. if i =0 then T — MU(T, X, Z) //multiplication and reduction

5. return T

From the view of efficient computation and mathematical security, the ex-
ponent used for RSA public operations is much smaller than for private op-
erations [MOV96,RSA95]. Currently, by far the most common value of the
public exponent e is 2'6 4+ 1 having only two 1’s in its binary representation
(=(10000000000000001)2). In the case of public exponent e = 216 + 1, MU in-
struction is called only 18 times from Step 2 to Step 5 of Algorithm 2. In addition
to that, the Algorithm 2 Step 1 seems to be quite cheap, however, this simple
modular squaring is seriously expensive for double-size RSA public operations,
as it will be explained below.

2.3 Previous Approaches for On-line Precomputations

There are important differences between private and public operations: off-line
precomputations are possible in the former case whereas the latter case requires
on-line precomputations.

On-line precomputations in Algorithm 2; Step 1 consists of a simple L-bit
modular squaring which might look cheap at first sight; however this is not
true for low-end devices such as smartcards. There are two known approaches
with/without help from Montgomery multipliers; unfortunately, both are se-
riously slow, and damage performances of double-size techniques on low-end
devices.

(1) Approach with MU instruction:

In an attempt to benefit from hardware accelerators, Algorithm 3 employs
MU instructions to perform a L-bit modular squaring (C? (mod Z)) using the
binary method. Thanks to the cryptographic coprocessor, the approach looks
fast, but in fact, the calculation costs are quite heavy: in the case of a 2048-bit
modular squaring, Algorithm 3 takes 120 calls to the multiplier, since MU in-
struction requires 12 calls to the multiplier and is called 10 times by the binary
method. As a consequence, the approach with the MU instruction is very costly
considering that it only computes a simple modular squaring.

Algorithm 3: L-bit modular squaring (C? (mod Z)) with MU instructions

INPUT: bitlength b = (Lr—1--+L¢- -+ Lo)2 and modulus Z ;
OutpuT: C? (mod Z) where C = 2%;

1. D« 2C (mod Z) and T « 2C (mod Z2)
2. for i from |log, L] — 2 down to 0 do
(a) D — MU(D, D, Z)
(b) if L; =1 then D «— MU(D, T, Z)
3. return D

(2) CPU approach:

Theoretically, the CPU can compute any-bit modular multiplications with-
out help from hardware accelerators including the L-bit modular squaring (C?
(mod Z)). The approach of Algorithm 4 is taken by computers whose CPUs are
powerful enough not to need help from hardware accelerators, however, this is
not the case for the low-end devices where the performance gap between CPU
and arithmetic coprocessor is usually quite large. As a result, Algorithm 4 is
practically much slower than Algorithm 3 in these environments.

Algorithm 4: L-bit modular squaring with only CPU instructions

INPUT: bitlength L = (Lp—1---L¢ -+ - Lo)2 and modulus Z;
OutpuT: C? (mod Z) where C = 2%;

1. D—C—-Z
2. for i from ¢ — 1 down to 0 do
(a) D« 2D
(b) if D>C, then D — D — Z.
3.if D>Z,then D — D — Z.
4. return D

3 New Double-Size Bipartite Multiplication

L-bit RSA public operations require a simple but expensive on-line modular-
dependent precomputation for low-end devices with ¢-bit Montgomery multi-
pliers. This section presents new double-size techniques for such environments,
which derive their high performance from Montgomery multipliers while elimi-
nating almost all precomputations.

