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Abstract. With the latest advances in attack methods, it has become
increasingly more difficult to secure data stored on smart cards, espe-
cially on non-volatile memories (NVMs), which may store sensitive in-
formation such as cryptographic keys or program code. Lightweight and
low-latency cryptographic modules are a promising solution to this prob-
lem. In this study, memory encryption schemes using counter (CTR) and
XOR-Encrypt-XOR (XEX) modes of operation are adapted for the tar-
get application, and utilized using various implementations of the block
ciphers AES and PRESENT. Both schemes are implemented with a
block cipher-based address scrambling scheme, as well as a special write
counter scheme in order to extend the lifetime of the encryption key in
CTR-mode. Using the lightweight cipher PRESENT, it is possible to im-
plement a smart card NVM encryption scheme with less than 6K gate
equivalents and zero additional latency.

Keywords: memory encryption, smart card, low-latency block cipher,
AES, PRESENT

1 Introduction

Smart cards and devices containing smart card ICs, have been playing increas-
ingly important roles in our daily lives for years. Within the last decade, pass-
ports, credit cards, ID cards, and even public transport tokens have come to rely
on smart card technologies. Non-volatile memories (NVMs) in those smart cards
contain frequently updated data such as personal information about the card
holder, and less frequently (or never) changing data such as program code, cryp-
tographic keys, etc. Access to the frequently updated data should be executed
with very low latency. Due to advances in attack methods, e.g., invasive attacks,
it is often realistic to expect that the information would be compromised in case
of a stolen or lost card. Therefore it is crucial to store the information securely
using state-of-the-art cryptographic algorithms and technologies, and yet in an
economic way.

This requires some form of data encryption algorithm to be implemented
on the smart card, either in hardware or software. However, encryption (and



decryption) of memory data comes with a specific set of requirements, which
are not met with standard cipher implementations. For instance, while AES is
extremely well tested and secure, it requires either several tens of thousands
of gates for a fast hardware implementation, or several hundreds of cycles for
software implementation on a standard embedded processor. On the other hand,
mechanisms that allow access to data stored on the NVM of a smart card should
be lightweight in terms of power consumption, latency and resource usage. This
enforces utilization of specifically optimized algorithms and modes.

The memory encryption schemes proposed up to date mainly target real-time
hard disk encryption [1–7], which differs considerably from the security in smart
cards. They require lots of temporary storage for predictive processing of data,
which makes the overall process seem like zero-latency to the external user.

On smart cards, NVM sizes are usually restricted. Even the future visions for
the next two decades predict at most a few gigabytes of NVM storage[8]. In most
cases, NVM also stores program memory, which has to be accessed with very
low latency for seamless execution of the program. Standard memory encryp-
tion techniques usually require several clock cycles in order to decrypt the page
header, calculate the tweak, and then use this information to further decrypt
consecutive block data. This is unacceptable for low latency access demanding
smart card NVM applications. Therefore, either the existing techniques have
to be improved, or new memory encryption techniques have to be introduced
together with supporting cryptographic primitives.

When considering security of smart card NVMs, the following assumptions
have to be considered:

• An adversary can read the raw contents of the NVM at any time (which
might be possible with either invasive attacks or attacks targeting the access
mechanism).

• An adversary can fool the smart card to encrypt and store arbitrary data of
his/her choosing on the NVM.

• An adversary can modify unused sectors on the NVM and then request their
decryption.

• Furthermore, most data stored on the NVM has a predefined structure, such
as headers, footers, fixed size and address, etc.

In order to resist such an adversary, the security module on the smart card
should be able to efficiently encrypt memory contents of NVM and perform
memory address scrambling. Scrambling (re-mapping of the address space) pre-
vents the adversary from locating the exact location of the stored data. It is a
crucial element of memory encryption, without which most memory encryption
schemes become pointless.

The memory encryption on smart cards should be low-cost, security proven,
low-latency, and low-complexity. In this work, we this target is accomplished by
adapting CTR and XEX-modes of operation for memory encryption, and realiz-
ing them using AES[9] and PRESENT[10] block ciphers. The proposed systems
are implemented at RTL level, synthesized using standard CMOS technology,
and their performance figures are presented.



