
Java Card Operand Stack: Fault Attacks,
Combined Attacks and Countermeasures

Guillaume Barbu1,2, Guillaume Duc2, and Philippe Hoogvorst2

1 Oberthur Technologies, Innovation Group,
Parc Scientifique Unitec 1 - Porte 2,

4 allée du Doyen George Brus, 33600 Pessac, France

2 Institut Télécom / Télécom ParisTech, CNRS LTCI,
Département COMELEC,

46 rue Barrault, 75634 Paris Cedex 13, France

Abstract. Until 2009, Java Cards have been mainly threatened by Log-
ical Attacks based on ill-formed applications. The publication of the Java
Card 3.0 Connected Edition specifications and their mandatory on-card
byte code verification may have then lead to the end of software-based at-
tacks against such platforms. However, the introduction in the Java Card
field of Fault Attacks, well-known from the cryptologist community, has
proven this conclusion wrong. Actually, the idea of combining Fault At-
tacks and Logical Attacks to tamper with Java Cards appears as an even
more dangerous threat. Although the operand stack is a fundamental el-
ement of all Java Card Virtual Machines, the potential consequences of
a physical perturbation of this element has never been studied so far.
In this article, we explore this path by presenting both Fault Attacks
and Combined Attacks taking advantage of an alteration of the operand
stack. In addition, we provide experimental results proving the practical
feasibility of these attacks and illustrating their efficiency. Finally, we de-
scribe different approaches to protect the operand stack’s integrity and
compare their cost with a particular interest on the time factor.

Key words: Java Card, Fault Attack, Logical Attacks, Combined At-
tack, Countermeasures.

1 Introduction

Java Card systems are generally considered as intrinsically safer than native ones
due to the security brought by the Java Card Runtime Environment (JCRE).
Indeed the strongly-typed Java language and the abstraction layer provided by
the Java Card Virtual Machine (JCVM) thwarts many Logical Attacks, such as
stack overflow for instance. Therefore numerous attacks against Java Cards con-
sist in corrupting the binary representation of Java Card applications in order
to bypass the inherent security of the platform [1–3]. Nevertheless, the recent
Java Card 3.0 Connected Edition has rendered such Logical Attacks (LA) un-
practicable by making on-card bytecode verification mandatory. That is to say,



2 G. Barbu, G. Duc and P. Hoogvorst

it should not be possible to load an application that is not conform to the Java
Card specifications [4–7].

However, as every embedded system, Java Cards are sensitive to attacks
based on physical phenomena, amongst which fault-injection-based attacks. The
principle of a fault injection on a smartcard is to modify the physical environ-
ment of the card in order to provoke an abnormal behavior of the component.
It can target either the processor, the data/address bus or even the memory
cells [8]. Since their publication in 1996, Fault Attacks (FA) have been mainly
tackled in the literature with regards to embedded cryptographic implementa-
tions [9–11]. However these attacks can potentially target any function of an
embedded system [12].

Two years ago, the idea of combining FA with LA has emerged [13]. Such
attacks, called Combined Attacks (CA), use a fault injection to allow a malicious
application to bypass the security mechanisms of the system. CA have turned
out to be very efficient against improperly secured platform [14, 15]. This high-
lights the need to neglect none of the components of an embedded system when
dealing with fault detection, and with security in general.

In Java-based systems, the operand stack appears as a central element. How-
ever its behaviour when targeted by fault injection has never been studied in
the literature. In this paper we investigate this path and describe both FA and
CA against Java Cards by disturbing the operand stack. We present practical
results and detail two case-studies leading to the corruption of an application
execution flow and an unduly granted authentication. These case studies prove
the necessity of carefully ensuring the integrity of the operand stack. To reach
this goal, we present and compare the efficiency of three different countermea-
sures.

The rest of this paper is organized as follow. In Section 2, we relate the ut-
termost importance of the operand stack in a Java Card environment. We also
introduce the notions relative to FA and CA and present the fault model we
consider in this work. Section 3 describes several Fault Attacks targeting the
operand stack and leading to abuse Java Card applications. Section 4 presents
how an attacker can threaten the platform and other applications with Com-
bined Attacks focused on the operand stack. Finally, Section 5 describes different
countermeasures against such attacks and compares their respective costs.

2 Basics of Operand Stack, Fault and Combined Attacks

In this section we give an overview of the operand stack in a Java-based environ-
ment. Then we detail the principles of FA and CA. Finally, we define the fault
model we have chosen in the context of our work and discuss this choice.



Java Card Operand Stack: Fault Attacks, Combined Attacks and Countermeasures 3

2.1 The Operand Stack, a Central Element of the JCVM.

The JCVM, and more generally, Java Virtual Machines (JVMs) are known as
stack-based machines, in opposition to register-based machines. Actually, several
stacks are described in the JVM specification [16]. We focus our interest on one
kind of these: operand stacks.