3.1 Overview

The proposal mixes two different modular multiplication algorithms which are
executable with the usual Montgomery multipliers. Fig. 1 shows a design of our
techniques: first, L-bit integers X, Y and Z are divided into ¢-bit integers, and

inputted to a hardware accelerator outputting the ¢-bit remainder r,, of Mont-
gomery multiplications. In addition to single-size Montgomery multiplications,
the new techniques employ single-size classical multiplications. Second, their re-
mainders (r,, and r.) and quotients (g, and q.) are computed based on only
the remainder r,,. Last, the remainders and quotients are assembled to build a
double-size remainder R satisfying

R=XYc¢ ' (mod 2),

where 0 < X, Y < Z. The new modular multiplication is accompanied by the
constant ¢, which is only half the bit length of the Montgomery constant C,
contributing to the fact that our new on-line precomputations can be performed
at much cheaper cost.

split X, Y and Z, and
input z1, o, Y1, Yo, 21 and 2o

Single-size hardware
Montgomery multiplier
(mu instruction)

outputs 7, | outputs T;n

v v

Extended Extended
Montgomery multiplication classical multiplication
(mmu instruction) (cmu instruction)

outputs g, and 7y, outputs ¢g. and 7.

\4 \4

Double-size
bipartite multiplication
(BU instruction)

l outputs R(= XYc¢™! (mod %))
Fig. 1. Configuration of New Double-Size Bipartite Multiplication

3.2 How to Divide L-bit Integers for The ¢-bit Multiplier

In order to benefit from hardware accelerators which can handle only /¢-bit
arithmetic operations, L-bit integers can be simply divided into upper and
lower ¢ bits such that X = z1¢ + xg, where x1 is upper and zg is lower £
bits of X. However, Montgomery multiplications require odd moduli'. In or-

! In fact, it is possible to perform Montgomery multiplications with even modulus
[Koc94]. However, the technique requires other arithmetic operations in addition to
the multiplications in hardware: this costly technique is not considered in our paper.

der to prepare odd moduli, Algorithm 5 derives from the following equation:
Z =z1c+z0=(21+ 1)c— (¢ — 2).

Algorithm 5: L-bit modulus division with odd ¢-bit moduli

INPUT: odd Modulus Z;
OUTPUT: odd moduli z; and 2o such that Z = z1¢c + 2o with ¢ = 2° ;

1. 21 < |Z/c] and 29 <+ Z (mod c).
2. if z; is even, z1 «— z1 +1 and zg «— 20 — c.
3. return (z1,20)

3.3 New £-bit Instructions based on an ¢-bit Multiplier

This subsection defines new instructions to output quotients and remainders of
classical multiplications and Montgomery multiplications, which can be built on
the usual Montgomery multiplier.

Similar with Definition 2 in Section 2.1, the equation; xy = g.z+r. shows the
relation between the remainder r. and the quotient ¢, of classical multiplications,
which can be implemented with only three calls to the mu instruction.

Definition 3. For numbers, 0 < x, y < z and z is odd, the cmu instruction is
defined as (g, r.) < cmu(z,y, z) where g. = (xy —1.)/z and r. = xy (mod z).

Algorithm 6 shows how to simulate the cmu instruction with the mu instruc-
tion; and the correctness is proven in Appendix A.1.

Algorithm 6: The cmu Instruction based on The mu Instruction

INPUT: z, y, z and t with 0 < , y < 2, z is odd and t = ¢ (mod z) ;
OUTPUT: g. and 7, where gc = (zy — rc)/z and r. = zy (mod z2);

1. 2’ — mu(z,t,2) //= xc (mod z2)
2. re — mu(z’,y,2) //= zy (mod z)
3. re e mu(a,y, 2 +2) //=wy (mod (z +2))
4. qe — (re —17)

5. (a) if ¢. is odd, then g. — (¢ + 2z +2)/2

(b) else if ¢. is even and negative, then ¢. «— ¢./2+ z + 2
6. return (gc,rc)

3.4 How to Build an L-bit Remainder with ¢-bit Instructions

Finally, this subsection presents how to build a remainder of new double-size
modular multiplication on the remainders and the quotients of single-size mod-
ular multiplications.

Definition 4 shows the BU instruction for computing L-bit bipartite multipli-
cation.

Definition 4. For numbers, 0 < X,Y < Z, the BU instruction is defined as
R « BU(X,Y,Z) where R= XYc ! (mod Z) and c = 2°.