The rest of the paper is organized as follows: In section 2, an overview of
existing and proposed memory encryption schemes is presented together with
security discussion and performance analysis of two selected schemes for smart
card NVM encryption. System design details and performance results are pre-
sented in section 3. Finally in section 4, the results are summarized.

2 Memory Encryption

2.1 Memory Encryption Background

Like most other fixed width data applications, memory encryption also relies on
use of block ciphers. However, using a block cipher as the cryptographic primitive
for memory encryption makes sense only when it is used with a proper mode
of operation. In addition to the conventional counter mode (CTR), new modes
of operation specific to memory encryption have been proposed: namely Liskov-
Rivest-Wagner (LRW), XOR-Encrypt-XOR (XEX)[7] and XEX-based Tweaked
CodeBook mode with ciphertext stealing (XTS)[6]. All three proposed schemes
(LRW, XEX, XTS) depend on the tweakable block cipher idea in [11], which
is composed of a block cipher and a tweak. This system is proven to be secure
against the chosen-ciphertext and chosen-plaintext attack scenarios, provided
that the number of plaintext-ciphertext pairs is limited. Basically, a pseudo-
random tweak is computed for each block and then XORed with the input and
output of the cipher, thereby randomizing any structure in the plaintext and
ciphertext and thwarting attacks exploiting these structures. The CTR, LRW,
XEX, and XTS modes of operation are briefly summarized below:

CTR-Mode CTR-mode mode enables the user to have parallel encryption
and random access to the encrypted data. This makes it a viable candidate for
memory encryption. However, it was shown that this mode is insecure when
more than 2

n
2 blocks of data are encrypted with a block cipher with block size

n. The idea in the counter mode is to produce a one-time pad (OTP) using the
underlying block cipher and XOR the plaintext with this OTP. This approach is
quite problematic when used recklessly in a memory encryption scheme, as will
be seen in Section 2.3.

LRW-Mode LRW-mode randomizes the input and output of the block cipher
by XORing both with a tweak value, i.e. C = EK1(P ⊕T )⊕T , where T = K2⊗I
(⊗ being multiplication over GF(2n). Here, K1 is the key to the block cipher,
K2 is a key of the same size as the block size of the underlying block cipher and
I is the counter/index of the data to be encrypted. This mode of operation is
directly applicable to memory encryption when I is used as the address of the
block to be encrypted. However, for non-sequential data, a full GF(2n) multiplier
is required.



XEX-Mode Proposed by Rogaway in 2004 [7], XEX-mode enables the user to
have an easier computation of the tweak T (Figure 1), i.e. T = EK1(N) ⊗ 2I .
As a result, a full finite field multiplier is not required. Tweak computation gets
even easier when encrypting sequential data, where it becomes simple doubling
over GF(2n).

XTS-mode XTS-mode is standardized as IEEE standard 1617 for Crypto-
graphic Protection of Data on Block-Oriented Storage Devices in 2008 [6]. It
is basically the same as the XEX-mode. However, a second key, K2, is used in
tweak compution, i.e. T = EK2(N)⊗ 2I .

Fig. 1. Graphical illustration of the CTR and XEX-modes of operation

2.2 Previous Work

The previously proposed schemes for memory encryption mostly target every-
day PCs or even larger systems, and they use large amounts of resources. In [1],
CRYPTOPAGE extension of the HIDE infrastructure is proposed in addition
to the address bus protection, memory encryption and memory checking which
are combined in a way to provide a very low performance overhead. [2] presents
predecryption as a method of providing security with less overhead by using
well-known prefetching techniques to collect data from memory and perform de-
cryption before it is needed by the processor. Their results show no increase in
execution time despite an extra 128 cycle decryption latency per memory block
access. In [4, 3], a technique is applied to hide the latency overhead of mem-
ory decryption (which is encrypted in CTR-mode) by predicting the sequence
number and precomputing the OTP. This technique solves the latency problem
by using idle decryption engine cycles to speculatively predict and precompute
OTPs before the corresponding sequence number is loaded. Also, an adaptive
OTP prediction technique is presented to further improve OTP prediction and
precomputation mechanism. This scheme is not only able to predict encryption
pads associated with static and infrequently updated cache lines, but also the
frequently updated cache lines as well. [4] presents new hardware mechanisms for