A Java frame is created on each Java method invoke to store temporary VM-
specific data. The operand stack is the part of this frame in charge of holding the
operands and results of the VM instruction. Most of these instructions consist in
popping a certain number of operands, executing a specific process and pushing
a returned value. For instance, the execution of an iadd (adding two integer
values: value1 and value2 ) is specified as follows:

Quote. ”Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 + value2. The result is pushed
onto the operand stack.” [16]

The integrity of the values passing through the operand stack appears then
crucial. In this paper, we focus our attention on this central element of the
JCRE and study its robustness with regards to fault injections.

2.2 Fault and Combined Attacks

In this section we intend to introduce the notions relative to FA and CA.

FA and the notion of fault model. Embedded systems are subject to the
laws of physics. The impact of physical phenomena on such systems has been
widely studied by the scientific community, with a particular interest on secure
systems. This interest has led to the conclusion that without particular pro-
tections, sensitive information can be retrieved from the so-called side channel
leakages such as execution timing, power consumption or electromagnetic ra-
diation. But another conclusion that has been drawn is that by modifying the
physical environment of the system, one can alter its behaviour. Such physical
perturbation can be caused by various tools such as a laser beam or a glitch
generator. This is the basis of the perturbation or fault-injection attacks.

In order to evaluate the possible consequences of a fault injection, it is then
necessary to provide a model of the possible errors induced by the perturbation.
Different fault models are commonly considered in the literature which mainly
depends on:

– the impact of the fault:
• whether it corrupts a bit, a byte, a data-word.
• whether the value is:
∗ set to a random value.
∗ stuck-at all-0 or all-1.

– the precision of the fault.



4 G. Barbu, G. Duc and P. Hoogvorst

Combined Attacks. Until 2009, the majority of the literature dealing with
Java Card security remained focused on the effects of Logical Attacks (LA)
[1, 2, 17, 18]. These attacks are generally based on the corruption of the binary
representation of a Java Card application (.cap or .class file) into a so-called
ill-formed application before it is loaded on-card. Such modifications aim at cir-
cumventing certain controls enforced by the JCVM. But in most cases, they also
make the application illegal with regards to the Java Card specifications. There-
fore the modified application should not be able to pass static analysis tools such
as the Java bytecode verifier. The bytecode verification being a costly process,
it is generally executed off-card on Java Card 2.2.2 and earlier, as a part of the
application development tool chain. The usual philosophy of LA is then to skip
this step and to directly load unverified applications on platforms that allow it.

The recently released Java Card 3.0 Connected Edition specifications, has
made mandatory the on-card execution of the bytecode verification. Therefore
loading ill-formed application is not possible anymore. This statement has given
a push to the introduction of the combination of LA with FA into the Java Card
field and practical applications have been published over the last two years. In
these works FA are used to bypass certain security mechanisms in order to allow
a LA. The so-called Combined Attacks allow then to take the benefits of both
FA and LA. Indeed, they are more realistic than LA since they do not rely on an
unverified application loading and potentially more powerful than FA since the
malicious application can make permanent changes and act like a trojan inside
the card.

2.3 The Selected Fault Model

In the scope of this work, we only consider FA targeting a JCVM. This has led us
to define a fault model allowing the attacker to modify the value pushed onto the
operand stack into a predetermined value or even to a chosen value, with some
limitations. Indeed we consider two different fault models: the common stuck-at
fault model and a model taking into account the value previously pushed onto
the stack. This model is detailed below.

In the constrained context of single-threaded Java Cards, optimization may
lead to use a single global operand stack. However, according to the specifica-
tions, an operand stack is allocated within a Java frame, on a method invoke.
In both cases, this allocation is most likely done in RAM. Therefore, pushing
an operand on the stack consists in writing this operand at a given address that
only depends on the number of elements already on the stack.

In our fault model, the fault injection targets the execution of the JCVM.
More precisely, we assume that the perturbation allows to prevent (at least par-
tially) the updating of the operand stack during a push operation. The resulting
erroneous value would then be either all-0, all-1 or a value resulting from an



Java Card Operand Stack: Fault Attacks, Combined Attacks and Countermeasures 5

incomplete writing. As a consequence, and assuming the attacker knows the val-
ues previously pushed onto the operand stack, we can conclude that she is able
to predetermine the erroneous value. Furthermore, assuming she can run and
attack her own application on the platform, she can choose the value previously
pushed onto the stack and therefore control the resulting erroneous value. The
experimental validation of this fault model is shown in Appendix A.

