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Abstract. In this paper we propose an improved multi-byte differential
fault analysis of AES-128 key schedule using a single pair of fault-free and
faulty ciphertexts. We propose a four byte fault model where the fault is
induced at ninth round key. The induced fault corrupts all the four bytes of
the first column of the ninth round key which subsequently propagates to
the entire tenth round key. The elegance of the proposed attack is that it
requires only a single faulty ciphertext and reduce the search space of the
key to 232 possible choices. Using two faulty ciphertexts the attack uniquely
determines the key. The attack improves the existing DFA of AES-128 key
schedule, which requires two faulty ciphertexts to reduce the key space of
AES-128 to 232, and four faulty ciphertexts to uniquely retrieve the key.
Therefore, the proposed attack is more lethal than the existing attack as
it requires lesser number of faulty ciphertexts. The simulated attack takes
less than 20 minutes to reveal 128-bit secret key; running on a 8 core Intel
Xeon E5606 processor at 2.13 GHz speed.
Keywords: Differential Fault Analysis, Fault Attack, Advanced Encryp-
tion Standard, Key Schedule, DFA.

1 Introduction

External noise such electromagnetic radiation, glitch in the input clock line, vari-
ation in the supply voltage can create fault in the electronic devices such as smart
card. These properties of electronic devices are being exploited by the attackers.
An attacker can deliberately inject fault into a device running a cryptographic
algorithm. Then by analysing the faulty output he can reveal the secret key. This
kind of attack is known as fault attack which was originally introduced by Boneh
et. al. [7] in 1996 to break RSA crypto-system running on a smart-card . Subse-
quently, Biham and Shamir showed a modified form of the attack which is known
as Differential Fault Analysis (DFA) based on combination of Differential Crypt-
analysis and fault analysis [5]. The DFA was applied on DES crypto-system which
successfully retrieved the secret key.

In 2001, NIST standardised Rijndael as the Advanced Encryption Standard
(AES) [1]. Subsequently, many DFA were proposed on AES cryptosystem [6, 11,
14,15,17] with the aim to reduced the number of faulty ciphertext required by the
attack. However the DFA on AES can be divided into two categories. One in which
the fault is induced in AES states, another in which the fault is induced in the key
schedule. The literature is rich in attacks on the states. The most recent among
these attacks is the attack on AES-128 proposed by M. Tunstall et. al. in [21,22].
They proposed an attack where a single byte fault induced at the input of eighth



round can reduce the AES-128 key space to 28 choices. However, there is not much
research on attacks of AES key schedule.

In 2003, Giraud first proposed a DFA against the AES key schedule [10], which
combined both kind of fault attack; the fault analysis in AES states as well as
in key schedule. The attack was subsequently improved by Chen and Yen in [9].
Chen et. al. attack required to induce fault at the ninth round key. The attack
required less than thirty faulty ciphertexts to successfully retrieve the secret key.
In 2006 Peacham and Thomas in [16], proposed an improved DFA against the
AES key schedule, which reduced the number of faulty ciphertext required by the
attack to 12. In Peacham’s attack, fault was induced at the ninth round key during
execution of the key schedule operation, so that the induced fault subsequently
propagates to tenth round key.

Finally, Takahashi et. al. in [20], proposed an attack, which can reduce the
search space of the key to 248 choices using two faulty ciphertexts. The attack can
reduce the key space to 216 choices using four faulty ciphertexts and can determine
the key uniquely by using seven faulty ciphertexts. In 2008, Kim et. al. proposed
an improved DFA by inducing 3-byte fault at the first column of ninth round key.
Kim’s attack required two faulty ciphertexts and a brute-force search of 232. With
four faulty ciphertexts the attack can uniquely determine the secret key.

In this paper we propose an improved attack against the AES-128 key schedule.
We propose a fault model where the induced fault corrupts all the four bytes of
the first column of ninth round key and the fault subsequently propagates to the
entire tenth round key. Our attack requires only one faulty ciphertext to reduces
the search space of the AES-128 key to 232 choices. Using two faulty ciphertext
our attack can uniquely determine the key. We present extensive simulation results
which shows that the attack takes less than 20 minutes to uniquely retrieve the
128-bit secret key.