memory integrity verification and encryption. The integrity verification mecha-
nism offers better performance when the checks are infrequent as in grid comput-
ing applications, and the encryption mechanism improves the performance in all
cases. [12] shows a hardware implementation of an execute-only memory (XOM)
form which allows instructions stored in memory to be executed but not manipu-
lated in another way. In this work, all data that leaves the machine is encrypted,
becuse the external memory is assumed to be insecure. However, for efficient
operation, hardware assist to provide fast symmetric ciphers is also required.
Some other works on memory-bus encryption [13, 14] mention hardware engines
for bus encryption. [13] describes an engine called “Parallelized Encryption and
Integrity Checking Engine (PE-ICE)”, which guarantees the confidentiality and
integrity of data exchanged between a system-on-chip (SoC) and its external
memory. This approach is based on an existing block-encryption algorithm, to
which the integrity checking capability is added. According to [13], it results in
low performance overhead. In [14], a comprehensive survey on existing techniques
for hardware engines which are used in bus encryption is presented.

Apart from these, there exists proprietary data bus encryption algorithms for
on-chip NVMs in use by several chip vendors. However, these are not publicly
accessible, and to the best of our knowledge, unlike us, none of the existing
schemes focus on the cipher block in order to come up with a lightweight and
cacheless solution.

2.3 Memory Encryption System Design Issues

So far, we have covered previously proposed modes of operation for memory
encryption in the literature. In this study, our main concern is encyption on
smart card NVMs. For this purpose, we choose two target modes, CTR and
XEX, basically due to the simplicity and low implementation cost of CTR-mode
(which make it weak in terms of security), and solid security proof and single
key requirement of XEX-mode. In the rest of this section, we shall investigate
design and implementation issues for both modes. Additionaly we shall introduce
a simple address scrambling scheme, which is a practical requirement for all
memory encryption systems.

In CTR-mode, the address α is encrypted using the encryption key, gener-
ating the OTP. Part or whole of OTP is XORed with the plaintext, P , or the
ciphertext, C, resulting in ciptertext or plaintext outputs, respectively. In cases
where OTP size is equal to or more than twice the plaintext/ciphertext block
size (i.e. using a 64-bit block cipher with 32-bit memory), it is possible to use
only part of OTP to encrypt/decrypt data.

This is not the case for XEX-mode, where a data pair (or even quartet) is
required in order to be able to decrypt only a single word within the memory.
Referring to the same 64-bit block cipher with 32-bit memory case, we see that
updating an address within memory requires first decryption of the old contents
of the target address together with the contents of its neigbouring address (which
together form a 64-bit block), then writing to both addresses after encryption.
This scheme aggravates the average latency. Furthermore, XEX requires both



encryption and decryption modules, or a combined module in order to reduce
area at the cost of further additional latency.

Clearly, counter mode presents a much simpler and compact solution, and a
lot less implementation problems to deal with. This, of course, comes at the cost
of lower security with respect to that of XEX-mode. This problem can be reme-
died with an address scrambling scheme, as we shall see in the next subsection.
Furthermore, we modify the CTR-mode in order to have a cryptographically
sound scheme, and introduce a write counter as explained later.

2.4 Address Scrambling

As mentioned before, address scrambling is an integral element of memory en-
cryption and should be handled with care. The most important aspect to address
scrambling is that the order of write addresses should not have any visible struc-
ture, or in other words, the order that the data is written to the memory should
look random to an adversary. In this work, a key dependent address scrambling is
proposed using a small scale block cipher. A small scale variant of the well known
and secure lightweight block cipher PRESENT[15] is used for this purpose.

