
Memory-Efficient Fault Countermeasures

Marc Joye and Mohamed Karroumi

Technicolor, Security & Content Protection Labs
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France

{marc.joye,mohamed.karroumi}@technicolor.com

Abstract. An efficient countermeasure against fault attacks for a right-
to-left binary exponentiation algorithm was proposed by Boscher, Naciri
and Prouff (WISTP, 2007). This countermeasure was later generalized by
Baek (Int. J. Inf. Sec., 2010) to the 2w-ary right-to-left algorithms for any
w > 1 (the case w = 1 corresponding to the method of Boscher, Naciri and
Prouff). In this paper, we modify theses algorithms, devise new coherence
relations for error detection, and reduce the memory requirements with-
out sacrificing the performance or the security. In particular, a full register
(in working memory) can be gained compared to previous implementa-
tions. As a consequence, the implementations described in this paper are
particularly well suited to applications for which memory is a premium.
This includes smart-card implementations of exponentiation-based cryp-
tosystems.

Keywords: Fault attacks, countermeasures, exponentiation, memory-
constrained devices, smart cards.

1 Introduction

Implementation of exponentiation-based cryptosystems needs to be resistant
against side-channel attacks. Simple Power Analysis (SPA) or Differential Power
Analysis (DPA) target unprotected exponentiation algorithms like the classical
square-and-multiply technique [20]. It has been shown that a private key used
in RSA can be retrieved by observing the microprocessor’s power consump-
tion [21]. A possible countermeasure against SPA consists in always computing
a squaring operation followed by a (sometimes dummy) multiplication, regard-
less the value of the exponent bit. The resulting algorithm is known as the
“square-and-multiply always” algorithm [9]. Protection against DPA is usually
achieved thanks to randomization techniques.

Fault attacks (FA) constitute another threat for public-key algorithms such
as RSA [5]. Different methods have been proposed to protect RSA against fault
analysis. There exist basically three main types of countermeasures.

The first type relies on a modification of the RSA modulus. This approach
was initiated by Shamir [23] and gave rise to several follow-up papers, e.g. [1,
4, 18, 24]. When these methods are applied to RSA with Chinese remaindering,
the main difficulty resides in the protection of the re-combination.

The second type of countermeasures uses the corresponding public oper-
ation to check the result before outputting it; for example, one can check the
validity of an RSA signature using public exponent e. This however assumes
the availability of e and is specific to a given cryptosystem; see [13] for a recent
survey on these techniques.

The last type of countermeasures exploits coherence properties between
internal variables during the exponentiation algorithm. Such algorithms are
sometimes referred to as self-secure exponentiation methods. We focus our at-
tention on this third type of countermeasures as they tend to be more generic.

Self-secure secure methods In 2005, Giraud proposed an exponentiation algorithm,
which is secure against SPA and FA [11]. His key idea was to perform a coherence
check at the end of the Montgomery powering ladder. Indeed, when evaluating
xd, both values z := xd−1 and y := xd are available at the end of the computation.
The check consists then in verifying that z ·x = y before outputting the result. We
note that this technique nicely combines with Chinese remaindering for RSA.

Boscher, Naciri and Prouff subsequently proposed another SPA-FA resistant
exponentiation algorithm [7]. Their method built on an SPA-resistant version
of the right-to-left binary algorithm1 for evaluating xd, that uses three registers.
The authors observed that in each iteration of the main loop, the product of
two registers is equal to the third one multiplied by the input value x. Their
countermeasure consists in using this relation to derive a coherence check in the
last iteration. Recently, Baek showed how the coherence check can be adapted
to the Yao’s right-to-left m-ary algorithm [2].

Yet another self-secure exponentiation method was proposed by Rivain [22].
The underlying idea is different. It relies on a double exponentiation, that is,
an algorithm taking on input a pair of exponents (a, b) and returning (xa, xb).
Applied to RSA, the pair of exponents is (d, φ(N) − d) and the coherence check
verifies that xd

· xφ(N)−d = 1 (modulo N). This method has the advantage of re-
ducing the number of multiplications: on average, 1.65 modular multiplications
per bit are required compared to the 2 modular multiplications for Giraud’s
or Boscher et al.’s binary methods. On the down side, the algorithm requires
knowledge of φ(N) (or a multiple thereof like ed − 1), which is not necessarily
available.

Contributions of the paper This paper deals with countermeasures against SPA
and FA for right-to-left exponentiation algorithms. A drawback of Boscher et
al.’s and Baek’s proposals consists in requiring, on top of the internal registers
for the computation of xd, an additional register for storing the value of the input
x, which is needed for the coherence check at the end of the algorithm. The main
contribution of this paper is an optimized version of the protected right-to-left
m-ary exponentiation algorithm. The optimizations consist of a rearrangement
of Baek’s algorithm by modifying the initialization steps and restructuring the

1 This scan direction may be preferred as it usually eases the implementation (note that
the Montgomery ladder processes the exponent bits from the left to the right).

inner operations so that a minimal number of registers in memory is used.
Plugging m = 2 into our general algorithm yields a right-to-left binary method
with one register less than Boscher et al.’s method. As a result, we obtain a right-
to-left binary algorithm equally efficient (speed- and memory-wise) as Giraud’s
left-to-right algorithm. In the higher-radix case also (i.e., for m > 2), we also
gain one full memory register over the best known right-to-left methods. Finally,
as a side result, we offer a detailed memory analysis of Baek’s algorithm and a
slight variant thereof.