Organization

The paper is organized as follows: We start with Section 2 where we describe the
preliminaries to this paper. In Section 3 we briefly describe the existing attack. We
propose our attack in Section 4. In Section 5 we present experimental results. In
Section 6 we compare our work presented in this paper with the previous works,
and we conclude in Section 7.

2 Preliminaries

2.1 The AES algorithm

AES [1] is a 128-bit symmetric key block cipher comes in three different versions
AES-128, AES-192, and AES-256 with key length 128-bit, 192-bit, and 256-bit
respectively. The 128-bit intermediate results are represented as 4 × 4 matrix,
known as state. Each elements of the matrix is a byte. The algorithm is divided
into round function. Each round function except the last round consists of four
transformations namely: SubBytes, ShiftRows, MixColumns and AddRoundKey.
The three versions of AES has three different number of rounds : AES-128 has 10
rounds, AES-192 has 12 rounds, and AES-256 has 14 rounds. The last round of
each of the three versions of AES does not have MixColumns operation. The four
basic transformations are described as follows:



SubBytes : It is the only non-linear byte-wise transformation in AES. Each ele-
ment of the state matrix is replaced by its inverse and followed by an affine
mapping. All the operations are under F28 .

ShiftRows : It is a row-wise transformations where the ith row is cyclically shifted
by i bytes towards left where 0 ≤ i ≤ 3 .

MixColumns : It is a column level linear transformation of the state matrix. Each
column of the state matrix is considered as a polynomial of degree 3 with coef-
ficient in F28 and multiplied with the polynomial {03}x3+ {01}x2+ {01}x +
{02}.

AddRoundKey: In this transformation the 128-bit round key is bit-wise XOR-ed
with the 128-bit state.

An additional AddRoundKey operation is performed at the beginning of first round
which is known as key whitening phase. Each round key is generated by the AES
key scheduling algorithm. Figure 1 shows the generation of last three rounds ac-
cording to the AES-128 key schedule. For more detail on the AES key scheduling,
one can refer the AES specification [1]
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Fig. 1. Last three rounds of AES-128 key scheduling algorithm



2.2 Notations

In the rest of the paper we use following symbols and notations: SubBytes,

ShiftRows,and MixColumns will be referred as SB, SR and MC respectively and
the corresponding inverse functions as SB−1, SR−1 and MC−1.

Kr
i,j: Represent {i, j} byte of the rth round key Kr.

Ci,j : Represent {i, j} byte of the fault-free ciphertext C.
C∗

i,j : Represent {i, j} byte of the faulty ciphertext C∗.

2.3 Fault Model Used

It is clear from the past research on DFA of AES that the fault model is the key
to successful fault analysis. Slightest change in the fault model can drastically
increase or decrease the complexity of the fault analysis. This fact was clearly
depicted in [3] where it was shown that with the increase of number of byte faults
the search space of the key drastically increases. In our proposed attack we follow
the fault model of Peachman and Thomas [16] where the fault is expected to induce
in the ninth round key while it is being executed and subsequently propagated to
the entire tenth round key. We assume that the induced fault corrupts all the four
bytes of the first column of the ninth round key. Figure 2 show the flow of fault in
the last two round keys.
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Fig. 2. Fault induced in 9th round key corrupting entire first column

3 Existing Fault Analysis

The most recent attack against the AES-128 key schedule shows that two faulty
ciphertexts are enough to reduce the key space to 232 choices [13]. The attack



assumed a fault model where the induced fault corrupts three out of four bytes of
the first column of the ninth round key K9. As Figure 3 depicts, the induced fault
subsequently propagates to the tenth round key. The three key bytes : K9

0,0,K
9
1,0,

and K9
2,0 are the modified bytes and induced differences due to the faults are

a, b, and c respectively. As per the AES-128 key scheduling algorithm the fault is
propagated to all the subsequent three bytes of the same row of the ninth round
key. As the fault is induced during the generation of key therefore the fault in the
ninth round key also propagated to tenth round key bytes.
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Fig. 3. Fault induced in 9th round key

The fault values d, e, and f can be calculated as follows:

d = SB(K9
1,3)⊕ SB(K9

1,3 ⊕ b)