In our sample system, 16-bit memory address is encrypted via 4 rounds of
the variant cipher, and the resultant ciphertext is used as the scrambled memory
address. Simulations show that the auto-correlation of the 4-round output of the
16-bit version of the block cipher PRESENT gives a satisfactory distribution
(see Figure 2). It is possible to store the regular 80-bit key and perform key
expansion for each of the 4-rounds. Alternatively, 16-bit keys for the 5 rounds
(which also sum up to 80-bits) can be stored directly. This way, not only the key
expansion logic can be strip off the design, but completely random keys without
any dependency in any round can be stored at no addition cost. Naturally,
address scrambling requires (4 + 1) × 16 = 80 bits of additional registers for
key storage. It is also possible to use part or whole of data encryption keys for
address scrambling. However, this requires careful investigation of the security
implications.

Fig. 2. Auto correlation of the input and the outputs of the small scale PRESENT for
rounds 1 to 4

2.5 Performance Issues

In this subsection, we discuss how the performances of CTR and XEX-modes
in terms of average latency per memory operation are affected by the cipher
latency and the page size (or packet size in case of CTR). First, let’s briefly
discuss issues with both modes.



Issues with CTR In CTR-mode, the memory is divided into blocks that are
identified by unique headers. For each block, a write counter is used. This scheme
works as follows: Target write address width, which is the input to the encryp-
tion, is for all practical purposes much smaller than the cipher block size. Instead
of using all zeros to pad it, a predefined address field (for example, most sig-
nificant 5-bits) is reserved as the write counter. At each update of the block
data (i.e. writing of the whole block), the address counter is incremented by
one, resulting in a completely new OTP for the same addresses with respect to
previous writes. In order to be able to decrypt a block, the header address is
decrypted first, starting with zero write counter value, and incrementing it by
one until the correct header value is read. The resultant write counter is used
for the decryption of the rest of the data within the same memory block. This
way, the uniqueness of the IV of each encryption is guaranteed. Although this
is an expensive solution in terms of latency, larger packet sizes make up for the
initial write counter value search delay.

Issues with XEX Memory encryption using XEX-mode of operation requires
the memory to be divided into pages, so that only one address encryption is
enough for each page. The rest of the page is encrypted using the same encrypted
page address information and the index of the word within the page (see Figure
1). However, XEX requires both encryption and decryption, which results in
doubling of the hardware area of the module, or doubling of the latency in case
a single module is used for both operations.

Fig. 3. Average latency of the proposed XEX scheme as a function of page size and
cipher latency

For the evaluation of the performance, we assume a generic block cipher which
can have up to 32 cycles latency to complete a single encryption/decryption
operation. For simplicity, memory word width is assumed to be equal to the
cipher block width. In our MATLAB model, we sweep the memory page size



(packet size for CTR) from 1 to 64 words, and the cipher latency from 1 to 32,
and then measure the average latency per memory operation (assuming equal
number of reads and writes). Our simulations clearly indicate that cipher latency
has a much higher impact than page and packet sizes over average latency (see
Figure 3). As seen in the figure, page size has a significant effect only for very
small values. As it goes above 10-15 words, its effect diminishes. However, the
effect of cipher latency on the average latency increases almost exponentially. It
should also be noted that the figure only shows the average latency for XEX-
mode. In CTR-mode, unless the write counter mode is implemented, the average
latency is equal to the cipher latency. Clearly, it is imperative that the cipher
latency should be kept at minimum.

2.6 System Performance and Block Cipher Selection

Simulation results show that the best way to decrease average latency in memory
encryption is to have a low latency cipher. This can be achieved in a number
of ways. One is to simply design a low-latency block cipher from scratch, but
this requires extensive analysis, expertise and time. Another approach would be
to take a well analyzed block cipher and use reduced versions of that cipher, in
terms of the number of rounds it requires to encrypt a message block. Although
this approach is relatively more plausible, the security analysis done on the full
cipher does not directly apply to the reduced round versions of it.

Another approach to achieve low-latency encryption/decryption is to imple-
ment a cascade block cipher, i.e. to execute more than one round in one cycle.
In the remainder of this work, we implement several rounds of a block cipher (r
rounds in one cycle) in order to come up with n

r rounds for the encryption pro-
cess. Inevitably, this approach brings a trade-off between the latency in terms of
the number of rounds an encryption requires and the logical delay of the circuit.

