
A Formal Security Model of a Smart Card Web
Server

Pierre Neron1 and Quang-Huy Nguyen2

1 Ecole Polytechnique
92128 Palaiseau, France

2 Trusted Labs
5 rue du Bailliage, 78000 Versailles, France

Abstract. Smart card Web server provides a modern interface between
smart cards and the external world. It is of paramount importance that
this new software component does not jeopardize the security of the
smart card. This paper presents a formal model of the smart card Web
server specification and the proof of its security properties. The for-
malization enables a thoughtful analysis of the specification that has
revealed several ambiguities and potentially dangerous behaviors. Our
formal model is built using a modular approach upon a model of Java
Card and Global Platform. By proving the security properties, we show
that the smart card Web server preserves the security policy of the over-
all model. In other words, this component introduces no illegal access to
the card resources (i.e., file system and applications). Furthermore, the
smart card Web server provides a means for securely managing the card
contents (i.e., resources update).

1 Introduction

Since the beginning of the smart card era, the I/O interface is defined by the
ISO-7816 standard [10] in terms of APDU (Application Protocol Data Unit)
commands and responses. For example, to access to a binary file, the card reader
sends a SELECT FILE command to select the file, then a GET BINARY command
to retrieve its contents. For the next generation of multimedia SIM cards that
may embed up to one gigabyte of data, this interface becomes outdated: because
the multimedia data are heterogeneous and stored in complex multi-leveled file
systems, the APDU commands do not provide an efficient access method. Fur-
thermore, the ISO-7816 standard requires ad-hoc software on the handset to
communicate with the SIM card. On the other hand, most handsets own a Web
browser to access to the MNO (Mobile Network Operator) services and it is
tempting to use the HTTP protocol for interfacing with the SIM card. In this
interface, the SIM card embeds a Web server and the handset accesses to the
card resources via a Web browser.

The so-called smart card Web server (SCWS) provides a modern interface
and dramatically simplifies the access to multimedia services. Standardized by
Open Mobile Alliance (OMA)[12], the SCWS also allows the MNOs to remotely



2

administer their clients via an OTA (over-the-air) infrastructure. Recently, this
remote administration capacity has been leveraged by the Global Platform con-
sortium [8] to a content management method for multi-actor multi-application
smart cards. For Java Card framework, the European Telecommunications Stan-
dards Institute (ETSI) also specifies additional APIs to transform a Java Card
applet into a servlet (i.e., a Web application)[6]. In other words, SCWS is a
cross-industry specification based on existing infrastructures and it is worth to
investigate its overall consistency before any implementation.

On the other hand, the Web server also exposes the SIM card to numerous
well-known threats and it is of paramount importance that it does not compro-
mise the security services provided by the card. In particular, it is essential to
ensure that no illegal access to card resources can be done through the SCWS.

In this paper, we present a formalization the SCWS specifications [12, 8, 6,
17, 16] and a formal proof of the security properties related to the card resources
access. The SCWS is formalized as a state machine that receives a HTTP request,
interacts with the other card components before sending back the corresponding
HTTP response. All formal models and proofs have been developed in Coq [15],
a proof assistant based on higher-order type theories. This choice was firstly
motivated by the safety of Coq that has well-studied mathematical foundation
and a robust implementation: all proofs are re-checked by a (tiny) kernel that is
the only Coq trusted reasoning base. Secondly, the expressive power of the logic
underlying Coq deals more efficiently with the (universally) quantified security
properties. Furthermore, this work benefits from the Coq libraries built for the
certification of the Java Card platform in a previous work [5] and hence, smoothly
handles the interaction between different card components (e.g., SCWS, Java
Card and Global Platform). The reuse of an existing formal infrastructure also
reduces the modeling and proving workload.

The rest of this paper is organized as follows. Section 2 summarizes the
different specifications related to the SCWS and discussed its expected security
properties. The Coq model of the SCWS is described in Section 3. In Section 4,
we present the Coq formalization and the proof of the security properties. We
discuss the related work and give some concluding remarks in Sections 5 and 6.