= SB(K10
1,3 ⊕K

10
1,2)⊕ SB(K10

1,3 ⊕K
10
1,2 ⊕ b)

(1)

e = SB(K9
2,3)⊕ SB(K9

2,3 ⊕ c)

= SB(K10
2,3 ⊕K

10
2,2)⊕ SB(K10

2,3 ⊕K
10
2,2 ⊕ c)

(2)

f = SB(K9
0,3)⊕ SB(K9

0,3 ⊕ a)

= SB(K10
0,3 ⊕K

10
0,2)⊕ SB(K10

0,3 ⊕K
10
0,2 ⊕ a)

(3)

The fault in the ninth round key affects the AES state after the ninth round
AddRoundKey. Figure 4 shows the flow of fault in the last two rounds.

The fault-free and faulty ciphertexts (C,C∗) are known to the attacker. There-
fore, he can represent the fault values {c, c, c, c}, at the input of ninth round using
following equations:
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c = SB
−1(C2,2 ⊕K

10
2,2)⊕ SB

−1(C∗

(2,2) ⊕K
10
2,2 ⊕ c)

= SB
−1(C2,3 ⊕K

10
2,3)⊕ SB

−1(C∗

(2,3) ⊕K
10
2,3)

= SB
−1(C2,0 ⊕K

10
2,0)⊕ SB

−1(C∗

(2,0) ⊕K
10
2,0 ⊕ c)

= SB
−1(C2,1 ⊕K

10
2,1)⊕ SB

−1(C∗

(2,1) ⊕K
10
2,1)

(4)

In the above set of equations the attacker guesses the values of c and gets the
corresponding values of key quartet 〈K10

2,2,K
10
2,3,K

10
2,0,K

10
2,1〉. As there are 28 pos-

sibilities of c therefore the above set of equations will reduce the possible choices
of 〈K10

2,2,K
10
2,3,K

10
2,0,K

10
2,1〉 to 28 choices from 232 choices. For more details on the

analysis, one can refer to [13,21]. Similarly, the attacker uses another faulty cipher-
text and again reduces the possible choices of 〈K10

2,2,K
10
2,3,K

10
2,0,K

10
2,1〉 to 28. Then

he takes the intersection of two sets of values of 〈K10
2,2,K

10
2,3,K

10
2,0,K

10
2,1〉 generated

from two different faulty ciphertexts. The intersection uniquely determine the key
quartet. Now the attacker uses equation (2) and determines the values of e from
the values of c, K10

2,2 and K10
2,3. He follows the same technique to uniquely deter-

mine the quartets 〈K10
0,0,K

10
0,1,K

10
0,2,K

10
0,3〉 and 〈K10

1,0,K
10
1,1,K

10
1,2,K

10
1,3〉. Therefore,

using two faulty ciphertexts the attacker can retrieve 12 bytes of the tenth round
key K10. This implies that the attacker retrieve 96-bit and need to perform 32-bit
brute-force search to get the master key.

3.1 Limitation of Existing Attack

The existing attack nicely reveals the secret key of AES-128 crypto-system using
only two faulty ciphertexts. However, the attack still needs two faulty ciphertexts
which is the bottle neck of the attack. First of all the induced faults need to corrupt
three out of the four bytes of the first row of the ninth round key. However, in
real life the probability of such an event is small. Fault induction methods such
as described in [3, 4, 12, 18, 19] gives an attacker an extent of control, but cannot
precisely realize the number of faults. The probability of success reduces further
if more than one fault inductions are necessary. If probability of getting such
fault is p then the probability of getting two such fault is p2. It its quite obvious
from the experimental result reported in [3,4,12,18,19] that the value of p is quite
small. Therefore, ideally an attacker would want an attack which require one faulty
ciphertext.



In the next section we propose an improved attack which will produce the same
results as in the existing attack using only one faulty ciphertext.

4 Proposed Attack Using Single Faulty Ciphertext

In our proposed attack, the attacker is expected to induce a fault which corrupts
all four bytes of the first column of the ninth round key as depicted in Figure 2.
The proposed fault model increased the fault coverage where eventually all the
bytes of the ninth round key and subsequently all the bytes of the tenth round key
are corrupted by the induced fault. In the previous attack only 12 out of 16 bytes of
ninth round key were corrupted by the induced fault. As in Figure 3 only the first
three rows of the ninth round input state matrix is corrupted by the faulty ninth
round key K9. Therefore, only the first three rows of K10 participate in forming
differential equations. The last row of K10 is not related to any fault values. Hence
there is no trace of getting the last row’s values. But in our fault model there is
no such limitations.