While the main application we had in mind was RSA (in standard and CRT
modes), our implementations readily extend to any (finite) abelian group G.
For RSA, one has G = (Z/NZ)× or (Z/pZ)× × (Z/qZ)×. We give a fully generic
treatment and consider the general problem of computing y = xd in G. We
assume that exponent d is given in a standard format. We do not make a priori
assumptions on G so that the presented algorithms can be used in various
settings, including elliptic curve cryptosystems — though we present certain
shortcuts when for example inverses are easy to compute inG. In particular, we
do not assume that the order ofG is known and available to the implementation.
We note that memory issues are of paramount importance for devices with
limited resources as the amount of working memory generally constitutes the
limiting factor in the development of efficient implementations.

Outline The rest of this paper is organized as follows. In the next section, we
review Baek’s 2w-ary exponentiation algorithm, generalizing a binary exponen-
tiation algorithm due to Boscher, Naciri and Prouff. In Section 3, we present
a slightly modified variant thereof. Section 4 is the core of the paper. We de-
tail how a full register can be saved, reducing the memory requirements to
their minimum: no additional memory is needed for fault detection. Finally, we
conclude in Section 5.

2 Exponentiation and Fault Countermeasures

2.1 Yao’s m-ary exponentiation

Consider the m-ary expansion of some positive integer d, d =
∑`−1

i=0 di mi where
0 6 di 6 m − 1 and d`−1 , 0, and an element x in a (multiplicatively written)
group G. The goal is to efficiently compute y = xd, that is, x · x · · · x (d times),
for some (secret) exponent d. When m = 2, the classical right-to-left binary
exponentiation method proceeds from the relation xd =

∏
06i6`−1

di=1
x2i

.

This was extended to a general radix m > 2 by Yao [25]. The evaluation of
y = xd is then carried out from the relation

y = x
∑`−1

i=0 di mi
=

m−1∏
j=1


∏

06i6`−1
di= j

xmi


j

. (1)

In more detail, Yao’s algorithm makes use of an accumulator A and of (m − 1)
temporary variables R[j] (1 6 j 6 m − 1). Accumulator A is used to contain the
successive mth powers of the input element x. Specifically, at the beginning of
step i, A contains the value xmi

and is then updated as A ← Am to contain the
value xmi+1

for the next step. Temporary variables R[j] are initialized to 1G (the
neutral element in G). At step i, provided that di , 0, the temporary variable
corresponding to digit di (i.e., R[di]) is updated as R[di] ← R[di] · A; the other
temporary variables remaining unchanged. At the end of the computation,
all the temporary variables R[di] are aggregated to get the final result as y =∏m−1

j=1 (R[j]) j.
The original version of Yao’s algorithm, as previously described, is prone

to SPA-type attacks since an attacker may distinguish zero digits from nonzero
ones. Indeed, when at step i, digit di is zero, there is no update of a temporary
variable, and thus no multiplication occurs. An easy way to make the algorithm
regular is to insert a dummy multiplication when di = 0 so that the digit 0 is
treated as the other digits; see e.g. [9]. This is achieved by using an additional
temporary variable, R[0], which is updated as R[0]← R[0] · A when di = 0. The
resulting implementation is depicted in Alg. 1.

Algorithm 1 Yao’s algorithm (with dummy multiplication)
Input: x ∈ G and d = (d`−1, . . . , d0)m ∈N
Output: y = xd

/* Initialization */

1: for i = 0 to m − 1 do R[i]← 1G
2: A← x
/* Main loop */

3: for i = 0 to ` − 1 do
4: R[di]← R[di] · A
5: A← Am

6: end for

/* Aggregation */

7: A← R[m − 1]
8: for i = m − 2 down to 1 do
9: R[i]← R[i] · R[i + 1]

10: A← A · R[i]
11: end for

12: return A

Although protected against SPA-type attacks, the algorithm becomes now
vulnerable to safe-error attacks [26]. By timely inducing a fault during the multi-
plication at step i, an attacker may guess whether the operation is dummy or not
(and thus whether the corresponding digit is zero or not) from the output value:
a correct output value indicates that digit di is 0. Again, countermeasures exist.

For example, exponent d can be recoded prior entering Yao’s exponentiation al-
gorithm in such a way that all digits are nonzero. This is the approach followed
in [14] where a regular recoding algorithm with digits in the set {1, . . . ,m} is
presented.

2.2 Protecting against faults

This section addresses the more general question of protecting against fault
attacks (which encompasses protecting against safe-error attacks).