The overall path delay is naturally a function of the underlying cipher func-
tion used. In our system, we consider AES and PRESENT as both of these
block ciphers have gone through extensive cryptanalysis and remain unbroken.
AES-128 requires only 10 rounds per encryption/decryption, but it requires rela-
tively large area in hardware. On the other hand, although it requires 31-rounds,
PRESENT-80 is a much more compact cipher, and therefore one can push the
cascade implementation to the limit with relatively low area/dealay overhead.
Implementation aspects and simulation results for cascade AES and PRESENT
are explained in detail in Section 3.

3 Implementation Aspects and Simulations

In this study, we have decided to focus on two candidate systems, XEX and CTR,
for reasons explained before. While XEX mode offers higher security compared
to CTR mode, it also results in a more complex structure. Most important
of all, XEX requires use of both encryption and decryption cores, and there-
fore is not very suitable for lightweight purposes. In addition, it is not suitable



for low-latency requirements, because using 64 and/or 128-bit cipher with 32-
bit memories requires reading (and therefore decryption) of neighboring words
in order to form the 64/128-bit complete blocks for each write operation, and
noticeably increases the average latency. However, CTR system presents more
suitable results for both lightweight and low-latency purposes.

In order to give a comparison of both schemes, XEX and CTR-based systems
are designed separately. In the first step, variants of AES and PRESENT ciphers,
which are basic building blocks for both systems, are implemented in order to
obtain performance figures. Furthermore, a reduced round and reduced width
version of the PRESENT cipher is utilized as the memory address scrambler
block.

Following this step, an XEX-based system is presented together with perfor-
mance figures. The same is done for a CTR-based system as well. The before-
mentioned address scrambling block is used in both modules. Additionally, the
write counter scheme mentioned in 2 is also implemented as part of the CTR-
mode based system. In the following two subsections, design and implementa-
tion details of each cipher core for various cascade combinations are explained
in detail. Then, the proposed compact XEX and CTR-mode systems and their
performance figures for variants of AES and PRESENT are given in the last
subsection.

3.1 AES Round Function and Core Design

Advanced Encryption Standard (AES) [9] is a block cipher with a fixed block
size of 128 bits and a key size of 128, 192 or 256 bits. In this design, only 128-bit
key size (number of rounds Nr = 10) is used, as the main concern is to have a
lightweight core. AES encryption and decryption pseudocodes are given as:

# Encryption # Decryption

AddRoundKey(state, w[0,3]) AddRoundKey(state, w[4*Nr,4*(Nr+1)-1])

for round=1 step 1 to Nr-1 for round=Nr-1 step -1 to 1

SubBytes(state) InvShiftRows(state)

ShiftRows(state) InvSubBytes(state)

MixColumns(state) AddRoundKey(state, w[4*round,4*(round+1)-1])

AddRoundKey(state, w[4*round,4*(round+1)-1]) InvMixColumns(state)

end for end for

SubBytes(state) InvShiftRows(state)

ShiftRows(state) InvSubBytes(state)

AddRoundKey(state, w[4*Nr,4*(Nr+1)-1]) AddRoundKey(state, w[0,3])

Both encryption and decryption paths were designed and combined together
in one block with encryption/decryption select. In addition, reverse key genera-
tion, which is required for decryption phase, is handled within the module.

AES Encryption Path As shown in Figure 4, encryption path of AES is a
fully parallel implementation of the algorithm. It consists of state round and
key round blocks, which handle state operations and key expansion operations,



respectively. By connecting several of these paths, it is possible to implement
any cascade configuration AES. State round block has a combined ShiftRows
& MixColumns module and a SubBytes module. ShiftRows part is the direct
mapping of the ShiftRows algorithm and MixColumns is optimized for each
coefficient as in [16]. SubBytes module is implemented as a composite S-Box
[17]. Key expansion, shown in Figure 4, is performed on-the-fly in parallel to
state processing.