4.1 Attack Principle

The proposed attack exploits the relation between the faulty byte at the input of
the ninth round. Figure 5 depicts the flow of faults. At the input of ninth round,
all the bytes of the state matrix S0 are corrupted. However, each of the rows have
same fault values, which helps in deducing the differential equations. We have the
fault-free and faulty ciphertexts (C,C∗).
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Therefore, we can represent the fault values {m,m,m,m} at first the row of
the state matrix S0 as follows:

m = SB
−1(C0,0 ⊕K

10
0,0)⊕ SB

−1(C∗

(0,0) ⊕K
10
0,0 ⊕m⊕ w)

= SB
−1(C0,1 ⊕K

10
0,1)⊕ SB

−1(C∗

(0,1) ⊕K
10
0,1 ⊕w)

= SB
−1(C0,2 ⊕K

10
0,2)⊕ SB

−1(C∗

(0,2) ⊕K
10
0,2 ⊕m⊕ w)

= SB
−1(C0,3 ⊕K

10
0,3)⊕ SB

−1(C∗

(0,3) ⊕K
10
0,3 ⊕w)

(5)



Similarly, the fault values in the rest of the three rows of S0 can be represented
by the following equations:

n = SB
−1(C1,3 ⊕K

10
1,3)⊕ SB

−1(C∗

(1,3) ⊕K
10
1,3 ⊕ x)

= SB
−1(C1,0 ⊕K

10
1,0)⊕ SB

−1(C∗

(1,0) ⊕K
10
1,0 ⊕ x⊕ n)

= SB
−1(C1,1 ⊕K

10
1,1)⊕ SB

−1(C∗

(1,1) ⊕K
10
1,1 ⊕ x)

= SB
−1(C1,2 ⊕K

10
1,2)⊕ SB

−1(C∗

(1,2) ⊕K
10
1,2 ⊕ x⊕ n)

(6)

o = SB
−1(C2,2 ⊕K

10
2,2)⊕ SB

−1(C∗

(2,2) ⊕K
10
2,2 ⊕ y ⊕ o)

= SB
−1(C2,3 ⊕K

10
2,3)⊕ SB

−1(C∗

(2,3) ⊕K
10
2,3 ⊕ y)

= SB
−1(C2,0 ⊕K

10
2,0)⊕ SB

−1(C∗

(2,0) ⊕K
10
2,0 ⊕ y ⊕ o)

= SB
−1(C2,1 ⊕K

10
2,1)⊕ SB

−1(C∗

(2,1) ⊕K
10
2,1 ⊕ y)

(7)

p = SB
−1(C3,1 ⊕K

10
3,1)⊕ SB

−1(C∗

(3,1) ⊕K
10
3,1 ⊕ z)

= SB
−1(C3,2 ⊕K

10
3,2)⊕ SB

−1(C∗

(3,2) ⊕K
10
3,2 ⊕ z ⊕ p)

= SB
−1(C3,3 ⊕K

10
3,3)⊕ SB

−1(C∗

(3,3) ⊕K
10
3,3 ⊕ z)

= SB
−1(C3,0 ⊕K

10
3,0)⊕ SB

−1(C∗

(3,0) ⊕K
10
3,0 ⊕ z ⊕ p)

(8)

As per the AES-128 key scheduling algorithm the fault value w in the tenth
round key K10 can be express in terms of n by the following equations:

w = S(K9
1,3)⊕ S(K9

1,3 ⊕ n)

= S(K10
1,3 ⊕K

10
1,2)⊕ S(K10

1,3 ⊕K
10
1,2 ⊕ n)

(9)

Similarly, we can represent x, y, z by n, o, p respectively and K10 using the
following equations:

x = S(K10
2,3 ⊕K10

2,2)⊕ S(K10
2,3 ⊕K10

2,2 ⊕ o) (10)

y = S(K10
3,3 ⊕K10

3,2)⊕ S(K10
3,3 ⊕K10

3,2 ⊕ p) (11)

z = S(K10
0,3 ⊕K10

0,2)⊕ S(K10
0,3 ⊕K10

0,2 ⊕m) (12)