2 Smart Card Web Server

This section provides an overview of the SCWS functions as specified in [12, 8, 6,
17], then discusses several ambiguities and dangerous behaviors discovered while
formally analyzing these specifications. An analysis of the SCWS security policy
is also presented.

Figure 1 shows the integration of the SCWS in a multi-actor and multi-
application Java smart card (i.e., a smart card that supports both Java Card
and Global Platform). The SCWS includes three components:

– a HTTP server
– a repository containing the SCWS data
– an administration task manager that updates the SCWS repository



3

HTTP 
request/response

Serlvet
1

Global
Platform

Admin 
tasks

Repository

Communication layer

HTTP Server

Java Card Virtual Machine

Operating System

S
tatic resources

Serlvet
2

Fig. 1. SCWS inside a Java smart card

The external entity (e.g., a Web browser or an OTA infrastructure) com-
municates with the card using the HTTP requests and responses. After being
relayed by the communication layer, the HTTP request is sent to the HTTP
server. Note that the multi-request management is ensured by the communi-
cation layer: a HTTP server (instance) is supposed to receive and manage one
request per session. A SCWS session starts with the reception of the request
and finishes by the emission of the response. The HTTP server dispatches the
request to its destination indicated by the URL included in the header of the
request:

– If this URL points to a servlet (i.e., an applet registered to the SCWS), then
the request is forwarded to this servlet.

– If this URL points to a static resource (i.e., a file in the file system), then this
file is accessed following the HTTP method (GET, PUT, etc) of the request.
The access to the file system is done through the OS low-level services.

– If the URL points to the administration task manager, then this is an ad-
ministration command for updating the SCWS repository.

– If the URL points to the Global Platform component (also known as the
Card Manager), then the request contains a command that updates the
card contents (i.e., update the servlets).

Interface between SCWS and servlets. On a Java Card platform, a servlet is an
applet that was registered to the SCWS. A servlet needs to implement a specific
Java interface for each HTTP method. For example, the doPost() interface must
be implemented to handle the POST requests. The servlet registration and Java
interfaces are defined by ETSI in a dedicated API [6].

The interface between the SCWS and the servlet is done by method invo-
cation. For example, for a POST request, the SCWS identifies the servlet, and
invokes the doPost() method of this servlet. The HTTP request is passed to
this method as a global variable. The method constructs the HTTP response



4

that is also a global variable. Finally, the SCWS envelops the HTTP response
and sends it back to the communication layer.

This interface corresponds to the “normal” servlets that receive a HTTP
request and returns a HTTP response. The SCWS also manage the “interception”
servlets that only collect information from the header of the HTTP requests. The
interception servlets do not return any HTTP response.

Access control. According to [12], the HTTP access control relies on the protec-
tion sets. A protection set contains a list of users. If a URL subtree is mapped
to a protection set, then access to the resources inside this subtree is reserved
to the users defined in that protection set.

The user authentication may use different protocols:

– HTTP Basic or Digest authentication as defined in [16], which is a sim-
ple authentication with username and password contained in the request’s
header

– HTTPS protocol which uses cryptographic procedure to authenticate users
– ADMIN protocol i.e., the current user is the remote administration server

Building the HTTP response. In successful cases, the result is put in the body of
the response and the status 0x200 is set in the header of this response. Otherwise,
an error status is sent back in the header. Several categories of status are defined
by the HTTP protocol e.g., 0x2xx for successful cases, 0x4xx for client errors,
0x5xx for internal errors while processing the request.

2.1 Specification analysis and recommendations

The formal analysis of the SCWS specification has revealed several ambiguities
and dangerous behaviors that we discuss here. Furthermore, several recommen-
dations are also provided to overcome these issues.