AES Decryption Path Decryption path of AES is designed in a structure
similar to encryption path. It is also a fully parallel implementation of the algo-
rithm optimized for area, as shown in Figure 4. It consists of state round and key
round blocks as in the previous path. However, here the state round block has a
combined InvShiftRows & InvMixColumns module to handle inverse cipher op-
erations. In addition, there is InvSubBytes module, whose S-Box has the same
composite inverter structure [17]. Reverse key expansion is performed on-the-fly
in parallel to state processing, similar to encryption path, which is shown in
Figure 4.

Fig. 4. AES encryption & decryption paths and forward key expansion

Combined AES Core In the combined AES core, encryption and decryption
state processing and key expansion paths are integrated as shown in Figure 5.
As the S-Box unit is the most area consuming unit of the core, the block is
implemented in a way that the composite inverter [17] is shared between two
paths in order to save area. The S-Box block is partitioned as a finite field
inverter and pre/post matrix multiplications (transformations), resulting in the
block in Figure 5. As a result of this approach, the area of this combined core is
smaller than the total of encryption and decryption paths.

Key round block implements the key expansion for both encryption and
decryption. Since both modes use the same S-Box, the only additional cost for
the combined key expansion is using extra multiplixers, with further area savings
(Figure 5).

Decryption Key Generation Initially, only the encryption key is stored in
the key register. However, reverse key expansion for decryption requires use of



Fig. 5. Combined AES block with key expansion and AES S-Box

the last state of key expansion for encryption as the initial “decryption” key. In
order to avoid using decryption key registers, a simple key generation scheme
is applied: A dummy key expansion for encryption is executed before switching
to decryption every time. As a result, the last state of the encryption key is
generated and then saved in the key register as the decryption key. When the core
needs to switch from decryption to encryption, similar operation is performed:
A dummy reverse key expansion is executed, which generates the last state of
the decryption key and writes it back on to the key register as the encryption
key. Status of the key (encryption/decryption key) is stored in a 1-bit register
as the key status, and control logic handles the dummy key expansions.

Area, Speed, Power Figures The combined AES core is implemented in
various cascade combinations (1, 2, 5, and 10) as shown in 6, which results
in varying latencies, gate counts, and operating frequencies (see Table 1). All
combinations are synthesized and the obtained performance figures are used in
the implementation of the memory encryption unit as guidelines.

Fig. 6. Cascade implementation of AES



Table 1. Performance of different AES cores

Processor Core Gate Count Max Speed Power
(GE) (MHz) (uW/MHz)

acore 1-cyc (enc/dec) 115415 15,7 590,3
acore 1-cyc (enc) 76950 21,0 361,4
acore 2-cyc (enc/dec) 62307 29,5 273,3
acore 2-cyc (enc) 39790 39,6 168,9
acore 5-cyc (enc/dec) 26865 71,7 100,5
acore 5-cyc (enc) 17785 99,4 63,6
acore 10-cyc (enc/dec) 15132 137,2 45,4
acore 10-cyc (enc) 10458 191,2 30,1

3.2 PRESENT Round Function and Core Design

PRESENT [10] is a lightweight block cipher which is an SP-network that consists
of 31 rounds. The block length is 64 bits and two key lengths of 80 and 128 bits
are supported. For targeted lightweight applications, 80-bit PRESENT provides
enough security with smaller area. PRESENT round function is defined as:

generateRoundKeys()

for round=1 31

addRoundKey(state,Ki)

sBoxLayer(state)

pLayer(state)

end for

addRoundKey(state,K32)

Encryption and decryption paths for PRESENT were designed and combined
together in a block. Reverse key generation required for decryption phase is
handled within the module, as in the AES design.

PRESENT Encryption Path PRESENT encryption path is designed to be
the fully parallel implementation of the algorithm, as shown in Figure 7. There
are two blocks: state round and key round blocks, for state operations and key
expansion operations, respectively. State round block has a Permutation and
an S-Box module. Key expansion, shown in Figure 7, is performed on-the-fly in
parallel with the state processing.
PRESENT Decryption Path Decryption path of PRESENT is designed
similar to encryption path as a fully parallel core optimized for area. It consists
of reverse state round and reverse key round blocks as in the previous path, as
shown in Figure 7. The reverse state round block has an inverse permutation
module as well as inverse S-Boxes. The key unit is also adapted for on-the-fly
reverse key expansion, which is shown in Figure 7.