Now we have four sets of differential equations for the four quartets of key
bytes like the attack in [21]. However, we can not directly apply the solving tech-
nique proposed in [21]. The reason is each set of equations contain six unknown
variables. For, example the unknown variables in the first set of equations (5) are
{K10

0,0,K
10
0,1,K

10
0,2,K

10
0,3,m,w}. Therefore, in this case we have to guess all possible

values of m and w. For one choice of (m,w) on an average we get one choice of
〈K10

0,0,K
10
0,1,K

10
0,2,K

10
0,3〉. Therefore, for all possible 216 choices of (m,w) we get 216

choices of the key quartet. If we apply the same technique to the other three sets of
equations (6), (7), (8) we get 216 choices for each of the three quartets. Therefore,
finally we get (216)4 = 264 choices of the key K10 which is not in practical limits.
This means the previous solving technique is not directly applicable.

We follow divide and conquer technique to solve the above four sets of dif-
ferential equations [2]. We use S-box difference table so that we can directly get
the values of the key byte from the given S-box input difference and the output
difference. We start with the first set of differential equations (5). In these sets
of equation we guess the possible values of (m,w). For one choice of (m,w) we



directly get on an average one choice of 〈K10
0,0,K

10
0,1,K

10
0,2,K

10
0,3〉 using S-box differ-

ence table. Therefore, for 216 possible choices of (m,w) we get 216 choices of the
key quartet with time complexity 216. For, each value of m and the corresponding
value of K10

0,2,K
10
0,3 we get the values of z using equation (12). Next we consider

the fourth set of equations (8) where the values of z are already known from the
previous steps. Therefore, in (8) we only guess the values of p and get the values
corresponding to the quartet 〈K10

3,0,K
10
3,1,K

10
3,2,K

10
3,3〉. For each values of (m,w, z)

and p we get one value of 〈K10
3,0,K

10
3,1,K

10
3,2,K

10
3,3〉. There are 216 possible choices

of (m,w, z) and 28 choices of p. Therefore, together we have 224 choices of first
and fourth quartets of key bytes from the first and fourth set of equations and the
time complexity of the process is 224.

Now we use the values of K10
3,3,K

10
3,2 and p to get the corresponding values

of y using equations (11). Similarly, we choose the third set of equations (7)
and get the 28 values 〈K10

2,0,K
10
2,1,K

10
2,2,K

10
2,3〉. Therefore, from the three sets of

equations (5), (7), and (8) we get 232 choices of the first, third and fourth quartet
of key bytes. Following the same technique we get the values of x from equation (10)
and then get the 28 values of the second quartet of key bytes 〈K10

1,0,K
10
1,1,K

10
1,2,K

10
1,3〉

using the second set of equations (6). Therefore, now we have 240 choices of all the
four quartets of key bytes which is the tenth round key K10.

But still we have one equation left unchecked i.e. equation (9). Each of the
tenth round key and the corresponding values of w is tested by equation (9).
Those which satisfy are considered and the rest are discarded. Finally, 232 out
of 240 candidates will satisfy equation (9). Therefore, finally we have 232 possible
choices of the tenth round key K10. So, we need to do 32-bit brute-force search to
get the master key.

However, the attack time complexity is 240 which is in practical limits. But the
entire attack takes around 14 hours to generate all the possible 232 keys which is
not feasible in terms of side-channel cryptanalysis.

In the next section we show a technique which further reduces the time com-
plexity of the attack.

4.2 Time Complexity Reduction Technique

The proposed attack has got four steps. In the first step we deduce the possible
choices K10

0,i where 0 ≤ i ≤ 3 and z. Similarly, in second, third and fourth steps we

get the possible choices of K10
1,i, K

10
2,i,and K10

3,i respectively and the corresponding
values of y, x, w.