1. URL sharing: sharing a URL between servlets and static resources is not
forbidden in the specification. In some cases, URL sharing does not generate
any conflict, e.g., between a normal servlet and an interception servlet. In
other cases, e.g., between a servlet and a file, the data returned by the SCWS
is not precisely defined. In order to ensure the consistency, URL sharing is
not allowed in the formal model.

2. Multi-role applet: can an applet be registered as both interception servlet
and normal servlet? Multi-role applet is not forbidden by the specification
but an interception servlet can only access to the header while a normal
servlet has access to all the HTTP request. In other words, there is an
inconsistency on the access rights of the applet. The formal model clearly
separates interception servlets from normal ones: multi-role applet is not
allowed.

3. SCWS/Java Card consistency: can a servlet be uninstalled or updated dur-
ing a servlet invocation (that is handled by Java Card)? In principle, during
the execution of a method, the list of servlets may be updated. However, a
servlet cannot be uninstalled or updated during its invocation.



5

4. SCWS/Global Platform consistency: the list of registered servlets and the
Global Platform registry table that manages the list of (on-card) applets shall
be consistent. Because a servlet is an applet that was registered to the SCWS,
any modification on the list of applets (kept in Global Platform registry table)
shall be synchronized with the SCWS. Furthermore, the modification rights
of these lists shall be reserved to the same group of users.

5. Servlet collaboration: if several servlets are invokable on a request (for
example, one URL is covered by two different servlets), a priority order is
defined between these servlets. Usually, the servlet that is mapped to the
closer URL has greater priority. The SCWS invokes the servlets following
this order and if a servlet is invoked but refuse to handle the request, then
the next servlet will be invoked. However, the refusing servlet is still able to
access to the HTTP request. In other words, if a refusing servlet is mapped
to the directory /a/b/c, then it can learn about the activities of the other
servlets that are mapped to the directories /a and /a/b. Hence, the URL
distribution to servlets (done by the SCWS administrator), shall be carefully
done to avoid data leaking between them. Another solution would be to
restrict the servlet collaboration by only allowing the servlet mapping to the
exact URL to access to the HTTP request.

6. Unsafe default configuration: if no protection set is defined, then any
resource is accessible. This mechanism is advocated in the HTTP protocol
to avoid unnecessary authentications to the Web servers. However, on a
smart card, this behavior seems to be dangerous. It is recommended to map
an empty protection set to the root URL and hence, force an authentication
on any access.

7. Unsafe Fail: in an unsuccessful operation, the HTTP response is only re-
quired to contain an error code that is different from 0x200. This is necessary
to inform the handset about the failed operation. However, a confidential in-
formation may still be leaked through the other components of the response.
Hence, it is recommended that the HTTP response does not contain other
data than the error code.

While the three first points correspond to the imprecision of the specifica-
tion, the other issues are directly related to the security of the SCWS. The formal
model described in Section 3 takes into account the above security recommen-
dations to deal with these issues.

2.2 Security policy

The principal SCWS security policy consists in preventing illegal access to the
card resources. This security policy can be decomposed into several sub-policies
as follows:

(1) URL separation: Static resources, interception servlets and normal servlets
shall be separated in terms of mapped URL.

(2) No illegal access to static resources: an access cannot target



6

– the un-mapped static resources,
– the static resources not mapped to the request’s URL, and
– the unauthorized static resources.

(3) No illegal invocation of smart card applications: an invocation cannot target
– the unregistered servlets,
– the unmapped servlet,
– the servlets not mapped to the request’s URL, and
– the unauthorized servlets.

(4) The smart card data outside the scope of the SCWS cannot be accessed i.e.,
any data in a HTTP response shall belong to a SCWS-managed resource.

(5) Safe Fail: in an unsuccessful operation, the HTTP response does not contain
other data than the error code.

(6) Secure card content management: the card contents (i.e., static resources,
applets and repository) can only be updated by an“Admin” user.

These sub-policies are then decomposed into simpler security properties in
order to ease the Coq formalization.