Baek, generalizing an earlier method due to Boscher, Naciri and Prouff [7],
showed in a recent paper [2] how Algorithm 1 can be adapted so as to resist
fault attacks. Defining

L j =
∏

06i6`−1
di= j

xmi
(for 0 6 j 6 m − 1) ,

Equation (1) can be rewritten as y =
∏m−1

j=1 (L j) j. Hence, defining

T =

m−2∏
j=0

(L j)m−1− j ,

it follows that

y · T =

m−1∏
j=0

(L j) j
·

m−1∏
j=0

(L j)m−1− j =

m−1∏
j=0

L j


m−1

=

 ∏
06i6`−1

xmi


m−1

=
(
xm−1

) ∑
06i6`−1

mi

= xm`
−1

and therefore
y · T · x = xm`

. (2)

This relation is the basic idea behind the protection against faults. It serves as
a coherence check between the different values involved in the computation. If
the content of one of the temporary variables or of the accumulator is corrupted
during the computation, then the coherence check will very likely fail and
therefore the faulty computation can be detected and notified.

Binary case This case corresponds to the method of Boscher, Naciri and Prouff.
When m = 2, the value of T simplifies to T = L0. Further, noting that

d =

`−1∑
i=0

di 2i =
∑

06i6`−1
di=1

2i

the binary case (i.e., m = 2) also implies y = L1. As a result, the coherence test
(Eq. (2)) becomes

L0 · L1 · x
?
= x2` . (3)

Algorithmically, this translates into:

Algorithm 2 Binary SPA-FA resistant algorithm [7]
Input: x ∈ G and d = (d`−1, . . . , d0)2 ∈N
Output: y = xd

/* Initialization */

1: R[0]← 1G; R[1]← 1G
2: A← x
/* Main loop */

3: for i = 0 to ` − 1 do
4: R[di]← R[di] · A
5: A← A2

6: end for

/* Error detection */

7: R[0]← R[0] · R[1]
8: if (R[0] · x , A) then return ‘error’

9: return R[1]

Remark 1. As presented, the previous implementation is not protected against
second-order fault attacks. If an attacker induces a first fault and next a second
fault during the error detection (at Line 8 in Alg. 2), then a faulty result may
be returned and possibly exploited to infer information on secret value d. Such
attacks were reported in [17]. An efficient countermeasure relying on the so-
called lock-principle was later described in [10]. It is assumed that the error
detection is done in this way or in an equivalent way so as to make it effective
against second-order attacks.

Higher-radix case For the case m = 2w, Baek suggests to evaluate, just after the
main loop in Alg. 1, the quantities y←

∏m−1
j=1 R[j] j and T←

∏m−2
j=0 R[j]m−1− j, and

then to check whether T · y · x = A (note that A contains xm`
output of the main

loop). The update of accumulator A, A← Am with m = 2w, is done via w repeated
squarings. The evaluations of y and T are done as the aggregation in Alg. 1, the
total cost of which amounts to 2 × 2(m − 2) multiplications. Therefore, as the
coherence check requires two multiplications, if M and S respectively represent
the cost of a multiplication and a squaring in G, Baek’s original algorithm
requires altogether (` + 4(2w

− 2) + 2)M + `wS, where ` = d|d|2/we and |d|2 is the
bit-length of d.

3 A Variant of Baek’s Algorithm

This section offers a detailed memory analysis for Baek’s algorithm. We show
how rearranging the operations allows a better management of the working
memory. As a bonus, the total cost is also slightly reduced.

Let m = 2w for some w > 1. In a nutshell, using the notation of § 2.2, Baek’s
method proceeds in the following way:

1. Compute y = xd using Algorithm 1;
2. Compute T and next the product S := y · T;

3. Check whether S · x ?
= xm`

;
4. If so, return y.

The computation of y is evaluated in the aggregation step as y =
∏m−1

i=1 R[i]i;
cf. Lines 7–11 in Alg. 1. First, we note the temporary variable R[m− 1] can serve
as the accumulator for the aggregation. This allows us to save A, which contains
the value of xm`

output of the main loop — the value of xm`
being needed for the

coherence check, S · x ?
= xm`

. More explicitly, we rewrite the aggregation step as:

/* Aggregation */

for i = m − 2 down to 1 do
R[i]← R[i] · R[i + 1]
R[m − 1]← R[m − 1] · R[i]

end for

After the aggregation, the temporary variable R[m−1] contains the value of y. A
close inspection shows also that R[1] contains

∏m−1
i=1 Li. Further, since as shown

in § 2.2

S = y · T =

m−1∏
i=0

Li


m−1

and since R[0] contains L0, the value of S can be obtained as (R[0] · R[1])m−1.
Therefore, instead of computing the quantity T =

∏m−2
j=0 R[j]m−1− j as done in [2],

we suggest to directly compute the product y·T by raising R[0]·R[1] to the power
m − 1. This avoid the use of any additional temporary variables. Furthermore,
as in the binary representation of m− 1 = 2w

− 1, the bits are all equal to one, the
powering to m−1 can be carried out through w−1 squarings and multiplications.
This trades 2(2w

− 2)M in Baek’s original algorithm against (w − 1)S + (w − 1)M.
The complete algorithm is depicted in Alg. 3.