The following sections details possible exploitation of fault injections follow-
ing this fault model through both FA and CA.

3 Fault Attacks on the Operand Stack

In this section we explore some potential consequences of a successful fault in-
jection on an integral value pushed onto the operand stack. In the rest of this
section, we assume that the attacker can only execute applications already loaded
on-card. We start with a brief description of an attack on the instruction byte
of the APDU (Application Protocol Data Unit) buffer. Then we raise the issue
of boolean values in a Java environment with regards to fault injection and put
into practice FA on a conditional branching instruction of the VM.

3.1 Taking Advantage of Erroneous Integral Values

As any other smartcard, a Java Card follows the ISO 7816 specifications [19].
Particulary, Java Card applets receive their command through APDUs, accord-
ing to the specified format (Fig. 1).

CLA INS P1 P2 LC DATA LE

Fig. 1. Format of an APDU command.

The Java Card API provides a class representing APDUs and a virtual
method to access the data sent within this APDU through a byte array. This
byte array defines then the behaviour of the applet. For instance to select a spe-
cific instruction in the process method, an applet execute typically the following
lines:

byte ins = apduBuf[ISO7816.OFFSET_INS];

switch (ins) { // push ins on the stack and execute the

// appropriate switch instruction.

case INS_A: processInstructionA(apdu); break;

case INS_B: processInstructionB(apdu); break;

...

default: ISOException.throwIt(ISO7816.SW_INS_UNKNOWN);

}



6 G. Barbu, G. Duc and P. Hoogvorst

The value of ins is pushed onto the operand stack before executing the
switch instruction. Therefore, a successful fault injection during the pushing
of the value is likely to totally change the behaviour of the applet. However,
the consequences are then dependent on the applet itself, but considering an e-
wallet applet, turning a payment into a credit operation is definitely interesting
from the attacker’s point of view. The chances of success are nevertheless quite
low regarding our fault model since the previous value on the operand stack
(apduBuf’s reference in this case) is not known and there is no reason why it
should be in relation with the different instructions.

3.2 The Case of Boolean Values

In this section, we discuss the particular cases of the boolean type and of con-
ditional branching instructions. Then we describe FA on such instructions and
give experimental results proving the efficiency of our fault model.

Booleans and conditional branching in Java Card. Amongst the basic
types of the Java language, we find different types of integral values differing by
their size or sign (byte, char, short, ...). But we also find a specific boolean type,
which supports only two values: true and false. Indeed, the Java language for-
bid the use of any other type than boolean in if statement, unlike C language
for instance.

Nevertheless, there is no such thing as a boolean type at the bytecode level
and the Java compiler produces only bytecodes manipulating values of type int
when processing operations on boolean variables. Finally, and most importantly
with regards to the remainder of this section, the conditional branching instruc-
tions produced by the compilation of a simple if statement: ifeq and ifne, only
compare the top of stack value (i.e. the previously pushed operand) with 0 and
branch or not depending on the result of this comparison (branch if the compar-
ison succeeds in the case of an ifeq, branch if the comparison fails in the case
of an ifne). That is to say, the specification imposes that any other value than
0 will be interpreted as true by the JCVM.
One may note that this statement is true for any Java-based system.

FA against conditional branching instructions. Several choices are offered
to an attacker in order to corrupt a conditional branching instruction on a Java
Card. In this section we give the details of a FA against an ifeq instruction
evaluating a positive (true) condition by setting the previously pushed operand
to 0. We consider the following code (application Java source code on the left
and the corresponding bytecode on the right):

1. boolean b = dummyTrue(); | 1. aload_0

| 2. invokevirtual #96

| 5. istore 6

2. if (b) { | 7. iload 6



Java Card Operand Stack: Fault Attacks, Combined Attacks and Countermeasures 7

| 9. ifeq 12

3. Util.setShort(buffer, | 12. aload_2

(short)0,(short)0x1111); | 13. iconst_0

| 14. sipush 0x1111

| 17. invokestatic #84

| 20. pop

4. } |

5. else { |

6. Util.setShort(buffer, | 21. aload_2

(short)0,(short)0x2222); | 22. iconst_0

| 23. sipush 0x2222

| 26. invokestatic #84

| 29. pop

7. } | ...

8. Util.setShort(buffer, |

(short)2, proof); |

The dummyTrue() method initializes the instance field proof (used at line 8)
proving the method has been executed and return a boolean value (true).

The target of our attack is this value pushing, before the dummyTrue() re-
turns. The goal of the attack is then to force this value to 0. In case of success,
the ifeq instruction will result in a jump at line 21 in the bytecode sequence
and the returned value will be 0x2222 instead of 0x1111.

Experimental results. We put this attack into practice on a recent smartcard
embedding a Java Card 2.2.2 VM. The fault injection is achieved with a laser
beam applied on the rear-side of the component.