Property 1. (URL separation) All normal servlet, interception servlet and static
resources are mapped to separate URLs.

Property 2. (Invalid static resource) If a static resource is not mapped to any
URL, then its data cannot be sent out by a HTTP response.

Property 3. (Unauthorized access to static resource) If a static resource is
protected by a protection set, then any HTTP request to a static resource will
fail if no username/password were provided or the provided username/password
are not correct.

Property 4. (Unregistered application) An unregistered servlet cannot be in-
voked by any HTTP request.

Property 5. (Unmapped application) A registered servlet that is not mapped
to any URL cannot be invoked by any HTTP request.

Property 6. (Unrelated application) A servlet that is not mapped to the URL
of the HTTP request and any of its ancestors cannot be invoked by this request.

Property 7. (Unauthorized access to application) A servlet that is mapped to
the URL of the HTTP request cannot be invoked if this request is not authorized
(no username/password were provided or the provided username/password are
not correct).

Property 8. (Access to administrative tasks) Only an “Admin” user can per-
form the administrative tasks on the SCWS.

Property 9. (Access to GlobalPlatform operations) Only an “Admin” user can
perform the Global Platform tasks.



7

Property 10. (Safe fail) If the status code of a HTTP response is not 0x200,
then this response contains no data.

It is straightforward to see that, the policy (1) is fulfilled by Property 1; the
policy (2) is fulfilled by Properties 1, 2, and 3; the policy (3) is fulfilled by
Properties 1, 4, 5, 6 and 7; the policy (4) is fulfilled by Properties 1, 2; the
policy (5) is fulfilled by Property 10; the policy (6) is fulfilled by Properties 8
and 9.

3 A Coq Model of the Smart Card Web Server

The SCWS is formalized as a state machine. The SCWS state formalizes the
repository while a SCWS transition formalizes the modification caused by a
HTTP request on a state.

3.1 SCWS state

The state defines the global components of the SCWS as the following record:
SCWS State , {
registered servlets : registered servlet table;
servlet mapping : url servlet table;
interception servlets : url servlet intercept table;
users id : user table;
ps defined : ps list;
ps table : path ps table;
listen http : http state;
auth status : scws status;
curr request : option http request;
curr response : http response
}

where the components are formalized as record fields associated to their types:

– registered servlets is the table of all servlets (i.e., applets registered to the
SCWS).

– servlet mapping and interception servlets are respectively two tables map-
ping the URLs to the normal servlets and the interception servlets.

– users id is the table of all registered users in the SCWS. This table maps
each user’s identifier to its password.

– ps defined is the table of all registered protection sets. This table maps each
protection set to its parameters (protocol, list of authorized users, etc).

– ps table is the table mapping each protected URL to its protection set.
– listen http indicates if the SCWS is currently ready for receiving a HTTP

request.
– auth status indicates whether the current user is an “Admin” user (in this

case auth status is “ADMIN”).



8

– curr request is the HTTP request being processed by the SCWS: the request
is defined as an optional type to handle “no request” error.

– curr response is the HTTP response being processed by the SCWS: the
SCWS always returns a (error or success) response.

All these elements define the current state of the SCWS and determine if a
static resource is accessible or if a servlet is invokable by the current request.

URL tree. The resources managed by the SCWS are addressed by their URLs. In
the model, the URL path name includes the directory names stored in the reverse
order to speed up the recursive search in the ancestors of a name. For example,
the path name /scws/appl/epurse is stored by the list epurse→ appl→ scws.
There are three constructors to generate a set of URLs from a path name as
follows:

path url , exact url : path name→ path url
| directory url : path name→ path url
| ∗ url from : path name→ path url.

For example, /scws/appl/epurse is an exact URL, /scws/appl/ is a URL
directory and /scws/appl/* is a URL subtree.