The total cost of our variant drops to (` + 2(2w
− 2) + w + 1)M + (`w + w − 1)S.

It requires 2w + 1 registers (i.e., 2w temporary variables R[j], 0 6 j 6 2w
− 1, and

accumulator A) as well as input value x for the coherence check.

Remark 2. When m = 2w, the powering to m− 1 for the computation of S = Rm−1

where R :=
∏

06 j6m−1 L j could be optimized. In [8], Brauer explains how to obtain

Algorithm 3 Modified Baek’s algorithm
Input: x ∈ G and d = (d`−1, . . . , d0)2w ∈N, w > 1
Output: y = xd

/* Initialization */

1: for i = 0 to 2w
− 1 do R[i]← 1G

2: A← x
/* Main loop */

3: for i = 0 to ` − 1 do
4: R[di]← R[di] · A
5: A← A2w

6: end for

/* Aggregation */

7: for i = 2w
− 2 down to 1 do

8: R[i]← R[i] · R[i + 1]
9: R[2w

− 1]← R[2w
− 1] · R[i]

10: end for

/* Error detection */

11: R[0]← R[0] · R[1]; R[1]← R[0]
12: for i = 1 to w − 1 do
13: R[1]← R[1]2

14: R[0]← R[0] · R[1]
15: end for
16: if (R[0] · x , A) then return ‘error’

17: return R[2w
− 1]

a short addition chain for 2w
− 1 from an addition chain for w. However, as the

optimal value for w is rather small for typical cryptographic sizes (i.e., w 6 6
as shown in Table 1), we do not discuss this issue further and stick to a simple
binary algorithm for the computation of S. Alternatively, when the computation
of an inverse in G is not expensive, R2w

−1 can be evaluated as R2w
· R−1.

The next table compares the proposed variant for various sizes of d and w.

Table 1. Number of multiplications for various sizes of d and w.

1024 bits 1536 bits 2048 bits
S/M=1 S/M=.8 S/M=1 S/M=.8 S/M=1 S/M=.8

Boscher et al. [7] w = 1 2050 1845 3074 2767 4098 3688
Baek [2] w = 2 1546 1341 2314 2007 3082 2672

w = 3 1391 1187 2074 1767 2757 2347
w = 4 1338 1133 1978 1671 2618 2208
w = 5 1351 1146 1965 1658 2580 2170
w = 6 1445 1230 2042 1735 2639 2230

Our variant w = 2 1544 1339 2312 2005 3080 2670
w = 3 1383 1178 2066 1758 2749 2339
w = 4 1316 1111 1956 1648 2596 2186
w = 5 1299 1093 1913 1605 2528 2117
w = 6 1331 1125 1928 1620 2525 2114

4 Memory-Efficient Methods

We have seen in the previous section that a memory-optimized variant of Baek’s
algorithm requires m+1 registers together with the input value x for the coherence
check:

S · x ?
= xm`

where S = y · T

(see Eq. (2)). Likewise, in the binary case, Boscher et al.’s algorithm requires
2 + 1 = 3 registers together with input value x.

When the computation of an inverse is not expensive inG, a classical trick to
avoid the storage of the complete value of x consists in computing a κ-bit digest
thereof, say h = H(x) for some function H : G → {0, 1}κ, at the beginning of the
computation, and to replace the coherence check with

h ?
= H

(
S−1
· xm`

)
. (4)

Such a method is mostly useful when κ � |x|2. Note also that κ cannot be
chosen too small, otherwise the coherence check (Eq. (4)) could be satisfied with
a non-negligible probability, even in the presence of faults.

In this section, we consider generic countermeasures in the sense that they
work equally well in any group G (even of unknown order). In particular, they
do not require that computing inverses is fast. Moreover, they do not need
further memory requirements: m + 1 registers will suffice to get a protected im-
plementation. Finally, they do not degrade the security level: the error detection
probability remains unchanged compared to Baek’s algorithm or to Boscher et
al.’s algorithm in the binary case.

4.1 SPA-FA resistant right-to-left m-ary exponentiation

The main observation in Baek’s algorithm (or in the binary version) for the com-
putation of y = xd is that the product of the temporary variables is independent
of exponent d.

In Algorithm 3, accumulator A is initialized to x and the temporary variables,
R[j], to 1G. In each step of the main loop, exactly one temporary variable is
updated as R[di] ← R[di] · A and the accumulator is updated as A ← Am (with
m = 2w). To avoid confusion, we let R[j](i) (resp. A(i)) denote the content of the
temporary variable R[j] (resp. accumulator A) before entering step i. We have:

R[j](i+1) = R[j](i)
· A(i) for j = di

R[j](i+1) = R[j](i) for j , di

A(i+1) =
(
A(i)

)m

and consequently the product of all the temporary variables satisfies

R(i+1) :=
m−1∏
j=0

R[j](i+1) =

m−1∏
j=0

R[j](i)

 · A(i)

=

m−1∏
j=0

R[j](i−1)

 · A(i−1)
· A(i)

...