After empirically searching the fault injection parameters (timing, impact
location, intensity) that ”maximize” the number of successful FA, we reach a
success rate of 78.25%, out of 10,000 disturbed executions of the application.
We then adapt the test application to attack an ifne instruction by changing
line 2 of the Java source code into if (!b). Once the fault injection parameters
adjusted, we reach this time a success rate of 70.92%, also out of 10,000 dis-
turbed executions.

The results of similar attacks on a false condition evaluation are expected
to be at least as good as the results obtained above. Indeed, since any value
other than 0 is interpreted as true, any alteration of the pushed operand would
lead to a successful attack.

These FA definitely raise the security issue caused by the specifications of
the ifeq and ifne instructions, and to a certain extent by the lack of a real
boolean type at the Java bytecode level.



8 G. Barbu, G. Duc and P. Hoogvorst

4 Combined Attack through Faulty Object References

In this section we consider the combination of a fault injection in the operand
stack and a malicious application. This implicitly assumes that the attacker has
the opportunity to load and execute her own application on the platform. This
privilege is far from obvious on released products. However such attacks must be
considered in the context of platforms allowing post-issuance application loading
like Java Cards. In the following, we describe two CA taking advantage of a faulty
object reference on the operand stack in slightly different ways: type confusion
and instance confusion.

4.1 Yet Another Way to Type Confusion

Type safety is a fundamental element of Java-based systems in general and of
Java Cards in particular. Consequently this property has been largely studied
and is used in many of the published attacks against Java Cards.

We do not provide another particular type-confusion-based attack in this
section, but we describe how a fault injection in the operand stack can lead to
break the type safety property with a good probability.

As previously stated, we consider that the attacker can load her own ap-
plication on-card. Nevertheless, we assume that the application has to pass a
bytecode verifier to be loaded. This bytecode verifier can be either on-card, as
specified in the latest Java Card specifications or off-card. Provided the byte-
code verifier is sound, the malicious application has then to be well-formed. As a
consequence, the well-known .cap file or .class file manipulation to cause a type
confusion is not an option.

Our strategy to break type safety is basically the same as the one proposed
in [20]. That is to say, the attacker creates in her application several instances
of a given class C and counts on an error to modify the Java reference of a given
instance of another class C∗ into that of one of the several instances of C. The
main difference with the work presented in [20] is that our fault model allows us
to predetermine the error. Therefore the success rate of the attack should not
depend on the number of instances of class C that have been created although
a sufficient number of instances of class C can be necessary in practice.

4.2 Instance Confusion: The Case Study of Security Role
Impersonation

In this section, we introduce the concept of instance confusion and present the
case study of an attack using this concept.



Java Card Operand Stack: Fault Attacks, Combined Attacks and Countermeasures 9

Instance confusion. By analogy to the concept of type confusion, where an
instance of a class C is used as if it were an instance of another class C∗, we
introduce the concept of instance confusion. An instance confusion consists in
using an instance i of a given class (or of a class implementing a given interface)
as if it were another instance i∗ of the same class (or of a class implementing
the same interface).

Obviously, instance confusions within the bounds of the attacker’s applica-
tion may not represent a threat. Furthermore, to take advantage of an instance
confusion outside the bounds of her application, the attacker should have to cir-
cumvent the Java Card application firewall. In the remainder of this section, we
show that an appropriate instance confusion can allow the attacker to unduely
gain privileges in another application on a Java Card 3.0 through the use of an
authentication service.

JC3.0 user authentication. The Java Card 3.0 specifications provide an au-
thentication facility through a dedicated set of service interfaces. These interfaces
are organized as illustrated in Fig. 2.

Shareable

Authenticator

SharedPasswordAuth SharedPINAuth SharedBioTemplateAuth

?

9 ? z

Fig. 2. Java Card 3 authenticator classes and interfaces hierarchy.

To allow user authentication, these shared services are mapped to specific
Unified Resource Identifiers (URI) as any other Shareable Interface Object (SIO).
These SIOs are first registered into the service registry by the application pro-
viding the service through the register method of the ServiceRegistry class
of the Java Card API. They can then be retrieved in the service registry using
their URI by calling the lookup method of the same class.
Each of these authentication service interfaces expose methods allowing to:

– authenticate a user with provided credentials (check),
– check wether or not a user is authenticated (isValidated),
– reset the authentication status of an authenticated user (reset).



10 G. Barbu, G. Duc and P. Hoogvorst

These methods are typically called either by the application, or by the web
container to restrict access to specific services or content, as detailed in the
JCRE specifications (§6.4.4 and 6.4.5 of [4]). The important point to notice is
that these methods are exposed in shareable interfaces. That is to say they are
accessible across the application firewall. They are then likely to be abused by
an attacker through an instance confusion.