The BU instruction performs L-bit modular multiplication; XYc¢~! (mod Z)
accompanied with only the ¢-bit constant ¢, which is only half the size of the
Montgomery constant C', contributing to the fact that our new precomputations
can be performed at much cheaper cost.

Algorithm 7 shows how to use the mmu instruction and the cmu instruction
to build the BU instruction; the correctness is proven in Appendix A.2.

Algorithm 7: The BU Instruction based on The mmu and cmu Instructions

INpUT: X, Y and Z, where X = zic+ zo,Y =yic+ yo and Z = zic+ 20 ;
OuTpPUT: XY ! (mod Z);

1. (q1,7m1) «— cmu(z1,y1,21)
2. (q2,72) < mmu(q1, zo,c — 1)
3. (g3, r3) < mmu(zo, yo,c — 1)
4. (a) if 2o is positive, (g4, 74) < mmu(g2 + ¢3,¢c — 1, 20)
(b) if zo is not positive, (q4,74) < mmu(—g2 + ¢g3,¢c — 1, 20)
5. (g5,75) < mmu(qa, z1,¢— 1)
6. (g6,76) <— mmu(x1 + xo,y1 + yo,c — 1)
7. (a) if zo is positive,

R — (=ri4re+r3+ratqe+gz+gs—qs)+(ri—r2—r3—rs+16 —g2—q3—gs+qs)
(b) if 20 is not positive,
R« (=r1—r2—7r3+r4—q2+q3—q5—qs) +(r1+r2+r3+7r5+7r6+q2—q3+q5+qs)C
8. return R (mod Z)

Since the cmu instruction based on Algorithm 6 requiring three calls to the
Montgomery multiplier is costlier than the mmu instruction requiring only two
calls [YOVO07a], Algorithm 7 minimizes calls to the cmu instruction, which ap-
pears only once in Step 1.

Fig. 2 shows a design of our double-size modular multiplication: the first
three lines show components of the product XY, which is computed by the
mmu instruction. There are two kinds of modular reductions in the other steps:
One is to subtract Z from the most significant (left) side, which is based on
the cmu instruction, and the other adds Z from the least significant (right) side
based on the mmu instruction. Finally, one can discard each ¢-bit integer from
the most and least significant side, and get the L-bit remainder located in the
middle.

4 Evaluation

This section shows how the proposal speeds up on-line precomputations. NIST
recommends using 2048-bit RSA instead of the mainstream 1024-bit RSA from
2010 though 2030 [Nis07]; this paper follows the NIST recommendation, and
evaluates the proposed techniques with 2048-bit RSA on smartcards which can
only handle 1024-bit Montgomery multiplications.

x= - v |
X) v= | _wu Yo |
i +Toyo —| |
+(x1y0 + Toy1) :i | product XY
+T1y1 = | |
—iZ= | i 20 | }reduction
] W ©]
o]
e R

Fig. 2. Sketch of Double-Size Bipartite Multiplications

4.1 Few On-line precomputations

L-bit RSA public operations consist of an L-bit modular exponentiation: X©
(mod Z), with the ciphertext or signature X, the public modulus Z, and the
small public exponent e. The RSA public operations can be performed by Algo-
rithm 8, which is a left-to-right binary method with the BU instruction presented
in Definition 4, and looks similar to Algorithm 2 with the MU instruction requir-
ing heavy precomputations. However, a precomputation of Algorithm 8 (Step 1)
is essentially free thanks to the following equation: ¢* (mod Z) = C — Z, where
2 =C=2Fand 281 < Z < 2L,

Algorithm 8: Binary method from the most significant bit based on BU instruction

INPUT: X, Z and small public exponent e = (ex---e;---eg)2 where 0 < X < Z ;
OuTpUT: X¢ (mod Z);

1. Y « ¢* (mod Z2) //=C—-Z
2. T — BU(X,Y, Z)
3.Y T
4. for ¢ from k£ — 1 down to 0 do
(a) T «— BU(T,T, Z) //squaring
(b) if e; =1, do
i. if i #0 then T — BU(T,Y, 2) //multiplication
ii. if i =0 then T «— BU(T, X, Z) //multiplication and reduction

5. return T

The BU instruction requires other on-line precomputation ¢ (mod z) for

cmu instruction, which is called at Algorithm 7 Step 1. This precomputation can
easily be performed using Algorithm 9 with only several calls to the hardware
multiplier.