=

m−1∏
j=0

R[j](0)

 · A(0)
· · ·A(i−1)

· A(i)

=

m−1∏
j=0

R[j](0)

 · i∏
k=0

A(k) =

m−1∏
j=0

R[j](0)

 · (A(0)
)1+m+m2+···+mi

=

m−1∏
j=0

R[j](0)

 · (A(0)
) mi+1

−1
m−1 .

We observe that if the accumulator A is initialized to xα and the temporary
variables are initialized so that their product is equal to xβ (i.e., if A(0) = xα and∏

06 j6m−1 R[j](0) = xβ) then the previous relation becomes

R(i+1) = xβ+
α(mi+1

−1)
m−1 . (5)

Since Equation (5) is independent of d, our idea consists in using it to build
a coherence check for appropriately chosen values for α , 0 and β. There are
several options.

Basic case: α = 1 and β = 0 In this case, we get R(i+1) = x
mi+1

−1
m−1 and in particular

R := R(`) = x
m`−1
m−1 .

This corresponds to the countermeasures proposed by Boscher et al. for the
binary exponentiation and by Baek for higher radices. Indeed, setting S = Rm−1

leads to
S · x = Rm−1

· x = xm`
−1
· x = xm`

.

Fractional case: α = 1 and β = 1
m−1 Plugging these values in Eq. (5) yields

R(i+1) = x
mi+1
m−1 and thus

R := R(`) = x
m`

m−1 .

In this case, it turns out that the numerator in the power of x is m` (and not m`
−1

as in the basic case). Therefore, a simple coherence check is to compare S := Rm−1

with xm`
. The main advantage is that the value of x is no longer involved.

On the minus side, since β = 1
m−1 is not an integer, the initialization of the

temporary variables requires the computation of roots in G. In general, this is
a rather expensive operation but there exist cases where it is not. Examples
include point halving (i.e., square roots in G) in odd-order subgroups of binary
elliptic curves [19] or cube roots in [the multiplicative group of] a finite field of
characteristic three [3].

Generic case:α = β(m−1) This setting generalizes the fractional case. However,
to avoid the computation of roots inG, we restrict α and β to integer values. We
have:

R := R(`) = xβm`
=⇒ Rm−1 = xαm`

.

It is worth noting here that at the end of the main loop, A contains the value of
xαm`

. The relation Rm−1 = xαm`
therefore provides a coherence check to protect

against faults. The main advantage over the previous methods is that Rm−1

appears as the exact value present in the accumulator and so there is no need to
keep the value of x.

It remains now to show how to compute y = xd when A is initialized to
xα = xβ(m−1) and

∏
06 j6m−1 R[j] is initialized to xβ. We write:

d = α · q + r with q =
⌊ d
α

⌋
and r = d mod α . (6)

Hence, if
∑`′−1

i=0 qi mi denotes the m-ary expansion of q then Yao’s method yields

xd−r = (xα)
∑`′−1

i=0 qi mi
=

m−1∏
j=1

(L j) j where L j =
∏

06i6`′−1
qi= j

Xmi
and X = xα . (7)

Remember from Section 3 that the temporary variable R[0] is not used in the
computation of y. Now, assume in Algorithm 3 that temporary variables R[j]
are initialized to xe j for some integer e j, for 0 6 j 6 m − 1, so that

m−1∑
j=1

j · e j = r and
m−1∑
j=0

e j = β . (8)

In that case, it can be easily verified that if A is initialized to xβ(m−1), then Algo-
rithm 3 (with the error detection adapted as above explained) will return the
value of y = xd (or an error notification). Indeed, from Eq. (7), we get

y = xr
·

m−1∏
j=1

(L j) j =

m−1∏
j=1

(xe j · L j) j

(and Rm−1 = Xm`′

).

Several strategies are possible in order to fulfill Eq. (8). The simplest one is
to select β = 1 (and thus α = m−1). Since 0 6 r < α (= m−1), a solution to Eq. (8)
is then given by er = 1

e j = 0 for 0 6 j 6 m − 1 and j , r
.

We detail below the corresponding algorithm for m > 2. The case m = 2 is
presented in § 4.3.

Algorithm 4 Memory-efficient SPA-FA resistant algorithm
Input: x ∈ G and d ∈N
Output: y = xd

/* Initialization */

1: A← xm−1

2: for i = 0 to m − 1 do R[i]← 1G
3: R[d mod (m − 1)]← x
4: d← bd/(m − 1)c = (d′`′−1, . . . , d

′

0)m

/* Main loop */

5: for i = 0 to `′ − 1 do
6: R[d′i]← R[d′i] · A
7: A← Am

8: end for

/* Aggregation */

9: for i = m − 2 down to 1 do
10: R[i]← R[i] · R[i + 1]
11: R[m − 1]← R[m − 1] · R[i]
12: end for

/* Error detection */

13: R[0]← R[0] · R[1];
14: R[0]← R[0]m−1

15: if (R[0] , A) then return ‘error’

16: return R[m − 1]

Remark 3. For the sake of clarity and in order not to focus to a specific imple-
mentation, the error detection in Alg. 4 is written with an if-branching. This may
be subject to second-order fault attacks. In practice, if second-order attacks are a
concern, precautions need to be taken and the if-branching should be rewritten
with appropriate measures; cf. Remark 1.