Setting up and exploiting instance confusion. Let us assume the attacked
application uses the service offered by the SharedPasswordAuth interface. The
first step for the attacker is then to create and load an application with several
instances of a class implementing this interface. This class would typically have
check and isValidated methods always returning true and reset method do-
ing nothing, to bypass access control.

When the targeted application is about to get the authenticator instance (i.e.
when the lookup method pushes its Java reference onto the operand stack), the
attacker can then try to corrupt it. If she manage to provoke an instance con-
fusion between the legitimate authenticator and one of her own, any call to the
check or isValidated method would return true and the targeted client appli-
cation would have all the reasons to consider her as an authenticated user.

The attacker may then access critical services within the attacked application.
It is important to notice that even if redundant checks are performed to verify the
authentication, one successful fault on the authenticator’s reference is sufficient.
This attack appears then more powerful than the FA on conditional branching
of Sect. 3.2, since in this case each additional check would require an additional
perturbation of the component.

Experimental results. Our experiments are done on a Java Card 2.2.2. There-
fore, we cannot use the API’s authenticator interfaces. However, we experiment
our attack on an applet holding one instance a of a class A implementing an
interface I and 256 instances of a class B, also implementing I. We intend then
to prove that an attacker should be able to provoke an instance confusion on spe-
cific objects. To match the previously described attack, the application obtains
object a through a virtual method getA() and stores it in a local variable of type
I, the interface implemented by A and B. The attack consists then in injecting
a fault while pushing a onto the stack and check if the resulting operand is an
instance of B. The test application is then the following:

byte[] buffer = apdu.getBuffer();

buffer[0] = 0x7F;

I a = getA(); // attacked method

if (a instanceof Object) {

if (a instanceof B)

buffer[0] = 0x01; // SUCCESS

else if (a instanceof A)



Java Card Operand Stack: Fault Attacks, Combined Attacks and Countermeasures 11

buffer[0] = 0x02;

}

Out of 10,000 attacked executions of our application, we obtain the following
results:3

– 8.74% of success: the operand popped from the stack is an instance of B.
– 25.42% of attack failure : the operand popped from the stack is an instance

of A, i.e. a itself, the fault injection had no effect.
– 65.86% of unknown error : the execution of the application did not complete,

i.e. an exception was thrown or the fault injection caused a card failure.

With regards to a theoretic security of about 240 if we consider an 8-character
password, an attack on a password-based authenticator with a success rate of
about 10% is quite outstanding.

This section has shown that a CA taking advantage of an erroneous value
on the operand stack can be even more dangerous than FA. Finally, the two
previous sections have proven the need to ensure the integrity of the operand
stack.

5 Countermeasures

Within this section we present different approaches to design a software coun-
termeasure against the attacks previously described. The aim of these counter-
measures is then restrained to protecting the system against a faulty value on
the operand stack. Also, we focus here on dynamic checks in the context of a
defensive VM and do not consider static defenses such as detecting potential
dangerous mutation within an application [21,22].

5.1 When to Check for Faults?

A foundation of countermeasure designing lies in the definition of the assets to
protect. A good comprehension of the threats is necessary to achieve this work.
This section aims at analysing the attacks previously described in order to deter-
mine the operations that are sensitive and thus worth protecting. As the attacks
target the JCRE, we will consider operations at the Java bytecode level.

In the context of Java Cards, we want to prevent:

– Data from being unduely sent out of the card,
– Applications from ill-behaving.

3 As expected with regards to our fault model, increasing the number of instances of
class B up to 1024 did not really enhance the success rate of the attack (almost
10%).



12 G. Barbu, G. Duc and P. Hoogvorst

Indeed, these identified assets summarize the assets defined in the Java Card
Protection Profile (§3.2 of [23]).

We can then restrict fault detection to the bytecode instructions related to:

– Field manipulation (get/putfield, get/putstatic).
– Control-flow breaks (invokes, returns, conditions, exceptions).

Other instructions are arithmetic or logic operations, or operate on local vari-
ables. Apart from operation on static class fields, those are the operations pro-
tected by the Java Card application firewall.

5.2 Software Fault Detection

In this section we detail different approaches to detect faults within the scope
of the JCVM.

The basic approach: redundant checks. The most straightforward imple-
mentation of a fault detection mechanism on the stack would be to check the
coherency between the value pushed onto the stack and the top of stack value
after the push operation. Likewise, with regards to the pop operation, we will
check the coherency between the value that has been popped and the former top
of stack value. That is to say:

push(expected);

if (get_tos() != expected)

handle_fault();

for the push operation.

expected = pop();

if (get_prev_tos() != expected)

handle_fault();

for the pop operation.