In the first step, for a given value of w we get 28 choices of the quartet K10
0,i

from which we calculate z. However for getting z from equation (12) we need
only two key bytes (K10

0,3,K
10
0,2) of quartet K10

0,i. Therefore, we only consider the

unique values of (K10
0,3,K

10
0,2) out of 2

8 values of K10
0,i. The number of unique values

of (K10
0,3,K

10
0,2) is given by 28

22 = 26 [2]. Similarly, in the rest of the three steps we
consider 26 choices of (K10

3,3,K
10
3,2), (K

10
2,3,K

10
2,2) and (K10

1,3,K
10
1,2) each for getting the

values of y, x, and w respectively. This implies, for testing equation (9) indirectly
we need only eight key bytes. For a given value of w the possible choices of these
eight key bytes is (26)4 = 224. For all possible 28 choices of w we have 224×28 = 232

choice of the required eight bytes. Each choice of these eight key bytes are tested
by equation (9) if they satisfy they are accepted, else they are discarded. Thus
only 224 out of 232 choices satisfy the test. Those which satisfy are combined with



rest of the eight key bytes (K10
0,0,K

10
0,1), (K

10
1,0,K

10
1,1), (K

10
2,0,K

10
2,1), (K

10
3,0,K

10
3,1) .

There are 22 × 22 × 22 × 22 = 28 choices for rest of the eight key bytes. Therefore,
using this technique the equation (9) is tested for 232 times which correspond to
the time complexity of the attack. This implies, that using this technique the time
complexity of the attack reduced to 232 from 240 and hence comes in practical
limits.

The simulated, attack written in C programing language was run on a 8 core
Intel Xeon E5606 processor at 2.13 GHz speed. The attack takes less than 20
minutes to deduce the master key. Algorithm 1 summarizes the attack procedure.

Algorithm 1: DFA on AES-128 Key Scheduling using Single Faulty Ciphertexts

Input: P,C,C∗

Output: 128-bit AES key
/*P is the plaintext */1

for Each candidates of w do2

for Each candidates of m do3

Get {K10
0,2,K

10
0,3} from equations (5)4

Get z from equation (12).5

for Each candidates of p do6

Get {K10
3,2, K

10
3,3} from the equations (8).7

Get y from equation (11).8

for Each candidates of o do9

Get {K10
2,2,K

10
2,3 from equations (7)10

Get x from equation (10).11

for Each candidates of n do12

Get {K10
1,2, K

10
1,3} from equations (6).13

Test equation (9).14

if Satisfied then15

for Each values of16

{K10
0,0,K

10
0,1,K

10
1,0,K

10
1,1, K

10
2,0,K

10
2,1,K

10
3,0,K

10
3,1} do

Get K10.17

Get the AES key K using AES Key Schedule.18

if P=Decrypt(K,C) then19

Save K;20

end21

end22

end23

end24

end25

end26

end27

end28

4.3 Analysis of The Proposed Attack

There are total 20 differential equations in the proposed attack: 16 in four sets of
equations (5), (6), (7), (8), and 4 more for equations (9), (10), (11), and (12). Each
of these equations reduces the 216 possible choices of right hand side (corresponding



to two S-box output) to 28 choices in the left hand side. Therefore, the reduction
is given by ( 1

28 ). If there are N differential equations then the reduction is given by
( 1
28 )

N . If N equations contain M unknown variables then the reduced search space

is give by (28)(M−N). For more details on the analysis, one can refer to the paper
[21]. We have 20 equations with 24 unknown variables; namely m,n, o, p, w, x, y, z

and 16 unknown key bytes. Therefore, we have (28)(24−20) = 232 choices of final
round key.

The time complexity of the attack is also 232 as explained in the previous
section.

Note :

In some cases the attacker may not have access to the plaintext. So, he can
not perform brute-force search on the possible guessed keys. In that case the
attacker need to uniquely determine the key. Our attack can be applied in such a
situation with two faulty ciphertexts. Say the faulty ciphertexts are (C∗

1 , C
∗
2 ). If we

apply our proposed attack on these two faulty ciphertexts, we will have two sets
of fault values m1, n1, o1, p1, w1, x1, y1, z1 and m2, n2, o2, p2, w2, x2, y2, z2. Each of
these sets will produce corresponding 20 differential equations.