4.2 Dealing with the neutral element 1G

In certain cases, multiplication by neutral element 1G may be distinguished,
which is turn, may leak information on the secret exponent d.

Small order elements To avoid this, the temporary variables R[j] can be multiplied
by an element of small order in G in the initialization step. As an illustration,
suppose that they are all multiplied by some element h of order 2. More specif-
ically, suppose that the initialization in Alg. 4 (where α = m − 1 and β = 1)
is

/* Initialization */

A← xm−1

for i = 0 to m − 1 do R[i]← h
R[d mod (m − 1)]← h · x
d← bd/(m − 1)c = (d′`′−1, . . . , d

′

0)m

for some h ∈ G such that h2 = 1G. Then in each iteration, it is easily seen that the
product of all R[j]’s will contain a surplus factor hm, or from Eq. (5) that

R(i+1) :=
m−1∏
j=0

R[j](i+1) = hm
· xβ+

α(mi+1
−1)

m−1 = hm
· xmi+1

=⇒ R := R(`) = hm
· xm`

.

When m is even (which is always the case for m = 2w) then hm = 1 and so the

coherence check is unchanged: Rm−1 ?
= xαm`

with α = (m − 1). Furthermore, the
computation of y is also unchanged when m = 2w and w > 1. Indeed, letting
r = d mod (m − 1), we have from Eq. (7):

m−1∏
j=1

(
R[j](`)

) j
=


∏

16 j6m−1
j,r

h j

 · (h · x)r
· xd−r = h

∑m−1
j=1 j
· xd = h

m(m−1)
2 · y = y

since m(m − 1)/2 is even when m = 2w and w > 1. In the binary case (i.e., when
w = 1), we have m(m − 1)/2 = 1 and consequently the above product needs
to be multiplied by h to get the correct output; see also § 4.3 for alternative
implementations. Note that for the RSA cryptosystem with a modulus N, we
can take h = N−1 which is of order 2 since (N−1)2 = 1 (mod N). The technique
can also be adapted to other elements of small order.

Invertible elements Prime-order elliptic curves obviously do not possess ele-
ments of small order. We present below a solution for groups G wherein the
computation of inverses is fast (as it is the case for elliptic curves).

A method used in [13] consists in initializing all the registers to x. This
initialization method does not work as is and has to be adapted here. In order
to verify Eq. (5), R[j] should be initialized to x1+e j so that

m−1∑
j=1

j · e j = r′ and
m−1∑
j=0

(1 + e j) = 1 .

Again there are several possible solutions to the previous relation. We may for

example define:

– if r′ = 0 (e0, em−1) = (2 −m, −2)
e j = 0 for 1 6 j 6 m − 2

;

– if r′ , 0 
(e0, em−1) = (1 −m, −2)
e j = 0 for 1 6 j 6 m − 2 and j , r′

er′ = 1
.

R[j] (for 1 6 j 6 m−2) are then initialized to x and R[m−1] is set to x1+em−1 = x−1.
Since R[j] is raised to the power j within the aggregation step, we subtract∑m−2

j=1 j− (m− 1) =
(m−1)·(m−4)

2 from d prior to the exponentiation, i.e., we compute

d′ = d− (m−1)·(m−4)
2 . Next, we write d′ = (m− 1) · q′ + r′ with 0 6 r′ < m− 1. Finally,

R[0] is initialized to x1+e0 = x−(m−2) and R[r′] is initialized to

x1+e′r =

x−(m−3) if r′ = 0
x1+1 = x2 otherwise

.

Noting that x−(m−3) = x−(m−2)
· x and x2 = x · x, and since r′ 6 m − 2 the above

procedure can be implemented in a regular fashion by replacing the initialization
of Alg. 4 with

/* Initialization */

A← xm
· x−1

R[0]← A−1
· x

for i = 1 to m − 1 do R[i]← x
d← d − (m−1)·(m−4)

2
r′ ← d mod (m − 1)
R[r′]← R[r′] · R[r′ + 1];
R[m − 1]← R[m − 1]−1

d← bd/(m − 1)c = (d′`′−1, . . . , d
′

0)m

This initialization works for all w > 1. The next section proposes an efficient
alternative in the binary case for the RSA exponentiation (i.e. d is odd)

4.3 Binary case

In the binary case, we have m − 1 = 1 and thus q = d and r = 0. We can use
Algorithm 4 as is, where m is set to 2.

The resulting algorithm is very simple. It is slightly faster than Boscher et
al.’s algorithm (Alg. 2) as it saves one multiplication. When d is odd (as is the
case for RSA), A can be initialized to x2, R[1] to x, and the for-loop index at
i = 1; this allows to save one more multiplication — and not to involve 1G. More

importantly, Algorithm 5 saves one register compared to Algorithm 2 as the
value of x is no longer needed for the error detection. We so obtain a right-to-
left algorithm as efficient as Giraud’s algorithm. Being based on Montgomery
ladder, Giraud’s method scans however the exponent in the opposite direction
which may be less convenient.