We implemented this countermeasure on a Java Card Virtual Machine. The
additional costs on various bytecode instructions are presented in Table 1 of
Sect. 5.3.

1st refined approach: propagating errors to ensure fault detection. Our
approach to reduce the cost of redundant check is to propagate a potential er-
ror to another component of the JCVM. This is then only valid if the standard
JCVM behaviour is to check this other component.
The Java Card application firewall aims at ensuring a strict isolation between
the different applications and the JCRE. A typical implementation of this mech-
anism we found on numerous cards and simulation tools is to assign a context
identifier to each application. This identifier is also assigned to each object in-
stance created within the scope of an application. The context isolation is then
enforced by comparing an object context identifier and the current application
identifier, according to the JCRE specification [4]. We choose to propagate the
operand stack errors to this value. The implementation of the countermeasure



Java Card Operand Stack: Fault Attacks, Combined Attacks and Countermeasures 13

is then:

push(expected);

fw_context_id |=

(get_tos() ^ expected);

for the push operation.

expected = pop();

fw_context_id |=

(get_prev_tos() ^ expected);

for the pop operation.

Consequently if an error occurs on the pushed value, the current context of
ownership is modified. Therefore an attacker is no longer able to retrieve data
from the attacked application since she would have to either call virtual or inter-
face methods to send data out of the card or eventually use instance class fields.
In both ways, she would have to pass through the application firewall and the
firewall will not allow it. Similarly, if the fault aims at corrupting a conditional
branch, the subsequent execution will be interrupted as soon as a firewall check
occurs. An additional check is only necessary on access to static fields that are
not protected by the application firewall.

The fact that few additional checks need to be inserted (only for access
to static fields) is clearly an advantage regarding the computational cost of this
method. The major drawback of this method is that corrupting the fw context id

value, it is possible (although we consider the chances as low) that we fix it to the
value identifying another application installed on the card. In such a case, our
countermeasure would eventually open a breach in the application firewall. Table
1 of Sect. 5.3 presents the experimental cost of this refined countermeasure.

2nd refined approach: introduction of a stack invariant. A second ap-
proach to detect faults in the operand stack consist in adding in the Java frame
structure a variable σ that allows to exhibit an invariant property.

Definition 1. σ is the sum, considering the XOR operation, of all the values
pushed on and popped from the operand stack.

We can then exhibit the following invariant property:

Property 1. Let ST be the set of all the values contained by the operand stack
at a given time T . Then at any given time T,

σ ⊕ΣST = 0

Proving this property and its invariance is straightforward. Indeed since σ is by
definition the sum of the values pushed onto and popped of the stack, all the
values that have been popped have been eliminated from the XOR sum. There-
fore, only the values that are still on the stack at a given time T are components
of σ.

The implementation of the countermeasure is then:



14 G. Barbu, G. Duc and P. Hoogvorst

push(expected);

sigma ^= expected;

for the push operation.

expected = pop();

sigma ^= expected;

for the pop operation.

As previously stated, we can check the invariant property on firewall checking
and access to static fields and methods by XORing all the values on the stack
to σ.
This approach requires then to add a routine in charge of checking the invariant
property. Also it requires to add one word in each Java frame created. Table 1
in Sect. 5.3 presents the experimental cost of this countermeasure.

5.3 Costs Comparison

In this section, we present in Table 1 the cost (in time) of the different counter-
measures introduced in the previous sections. Then we discuss the result of this
comparison and the different benefits and drawbacks of the different approaches.

Instructions Basic Propagation Invariant

aload+astore 39.09% 21.98% 12.29%
aload+getfield+astore 19.83% 12.39% 11.75%
aload+aload+putfield 27.93% 18.77% 17.59%

aload+invokevirtual+return 7.53% 1.69% 1.77%
aload+invokevirtual+areturn+astore 8.82% 3.26% 2.38%

aload+putstatic 18.60% 11.58% 8.89%
getstatic+astore 19.18% 10.76% 10.21%

Table 1. Countermeasures impact on bytecode instructions execution time. (% refer-
enced to an initial implementation with no countermeasures.)

As the costs for the different countermeasures are given in percentage, it is
important to bare in mind that the different instructions have very different com-
plexity (which explains the large difference between the results for the sequences
aload+astore and aload+invokevirtual+return for instance).

The redundant approach. The performance degradation caused by this straight-
forward countermeasure turns out to be not acceptable.

The propagation approach. This countermeasure is definitely more efficient
than the basic one. To fix the potential issue of context identifier manipulation,
an option could be to force legitimate identifiers to even values and propagated
errors to odd values. The detection of an invalid identifier would then be straight-
forward.