Algorithm 9: /-bit modular squaring with mu instructions

INPUT: bitlength ¢ = (€¢—1---£;- - -)2 and modulus z ;
OuTPUT: ¢ (mod z) where ¢ = 2°;

1. d < 2¢ (mod z) and ¢t < 2¢ (mod 2)
2. for i from |log, ¢| — 2 down to 0 do
(a) d«— mu(d,d,z)
(b) if ¢4; =1 then d «— mu(d,t, 2)
3. return d

4.2 Performance Improvement

The proposed double-size techniques are evaluated for smartcards which can
only handle 1024-bit Montgomery multiplications in the case of 2048-bit RSA
public operations with the common exponent e = 216 4 1 to follow the NIST
recommendation [Nis07]. Table 1 includes the performance of the 2048-bit RSA
with three columns; on-line precomputations, a modular exponentiation and
the total, which are evaluated by the binary (square-and-multiply) methods
following Algorithm 2 or Algorithm 8.

Table 1. Calls to the multiplier in the 2048-bit RSA public operation

Scheme On-line . Modul‘ar. Total
precomputations|exponentiation

YOVO0T7a 140 252 392

YOVO07b 120 216 336

This paper 9 234 243

The proposal eliminates almost all on-line precomputations, and contributes
to improve the total performance: One of the on-line precomputation; C' (mod Z)
is replaced with a subtraction; C'— Z, and the other precomputation; ¢ (mod z)
requires only 9 calls to the Montgomery multipliers, therefore the proposal ad-
vantages in the on-line precomputations. As a result, the proposed method costs
only 70%(~ 243/336) of the best previous method.

Figure 3 depicts how the cost, expressed in number of calls to the single-
size Montgomery multiplier, varies with the exponent e in the case of a 2048-
bit RSA encryption. For exponents of less than 32 bits, our proposal is always
better than previous techniques. The turnover when double-size Montgomery
multiplications [YOV07a] becomes more competitive than our proposal occurs
for the 65-bit exponent e = (11...11)s. However, we argue that in practice,
small RSA exponents of less than 32 bits represent the overwhelming majority
of cases [RSA95].

4.3 Further Performance Improvement

Some micro processor can perform modular operations in parallel with help of
cryptographic coprocessors and CPU: while the coprocessors work, CPU can
compute other arithmetic modular operations. Despite gap between the speed

1200 T T T T T
YOVO07b]| ——
YOVO07a] ---x---
our proposal---*---
., 1000 | .
.2
=
=
=
= 800 -
[} » !
= T argest
- L 32-bit e
2 T
w600 | .
= - average
8 32-bit e
R=
% 400 |- g
o - smallest
=) 32-bit e
& 200} T e .
x e=2"+1
xe=3
o 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Number of double-size multiplications in Algorithm 2 or 8

Fig. 3. Calls to the Montgomery multiplier for several exponents e

of those processors, such environments can accelerate double-size modular mul-
tiplication assigning some step of Algorithm 8 in the arithmetic processor and
the other steps in CPU such as Step 1-5 in the coprocessor and Step 6 in CPU,
or Step 1,2,4,5 in the coprocessor and the others in CPU. Therefore, parallel
operations help to optimize our proposal, leading to even greater speed.