Now we can apply our attack on each of these sets in step by step fashion. In
the first step we guess the values of (w1,m1) and get 216 choices of K10

0,i where
0 ≤ i ≤ 3. For each of these choices we guess one value of w2 and test equations (5)
with the deduced key quartet K10

0,i. If these two values satisfy the equations we
accept them, else we discard them. There are 8 equations (two sets of equations (5)
from two faulty ciphertexts ) and 8 unknown variables ( m1,m2, w1, w2 and K10

0,i).
This implies only one key candidate will satisfy the test.

In the second step we get the values of z1, z2 and guess the possible values
of p1, and p2 each of which will produce 28 choices K10

3,i. Intersection of these

two sets will uniquely determine K10
3,i. Following the same technique in third and

fourth steps we can uniquely identify rest of the two key quartets K10
1,i and K10

2,i.

So, finally we will have one choice of K10. The time complexity of these attack is
224 as initially we need to guess w1, w2, and m1 to get the values K10

0,i.
The attack analysis is quite obvious. One faulty ciphertext reduces the key

space to 232 from 2128. Therefore, two faulty ciphertexts will reduce the search

space to ( 232

2128 )
2 × 2128 = 1

264 . This implies only the actual key will left and rest of
the guessed keys will be discarded by the attack.

5 Experimental Results

In order validate our attack we performed extensive simulations. Some of the
simulation results are presented in this section. We used 8 core Intel Xeon E5606
processor of 2.13 GHz speed running on Linux (Ubuntu 10.4). The attack code
was written in C programming language and compiled with gcc-4.4.3 with O3
optimization. The simulation was performed over 100 times on different random
keys. Some of the results are shown in Table 1. The attack takes less than 20
minutes to reveal the secret key. The first column of Table 1 represents the random
16-bytes keys which were attacked. The second column represents the number
of possible key generated by the attack. The last column represents the total
time taken by the attack which corresponds to generating possible keys and then
performing brute-force search on them to get the master key.



Table 1. Experimental Results

Random 128-bit Number of Possible Running Time

Key Keys (Minutes)

aaf3100fdf183ef427464fbf4db85f7a 3976380416 ≈ 231.88 17.65

5da4e5407bae5f94cc4a264bf694c0d2 8744409088 ≈ 233.025 18.533

19345421476b4e2b72191a845d30942a 8424587264 ≈ 232.971 18.791

226156432112475303294a5bc2326a96 4018579456 ≈ 231.90 18.883

5da4e5407bae5f94cc4a264bf694c0d2 4223047680 ≈ 231.975 19

6 Comparison With the Previous Works

In this section we compare our attack with some of the existing attacks in these
area. The first DFA on AES key schedule was proposed by Giraud [10]. Giraud’s
attack requires 250 faulty ciphertexts and five days execution time to retrieve the
secret key. The attack proposed by Chen and Yen in [9], was an improvement over
Giraud’s attack where around 30 faulty ciphertexts were used. Peacham et. al.
in [16] proposed an attack using 12 faulty ciphertext. DFA on AES key schedule
using two faulty ciphertexts was first time proposed by Junko Takahashi et. al.
[20], which reduced the AES key space to 248 choices. Kim et. al. in [13], further
improved the attack and reduced the key space to 232 possible choices using two
faulty ciphertexts.

Compared to these attacks our attack requires only one faulty ciphertext. The
required brute-force search for our attack is 32-bit which is same as in Kim et. al.’s
attack [13]. Therefore, the proposed attack required minimal faulty ciphertexts to
mount an attack on AES key schedule. Table 2 shows the comparison.

Table 2. Comparison with existing attack on AES-128 key schedule

Reference Fault Model Number Exhaustive

of Faults Search

[9] Single byte fault 22 to 44 1

[16] Multi byte fault 12 1

[20] Multi byte fault 2 248

[13] Multi byte fault 2 232

Our Attack Multi byte fault 1 232

7 Conclusions

We proposed an improved attack on AES-128 key schedule. The attack require
only one pair of fault-free and faulty ciphertexts. The proposed attack reduces the



AES-128 key space to 32-bit. The time complexity of the attack is 232. In order to
validate the attack we have provided extensive simulation results. The simulated
attack retrieves the secret key on less than 20 minutes on an 8 core Intel Xeon
E5606 processor at 2.13 GHz speed. This shows that the attack is indeed practical.
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