Algorithm 5 Binary right-to-left SPA-FA resistant algorithm
Input: x ∈ G and d = (d`−1, . . . , d0)2 ∈N
Output: y = xd

/* Initialization */

1: A← x
2: R[0]← x; R[1]← 1G
/* Main loop */

3: for i = 0 to ` − 1 do
4: R[di]← R[di] · A
5: A← A2

6: end for

/* Error detection */

7: R[0]← R[0] · R[1]
8: if (R[0] , A) then return ‘error’

9: return R[1]

4.4 Efficiency

The initialization phase in Alg. 4 for the higher-radix case involves seemingly
cumbersome operations. We detail below efficient implementations.

Algorithm 4 starts with the evaluation of xm−1. We suggest to rely on a binary
algorithm similarly to the implementation of the error detection in our variant
of Baek’s algorithm (i.e., Lines 12–15 in Alg. 3). For m = 2w, this costs at most
(w − 1) multiplications and squarings in G (see Remark 2).

The initialization in Alg. 4 also requires the integer division (with remainder)
of exponent d by m − 1. One may argue that these two values could be pre-
computed and d represented by the pair (q, r) with q = bd/(m − 1)c and r =
d mod (m−1). We rule out this possibility as it supposes that d is fixed (which is
for example not the case for ECDSA). Further, even for RSA with a a priori fixed
exponent, such a non-standard format for d, d = (q, r), is not always possible
as it may be incompatible with the personalization process or with certain
randomization techniques used to protect against DPA-type attacks.

Let m = 2w. We first remark that given the m-ary expansion of d, d =∑`−1
i=0 di mi, the value of r = d mod (m − 1) can simply be obtained as r =

∑`−1
i=0 di

(mod m−1). For the computation of the quotient, q = bd/(m−1)c, the schoolboy
method can be significantly sped up by noting that the divisor (i.e., m−1 = 2w

−1)

has all its bits set to 1 [20, p. 271] (see also [28]). It is also possible to evaluate q
without resorting on a division operation. A common approach is the division-
free Newton-Raphson method [16]. Being quadratically convergent, the value
of q is rapidly obtained after a few iterations, i.e., roughly log2(log2 d) iterations.
The cost is typically upper-bounded to 2 multiplications in G. The algorithm
is presented in Appendix A. Of course, when available, the pair (q, r) can be
computed with the co-processor present on the smart card; some of them come
with an integer division operation.

To sum up, noting that Algorithm 4 saves a few multiplications, we see that
all in all its expected performance is globally the same — when not faster — as
our variant of Baek’s algorithm. But the main advantage of Algorithm 4 resides
in its better usage of memory.

5 Conclusion

This paper presented several memory-efficient implementations for preventing
fault attacks in exponentiation-based cryptosystems. Furthermore, they are by
nature protected against SPA-type attacks and can be combined with other exist-
ing countermeasures to cover other classes of implementation attacks. Remark-
ably, the developed methodology is fully generic (i.e., applies to any abelian
group) and allows one to save one memory register (of size a group element)
over previous implementations. This last feature is particularly attractive for
memory-constrained devices and makes the proposed implementations well
suited for smart-card applications.

Acknowledgments We are grateful to an anonymous reviewer for useful com-
ments.

References

1. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault attacks on
RSA with CRT: Concrete results and practical countermeasures. In B. S. Kaliski
Jr., Ç. K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems
− CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages 260–275.
Springer-Verlag, 2002.

2. Y.-J. Baek. Regular 2w-ary right-to-left exponentiation algorithm with very efficient
DPA and FA countermeasures. International Journal of Information Security, 9(5):363–
370, 2010.

3. P. S. L. M. Barreto. A note on efficient computation of cube roots in characteristic 3.
Cryptology ePrint Archive, Report 2004/305, 2004. http://eprint.iacr.org/.

4. J. Blömer, M. Otto, and J.-P. Seifert. A new CRT-RSA algorithm secure against
Bellcore attacks. In S. Jajodia, V. Atluri, and T. Jaeger, editors, 10th ACM Conference
on Computer and Communications Security (CCS 2003), pages 311–320. ACM Press,
2003.

5. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating errors
in cryptographic computations. Journal of Cryptology, 14(2):101–119, 2001. Earlier
version published in EUROCRYPT ’97.

6. A. Boscher, H. Handschuh, and E. Trichina. Blinded exponentiation revisited. In
L. Breveglieri et al., editors, Fault Diagnosis and Tolerance in Cryptography−FDTC 2009,
pages 3–9. IEEE Computer Society, 2009.

7. A. Boscher, R. Naciri, and E. Prouff. CRT RSA algorithm protected against fault
attacks. In D. Sauveron et al., editors, Information Security Theory and Practices
(WISTP 2007), volume 4462 of Lecture Notes in Computer Science, pages 229–243.
Springer-Verlag, 2007.

8. A. Brauer. On addition chains. Bulletin of the American Mathematical Society,
45(10):736–739, 1939.

9. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems (CHES ’99), volume 1717 of Lecture Notes in Computer Science, pages 292–302.
Springer-Verlag, 1999.