Combined PRESENT Core The combined PRESENT core (Figure 8) puts
both encryption and decryption paths together. Unlike the AES S-Box, the
PRESENT S-Box can not be formulated in a finite field. Therefore, both regular



Fig. 7. PRESENT encryption & decryption paths and forward key expansion

Fig. 8. Combined PRESENT block with key expansion



and inverse S-Boxes are used in the combined core, and selected via multiplex-
ers. The direct result of this fact is the almost doubling of the gate count. The
same approach is also applied to the key expansion unit, which has to use both
regular and inverse S-Boxes, as well as left and right rotations in order to handle
both encryption and decryption. Direct result is again doubled gate count.

Decryption Key Generation The decryption key generation scheme of the
AES core is also used in the PRESENT core. That is, in switching from en-
cryption to decryption and from decryption to encryption, dummy forward and
reverse key expansions are executed in order to generate and store the decryption
and encryption keys, respectively.

Area, Speed, Power Figures As in the case of AES, various cascade versions
(1, 2, 4, 8, 16, and 32) of PRESENT are implemented as shown in Figure 9,
and the resulting performance figures (Table 2) are later used as guideline in the
design and implementation of memory encryption units.

Fig. 9. Cascade implementation of PRESENT

Table 2. Performance of different PRESENT cores

Processor Core Gate Count Max Speed Power
(GE) (MHz) (µW/MHz)

pcore 1-cyc (enc/dec) 45700 32,4 172,9
pcore 1-cyc (enc) 20088 48,8 113,2
pcore 2-cyc (enc/dec) 25012 62,3 85,6
pcore 2-cyc (enc) 11863 90,4 47,1
pcore 4-cyc (enc/dec) 13273 122,4 42
pcore 4-cyc (enc) 6744 191,2 22,4
pcore 8-cyc (enc/dec) 7417 228,3 20,1
pcore 8-cyc (enc) 4208 350,9 11,9
pcore 16-cyc (enc/dec) 4547 390,6 10,1
pcore 16-cyc (enc) 2937 429,2 6,4
pcore 32-cyc (enc/dec) 3116 574,7 7,1
pcore 32-cyc (enc) 1839 598,8 3,5



3.3 Memory Encryption Module Design

The I/O signals for the memory encryption module are shown in Figure 10. From
the processor point of view, the memory encryption module acts like an ordinary
single-port memory. However, there is one important difference: The chip enable
signal, cen, also acts as a memory access request signal. Once it is asserted, the
control module inside the memory encryption unit starts the initialization. In
the case of XEX-mode, this corresponds to the encryption of the page address.

Fig. 10. Memory encryption unit I/O and timing

The situation is a bit different for the CTR-mode. During regular memory
accesses, the counter mode requires no initialization, for example when it accesses
the program memory code (i.e. only reads data). However, in case of repeatedly
written data, the CTR-mode memory encryption unit can be operated in a
special mode, where each write to a data packet is counted, and appended to
the start of memory address (write counter). This scheme allows use of the same
key over and over again until the predefined maximum counter value is reached.
However, one has to know the header for every packet. Additionally,, and as the
number of newly written data increases, the average memory access time also
increases. Therefore, a maximum write counter value has to be determined as
part of system design.

Upon completion of the initialization, the memory unit is ready to operate in
sequential memory access mode. It asserts the acknowledge signal, ack, asking
the processor side to send the next query. During the next query, the request
(chip enable) signal stays asserted, and only de-asserted during page and/or
packet switching (depending on the packet data). The timing for this operation
is shown in Figure 10.