Java Card Operand Stack: Fault Attacks, Combined Attacks and Countermeasures 15

The invariant approach. The invariant method is also more efficient than the
basic one. Its performance is even a little better than that of the propagation
countermeasure. Another advantage of this approach is that it does not present
the drawback of a potential breach opening.

As expected, the invariant and propagation approaches turn out to be more
efficient than the basic one and are relatively close in terms of performance.
Nevertheless, the propagation method requires no additional data and only few
additional checks on access to static fields. However, as we implemented it, the
propagation method potentially opens a security breach in the application fire-
wall. The use of another variable that would be frequently checked may be
recommended. Such variables are typically implementation-dependent and we
could not exhibit another quasi-standard one. If such variable should not be
found in a particular implementation, the invariant approach has proven to be
slightly better than the propagation one in terms of execution time. It should
easily be implemented at the cost of an additional data-word per Java frame.

6 Conclusion

As stated in the introduction of this work, Java Cards are safer than native de-
vices with regards to Logical Attacks by nature. However, we have raised in this
article the issue of the possible alteration of an operand stack and demonstrated
how such attacks can eventually compromise both the Java Card platform and
the applications loaded on-card. Indeed, we have described and put into prac-
tice both Fault and Combined Attacks against a Java Card by disturbing the
operand stack.

In particular, this work has permitted to highlight the weakness that repre-
sents the lack of a boolean type at the VM-instruction level. Furthermore, we
have exhibited new means to combine fault injection with malicious applications
to cause a type confusion despite the bytecode verification, and to abuse authen-
tication services through instance confusion.

Finally, we have detailed and compared different countermeasures. Amongst
them, both the propagation and invariant approaches bring a good security level
without impacting too much the performances of on-card applications. How-
ever, future works intending to refine the identification of the moment when
an integrity check should be performed may allow to reduce the cost of these
countermeasure.

Acknowledgement

The authors would like to thank Nicolas Morin, for his helping hand during the
fault injection campaign, and Christophe Giraud for his fruitful review(s).



16 G. Barbu, G. Duc and P. Hoogvorst

References

1. Witteman, M.: Java Card Security. In: Information Security Bulletin. Volume 8.
(2003) 291–298

2. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In: Smart Card Research and Advanced Applications. CARDIS
’08, Springer-Verlag (2008) 1–16

3. Iguchi-Cartigny, J., Lanet, J.L.: Developing a Trojan Applet in a Smart Card.
Journale on Computers and Virology 6 (2010) 343–351

4. Sun Microsystems Inc.: Runtime Environment Specification, Java Card Platform
Version 3.0.1 Connected Edition (2009)

5. Sun Microsystems Inc.: Virtual Machine Specification, Java Card Platform Version
3.0.1 Connected Edition (2009)

6. Sun Microsystems Inc.: Application Programming Interface, Java Card Platform
Version 3.0.1 Connected Edition (2009)

7. Sun Microsystems Inc.: Java Servlet Specification, Java Card Platform Version
3.0.1 Connected Edition (2009)

8. Giraud, C., Thiebeauld, H.: A Survey on Fault Attacks. In: Smart Card Research
and Advanced Applications. (CARDIS’04)

9. Anderson, R., Kuhn, M.: Tamper Resistance: a Cautionary Note. In: Proceedings
of the Second USENIX Workshop on Electronic Commerce - Volume 2. (1996) 1–1

10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults. In: Proceedings of the 16th Annual Interna-
tional Conference on Theory and Application of Cryptographic Techniques. EU-
ROCRYPT’97, Springer-Verlag (1997) 37–51

11. Bihame, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystem.
In: Advances in Cryptology. CRYPTO’97, Springer (1997) 513–525

12. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of The IEEE 94 (2006) 370–382

13. Barbu, G.: Fault Attacks on Java Card 3 Virtual Machine. In: e-Smart’09,
http://www.strategiestm-net.com/proceedings/e-smart/OBERTHUR Guillaume
Barby - Fault Attacks on Java Card 3 Virtual Machine.pdf (2009)

14. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining
Fault and Logical Attacks. In: Smart Card Research and Advanced Application.
CARDIS’10, Springer-Verlag (2010) 148–163

15. Vétillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Smart
Card Research and Advanced Application. CARDIS’10 (2010) 133–147

16. Lindholm, T., Yellin, F.: Java Virtual Machine Specification. 2nd edn. Addison-
Wesley, Inc. (1999)

17. Hyppönen, K.: Use of Cryptographic Codes for Bytecode Verification in Smartcard
Environment. Master’s thesis, University of Kuopio (2003)

18. Hogenboom, J., Mostowski, W.: Full Memory Attack on a Java
Card. In: 4th Benelux Workshop on Information and System Se-
curity, Proceedings, Louvain-la-Neuve, Belgium (2009) Available at
http://www.dice.ucl.ac.be/crypto/wissec2009/static/13.pdf.