5 Conclusion

This paper proposed novel double-size modular multiplication algorithms with
few modulus-dependent precomputations for on-line RSA public operations,
which gave birth to double-size bipartite multiplication on the most commonly
used single-size Montgomery multipliers in order to eliminate heavy precomputa-
tions required by all previous double-size Montgomery multiplication techniques.
Although the proposed double-size bipartite multiplication technique is slightly
slower than the best technique of double-size Montgomery multiplication, the
penalty is largely counterbalanced by the benefit in terms of precomputations:
when the public exponent is e = 26 + 1, which is by far the most common
choice for RSA, our method is 1.4 times faster than the best previous tech-
niques. In addition, when the CPU and the coprocessor operate in parallel,
which is possible for some low-cost micro controllers, our proposal can be fur-
ther optimized, leading to even greater speed. As a consequence, our double-size
bipartite multiplication technique is the fastest among all double-size techniques
for the cryptographic devices equipped with hardware Montgomery multipliers.

References

[Koc94]

[CIPO3]

[Ecr06]

[EMV]

[FS03]

[KTO5]

[Len04]
[Mon8&5]
IMOV96]

[Nis07]

[NM96]

[Pai99)]

[RSAT7S]

[RSA95]

[YOV07a]

[YOVO7b]

Cetin Kaya Kog. Montgomery Reduction with Even Modulus. IEE Pro-
ceedings - Computers and Digital Techniques, 141(5):314-316, 1994.
Benoit Chevallier-Mames, Marc Joye, and Pascal Paillier. Faster Double-
Size Modular Multiplication From Euclidean Multipliers. In Proc. Work-
shop on Cryptographic Hardware and Embedded Systems (CHES’03), vol-
ume 2779 of Lecture Notes in Computer Science, pages 214-227. Springer-
Verlag, 2003.

European Network of Excellence in Cryptology (ECRYPT). ECRYPT
Yearly Report on Algorithms and Keysizes, 2006. http://www.ecrypt
.eu.org/documents/D.SPA.21-1.1.pdf.

EMV. EMV Issuer and Application Security Guidelines, Version 2.1, 2007.
http://www.emvco.com/specifications.asp?show=4.

Wieland Fischer and Jean-Pierre Seifert. Increasing the Bitlength of
Crypto-coprocessors. In Proc. Workshop on Cryptographic Hardware and
Embedded Systems (CHES’02), volume 2523 of Lecture Notes in Computer
Science, pages 71-81. Springer-Verlag, 2003.

Marcelo E. Kaihara and Naofumi Takagi. Bipartite modular multiplica-
tion. In Proc. Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES’05), volume 3659 of Lecture Notes in Computer Science, pages
201-210. Springer-Verlag, 2005.

Arjen K. Lenstra. Key Lengths, 2004. http://cm.bell-labs.com/who/akl
/key_lengths.pdf.

Peter L. Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519-521, 1985.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996.

National Institute of Standards ant Technology. NIST Special Publication
800-57 Recommendation for KeyManagement Part 1: General(Revised),
2007. http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html.

David Naccache and David M’Rathi. Arithmetic co-processors for public-
key cryptography: The state of the art. In CARDIS, pages 18-20, 1996.
Pascal Paillier. Low-Cost Double-Size Modular Exponentiation or How to
Stretch Your Cryptoprocessor. In Public Key Cryptography, volume 1560
of Lecture Notes in Computer Science, pages 223234, 1999.

Ron L. Rivest, Adi Shamir, and Leonard M. Adelman. A Method for Ob-
taining Digital Signatures and Public-key Cryptosystems. Communications
of the ACM, 21(2):120-126, 1978.

RSA Laboratories. The Secure Use of RSA. CryptoBytes, 1(3), 1995.
ftp://ftp.rsasecurity.com/pub/cryptobytes/cryptoln3.pdf.

Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume. Unbridle the
Bit-Length of a Crypto-Coprocessor with Montgomery Multiplication. In
Proceedings of the 13th Annual Workshop on Selected Areas in Cryptogra-
phy (SAC’06), volume 4356 of Lecture Notes in Computer Science, pages
188-202, 2007.

Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume. Double-Size
Bipartite Modular Multiplication. In Proceedings of the 12th Australasian
Conference on Information Security and Privacy (ACISP’07), volume 4586
of Lecture Notes in Computer Science, pages 230—244, 2007.