10. E. Dottax, C. Giraud, M. Rivain, and Y. Sierra. On second-order fault analysis
resistance for CRT-RSA implementations. In O. Markowitch et al., editors, Information
Security Theory and Practices (WISTP 2009), volume 5746 of Lecture Notes in Computer
Science, pages 68–83. Springer-Verlag, 2007.

11. C. Giraud. An RSA implementation resistant to fault attacks and to simple power
analysis. IEEE Transactions on Computers, 55(9):1116–1120, 2006.

12. M. Joye. Highly regular m-ary powering ladders. In M. J. Jacobson Jr., V. Rijmen,
and R. Safavi-Naini, editors, Selected Areas in Cryptography (SAC 2009), volume 5867
of Lecture Notes in Computer Science, pages 350–363. Springer-Verlag, 2009.

13. M. Joye. Protecting RSA against fault attacks: The embedding method. In L. Breveg-
lieri et al., editors, Fault Diagnosis and Tolerance in Cryptography − FDTC 2009, pages
41–45. IEEE Computer Society, 2009.

14. M. Joye and M. Tunstall. Exponent recoding and regular exponentiation algorithms.
In B. Preneel, editor, Progress in Cryptology − AFRICACRYPT 2009, volume 5580 of
Lecture Notes in Computer Science, pages 334–349. Springer-Verlag, 2009.

15. M. Joye and S.-M. Yen. The Montgomery powering ladder. In B. S. Kaliski
Jr., Ç. K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems
− CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages 291–302.
Springer-Verlag, 2002.

16. A. H. Karp and P. W. Markstein. High-precision division and square root. ACM
Transactions on Mathematical Software, 23(4):561–589, 1997.

17. C. H. Kim and J.-J. Quisquater. Fault attacks for CRT based RSA: New attacks, new
results, and new countermeasures. In D. Sauveron et al., editors, Information Security
Theory and Practices (WISTP 2007), volume 4462 of Lecture Notes in Computer Science,
pages 215–228. Springer-Verlag, 2007.

18. C. H. Kim and J.-J. Quisquater. How can we overcome both side channel analysis
and fault attacks on RSA-CRT? In L. Breveglieri et al., editors, Fault Diagnosis and
Tolerance in Cryptography − FDTC 2007, pages 21–29. IEEE Computer Society, 2007.

19. E. W. Knudsen. Elliptic scalar multiplication using point halving. In K.-Y. Lam,
E. Okamoto, and C. Xing, editors, Advances in Cryptology − ASIACRYPT ’99, volume
1716 of Lecture Notes in Computer Science, pages 135–149. Springer-Verlag, 1999.

20. D. E. Knuth. The Art of Computer Programming, volume 2 / Seminumerical Algorithms.
Addison-Wesley, 2nd edition, 1981.

21. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor,
Advances in Cryptology − CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer-Verlag, 1999.

22. M. Rivain. Securing RSA against fault analysis by double addition chain exponen-
tiation. In M. Fischlin, editor, Topics in Cryptology − CT-RSA 2009, volume 5473 of
Lecture Notes in Computer Science, pages 459–480. Springer-Verlag, 2009.

23. A. Shamir. Method and apparatus for protecting public key schemes from timing
and fault attacks. US Patent #5,991,415, Nov. 1999. Presented at the rump session of
EUROCRYPT ’97.

24. D. Vigilant. RSA with CRT: A new cost-effective solution to thwart fault attacks.
In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware and Embedded Systems
− CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages 130–145.
Springer-Verlag, 2008.

25. A. C.-C. Yao. On the evaluation of powers. SIAM Journal on Computing, 5(1):100–103,
1976.

26. S.-M. Yen and M. Joye. Checking before output may not be enough against fault-
based cryptanalysis. IEEE Transactions on Computers, 49(9):967–970, 2000.

27. S.-M. Yen, S.-J. Kim, S.-G. Lim, and S.-J. Moon. A countermeasure against one
physical cryptanalysis may benefit another attack. In K. Kim, editor, Information
Security and Cryptology − ICISC 2001, volume 2288 of Lecture Notes in Computer
Science, pages 417–427. Springer-Verlag, 2002.

28. C. Yungui, Y. Xiaodong, and W. Bingshan. A fast division technique for constant
divisors 2m(2n

± 1). Scientia Sinica (Series A), XXVII(9):984–989, 1984.

A Newton-Raphson Iterated Division Algorithm

Algorithm 6 Integer division by m − 1 (initialization step)

Input: d =
∑`−1

i=0 di mi where m = 2w

Output: q = bd/(m − 1)c and r = d mod (m − 1)

/* Remainder */

1: r← d0

2: for i = 1 to ` − 1 do r← (r + di) mod (2w
− 1)

/* Quotient */

3: d← d − r; B← |`(w − 1)|2
4: q← 1; s← 2w

− 1
5: for i = 1 to B do q← q · (2 − s · q) mod 22i

6: q← q · d mod 22B

7: return (q, r)