19. ISO/IEC: 7816-3: Identification Cards – Integrated Circuit Cards – Part 3: Cards
with Contacts – Electrical Interface and Transmission Protocols (2006)

20. Govindavajhala, S., Appel, A.W.: Using Memory Errors to Attack a Virtual Ma-
chine. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy. SP
’03, IEEE Computer Society (2003)



Java Card Operand Stack: Fault Attacks, Combined Attacks and Countermeasures 17

21. Sere, A.A., Iguchi-Cartigny, J., Lanet, J.L.: Automatic Detection of Fault Attack
and Countermeasures. In: Proceedings of the 4th Workshop on Embedded Systems
Security. WESS ’09 (2009) 1–7

22. Séré, A.A.K., Iguchi-Cartigny, J., Lanet, J.L.: Checking the Paths to Identify
Mutant Application on Embedded Systems. In: FGIT. (2010) 459–468

23. Sun Microsystems Inc.: Java Card Protection Profile Collection, version 1.1. Tech-
nical report (2006)

A Practical Validation of the Fault Model

The experimental results we present here have been obtained on a recent ARM-
based smartcard device. A Java Card 2.2.2 Virtual Machine is running on the
device. The fault injection was achieved with a laser equipment.

The test application. We intend to provide an experimental validation of the
previously introduced fault model. We then develop a Java Card applet, the
process method of which is exposed below.

1. public void process(APDU apdu) {

2. [...]

3. ref = Util.getShort(buffer, OFFSET_CDATA);

4. target = Util.getShort(buffer, (short) (OFFSET_CDATA+2));

5. ref = ref; // push and pop ref : sload #ref

sstore #ref

6. res = target; // push and pop target : sload #target

sstore #res

7. Util.setShort(buffer, OFFSET_CDATA, res);

8. [...]

9. }

The first step of our applet consists then in pushing a reference value onto
the operand stack and popping it. Therefore we know which value was written
in the operand stack before we proceed.
Then we push a second value onto the stack. This second push is the target of
our fault injection. The subsequent popped value which is stored in variable res
is then expected to be an erroneous value. The last step of the applet process is
then to send this value out of the card.
Fig. 3 illustrates the evolution of the operand stack along the execution of lines
5 and 6.

Experimental results. To evaluate the validity of our fault model, we per-
form several fault attacks with different parameters (namely, the time and space
parameters of the attack as well as the width and intensity of the laser beam)
and different input parameters.
Table 2 sums up the different results obtained. In this table we only present the
results regarding a given couple of input : (ref, target) = (0xAABB, 0xCCEE).



18 G. Barbu, G. Duc and P. Hoogvorst

tos

after sload #target

-
target

after sstore #res

-
target

tos

tos

after sload #ref

-
ref

after sstore #ref

-
ref

tos

Fig. 3. Evolution of the operand stack content and of the top-of-stack (tos) along
execution of lines 5 and 6 of the test applet.

The cells highlighted in grey within Table 2 denote the results that were depen-
dent on the inputs. We also highlighted the results 0x0000 and 0xFFFF which
correspond to the two stuck-at fault models. Note that we only present in this
table the results that were reproducible.

0x00F1 0x0000 0x00F2 0x00CC 0x149C 0x0121 0x0D88 0xFF19

0x0006 0x0129 0x149E 0xEA00 0x00BB 0x27FF 0x168F 0x000D

0x1490 0x4778 0x0011 0xD203 0xC14A 0x00D9 0xAABC 0x1200

0x2B2B 0x0012 0x5576 0xBB00 0x6000 0x7600 0xFFFF 0xAA0B

0xAA8B 0x2AAF 0xAAEC 0xAAEB 0xABB0 0x2AAE 0xAB6B 0xEEA0

Table 2. Results (res values) of the fault attacks with various fault injection param-
eters and fixed ref and target values.

Conclusions. It is difficult to deduce the exact perturbation caused by the laser
beam in all cases, especially when the results are not correlated with the inputs.
Such results may be correlated with internal values contained in the registers of
the processor at the time the laser is activated.
On the other hand, some results can be easily interpreted since they are com-
pound of different chunks of either the reference or the target value and 0s (for
instance, 0x0000, 0x00CC, 0xBB00).

To conclude, the results we obtained only partially validate our fault model
since res is either all-0, all-1, truncated ref, truncated target or other unknown
values.
However this proves that an adversary can manage to disturb the push operation
and may have a certain control on the erroneous operand eventually pushed.