A Proof for Correctness

A.1 Algorithm 6: The cmu Instruction based on a mu Instruction

Algorithm of Montgomery multiplications is different from classical multiplica-
tions; however, one can simulate classical multiplications easily using the ¢-bit
mu instruction implementing Montgomery multiplications thanks to the follow-
ing equation:

re =xy (mod z) =z'yc™' (mod z)

where 0 < z,y < z and ' = zc¢ (mod z). Therefore, the mu instruction can
output the classical remainder r. according to the following two intuitive steps:

1. 2’ « mu(z, ¢® (mod 2))

2.7 — mu(z',y, 2)

Thanks to these steps, one can compute 7. with help from the multipliers.

There is a requirement for Montgomery multiplications: only odd moduli
are available. The following proof show how to compute classical quotient g, =
(xy — r.)/z from two different classical remainders.

Proof. For numbers, where 0 < z, y < z and z is odd, classical multiplication
outputs a quotient g, and a remainder r., which satisfy the following equation:
Yy = qez + v where ¢, = (zy — r.)/z and r. = zy (mod z). Equivalently,

TY = qc2 +Te
= qe(z+2) + (—2¢c +7¢) (1)
=q.(z+2)+7; (2)

From the equation (1) and (2),
Ge = (re = ¢ +0(2+2))/2

holds with some integer 4.
Since 0 < z,y < z holds, ¢, r. and 7/, satisfy the following conditions: 0 <

ge < 2,0 <7, < zand 0 <7/ < z+2. From the equation —(z+2) < (r.—r.) < z,
the following condition holds:

even and non negative, then § =0

If value of (r. —r.) is odd, then d=1
even and negative, then ¢ =2

! Algorithm 9 can help to precompute the equation ¢? (mod z).

A.2 Algorithm 7: The BU Instruction based on a mmu and cmu
Instruction

Algorithm 7 builds the BU instruction on a cmu instruction and an mmu instruc-
tion, and needs to process branches in Step 4 and Step 7 whether z(is positive
or not. This paper only introduces a proof in the case that zg is positive, but
one can follow the other case similarly.

Proof. L-bit modulus Z is represented by Algorithm 5 as the followings:
Z =zic+ 2

where 0 < z; < cand —c < zp < ¢, and the other L-bit integers X and Y are
simply divided into upper and lower ¢-bit integers.

X =zic+x9 and Y = y1¢c+ yo.
where 0 < 1, 2o, y1, Yo < ¢. Then, the following equation holds.
XY = ziyic(c— 1) + (21 + @0)(y1 + yo)c — zoyo(c — 1) (3)
The first term of Equation (3) is transformed into the following equations with
the first call to a cmu instruction and the second call to an mmu instruction.
xiyrc(c—1) = (qrz1 +1r1)c(c — 1)
=(—quzo +ric)(c—=1) (. z1c=—2 (mod 7))
= (g2 + (r1 —r2 — q2)c)(c— 1)

The third term of Equation (3) is also transformed into the following equation
with a call to the mu instruction.

zoyo(c — 1) = (—gz + (r3 + g3)c)(c — 1)
Therefore, the first and third term of Equation (3) are combined with twice the
help from the mmu instruction.
x1y1¢(c — 1) + zoyo(c — 1)
=(@+a@)lc—1)+(n—ra—rs—q—gc(c—1)
= (qa2z0 +74¢) + (11 =712 =73 — g2 — g3)c(c — 1)
=(—quz1+ra)ct+(r1—ro—1r3—qa —q3)c(c—1) (20 = —2z1¢ (mod 2))
=((g5 +74) = (g5 + r5)c)c+ (r1 —r2 —r3 — g2 — g3)c(c — 1)

The second term of Equation (3) is transformed into the followings with last call
to the mu instruction.

(1 + 20)(y1 +yo)c = (g6 + (16 + g6)c)c

Finally, Equation (3) consisting of three terms are concluded with the following
equations.

XY= (—rm+ro+rs+rat+g+qg+q¢—ag)
+(ri—ro—r3—75+76 —q2—q3— g5+ gs)c (mod Z).