During each memory access, the address is scrambled using a reduced width
and reduced round of the PRESENT cipher, which is a combined block with
no clock cycle losses. From the memory (NVM) point of view, the memory
encryption unit acts like an ordinary processor. The memory encryption unit
acts as a bridge between the smart card processor and the memory. The most
important parameter of this translation process is the average cipher latency. In
an ideal case, the memory access latency is a single clock cycle. However, due to
the initialization latencies, the average latency increases above the ideal value of
single cycle. As shown before, the cipher module latency is the most important



parameter in the whole process. Therefore it should be kept as low as possible,
ideally at zero additional delay. As will be shown in the following subsections,
even in this case, the initialization delay can only be lowered down to 1 cycle.

Fig. 11. XEX based memory encryption unit

3.4 XEX-Mode

Figure 11 shows the XEX-mode based memory encryption module. It uses a sin-
gle cipher core for both page address encryption and data encryption/decryption
operations. In page encryption, the cipher core operates in encryption mode, and
stores the encrypted page address inside the page address register. It is multi-
plied with the word address to obtain the tweak value, which is added to both
pre and post encrypted/decrypted data. Data encryption (memory write) uses
only the instantaneous value of the tweak, whereas decryption (memory read)
uses also the delayed value of the tweak. Tweak and page address registers have
the same width as the cipher block size.

The XEX-mode based memory encryption unit is implemented using differ-
ent versions of both AES and PRESENT ciphers. In the implementation, both
ciphers are operated in single cycle mode with respect to the memory access
clock. Therefore, for different versions of ciphers (except for the fully combina-
tional version), a second cipher clock is required, which should be a multiple of
the memory clock with respect to the number of combinational rounds inside
the cipher core.

3.5 CTR-Mode

In Figure 12, the CTR-mode based memory encryption module is shown. Its
structure is much less complex compared to the XEX-based system. Further-
more, it requires an only-encryption cipher core, which reduces the overall gate
count and combinational path delay dramatically. It also does not require the
encryption/decryption input data widths to be equal to the cipher width. There-
fore, it can be run truly in single cycle mode, resulting in zero additional latency.

The CTR-mode memory encryption module is also implemented using vari-
ous versions of AES and PRESENT ciphers. As in the case of XEX, it is possible
to run the cipher module using a higher rate clock in order to complete the overall
encryption process within the same cycle with respect to memory clock.



Table 3 shows the results for the best performing combinations of both mod-
ules. As seen in the table, an 8-cycle version of PRESENT, which runs at four
times the memory clock rate, gives almost the same throughput result as the 1-
cycle version, while occupying only one forth of the area. The result is a security
proven ultralight memory encryption scheme implemented in less than 6K gates
at zero additional latency.

Fig. 12. CTR based memory encryption unit

Table 3. Performance of various XEX and CTR cores

Processor Core Gate Count Max Speed

XEX with AES 1-cyc 121,7KGE 15,7MHz
XEX with AES 5-cyc 33,2KGE 14,4MHz
XEX with PRESENT 1-cyc 51,8KGE 32,4MHz
XEX with PRESENT 8-cyc 11,4KGE 28,5MHz
CTR with AES 1-cyc 75,5KGE 21,0MHz
CTR with AES 5-cyc 19,9KGE 19,8MHz
CTR with PRESENT 1-cyc 21,6KGE 48,8MHz
CTR with PRESENT 8-cyc 5,9KGE 43,8MHz

4 Conclusions

In this study, we have investigated the existing memory encryption schemes and
their suitability for smart card memory encryption. XEX and CTR-modes were
selected as suitable schemes for their proven security and relatively simple struc-
ture. Two memory encryption units were designed for each of these schemes, and
they were implemented for different versions of AES and PRESENT. PRESENT
seems to be an ideal choice for memory encryption when used in CTR-mode.
It is possible to implement a PRESENT-based CTR-mode memory encryption
module in less than 6K gates with zero additional latency.

The proposed architecture is not only suitable for today’s applications, but
also capable of fulfilling requirements set forth in the 2023 vision of Eurosmart[8].
We furthermore enhanced our memory encryption module via a block-cipher
based address scrambling scheme, where we implemented a small scale variant of
PRESENT. For commercial applications, which require even more security, it is
also possible to replace the standard PRESENT S-Boxes with secret proprietary
S-Boxes to achieve higher levels of security.
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