SCWS file system. The static resources are effectively stored in the smart card
file system. However, the SCWS only manages part of the smart card file system
that is in its scope. Without loss of generality, a SCWS file system is represented
by a table mapping the URLs to the associated files.

3.2 SCWS transition

The transition formalizes the modification of the state caused by the process of a
HTTP request. Each transition is defined by the relations between the input and
the output states. The card components that can be modified by a transition
are:

– the SCWS state e.g., due to an administrative tasks
– the SCWS file system e.g., due to PUT and DELETE requests
– the JCVM (Java Card virtual machine) state3 e.g., due to the invocation of

a servlet by the SCWS

The process of a HTTP request is done in three steps. First, the authenti-
cation checks if the user has the sufficient right to process the request. Then,
a servlet is resolved and invoked if necessary. Finally, the request is processed
w.r.t. the contents of the request (see Section 2).

3 A record that contains the global components of the JCVM.



9

Authentication. The authentication process is defined according to [12]:

– PUT and DELETE requests require the current user to be an “Admin” user
– TRACE request that returns the routing information towards the server (e.g.,

the list of proxies), does not require any authentication
– for any other request, the authentication process relies on the defined protec-

tion sets. We need to find if the requested URL or its ancestors are mapped
to any protection set:
• If no protection set is found, then the URL is in free access.
• If the found protection set requires the ADMIN protocol, then the cur-

rent user must be an “Admin” user.
• If the found protection set requires the HTTP protocol with no realm,

then the URL is in free access.
• If the found protection set requires the HTTP protocol with the realm

“Basic authentication”, then the user and password must be present in
the request and must correspond to a valid user defined in the protection
set (and user id table).

Servlet resolution and invocation The SCWS first attempts to find a servlet that
is exactly mapped to the requested URL using the servlet mapping table. If
such a servlet is not found, then the search is done recursively in the ancestors
of the URL.

Once a servlet is resolved, the SCWS invokes the servlet’s method that corre-
sponds to the request (e.g., doPost(), doGet()). This invocation is done by the
method invocation mechanism provided by the Java Card model. The execution
of the servlet’s method may modify the JCVM state but this modification is man-
aged by the Java Card model. The SCWS only manages the modification caused
by this method on the current HTTP response (formalized by curr response).

If the resolved servlet’s method produces no effect on the current HTTP
response, then this servlet refuses the current request and the search is continued
in the URL tree to locate the next candidate.

Request processing. The actions to be done by the SCWS depend on the method
of the request (i.e., GET, POST, PUT, DELETE, HEAD, OPTION, TRACE or CONNECT)
and the requested URL (see Section 2):

– if the URL points to the administration task manager, then the SCWS state
is modified according to the definitions in [12].

– if the URL points to the Global Platform component (i.e., the Card Manager),
the appropriate method of the Global Platform model is invoked.

– if this is a POST request that accesses to a servlet, then this servlet is
resolved and invoked using the requested URL as described above.

– otherwise, the SCWS checks if the requested URL is mapped to a valid static
resource, and returns it (or an eventual error).

The SCWS transition is defined by the following relation:



10

transition(A, scws stin, jcvm stin, fsin, scws stout, jcvm stout, fsout)

where A is the action that causes the transition, scws stin, jcvm stin, fsin

respectively represent the input states of the SCWS, the JCVM and the file
system while scws stout, jcvm stout, fsout respectively represent the output
states of the SCWS, the JCVM and the file system.

Example 1. The model of the GET request in the case where no servlet provides
a response is as follows:

transition(GET request, scws stin, jcvm stin, fsin,

scws stout, jcvm stout, fsout) , ∃ request ∃scws staux.

(0) fsin = fsout ∧
(1) curr request(scws stin) = Some(request) ∧
(2) servlet resolution and invocation(doGet(), request, scws stin, jcvm stin,

fsin, scws staux, jcvm stout, fsout) = NO ERROR ∧
(3) curr response(scws staux) = curr response(scws st in) ∧
(4) get file(fsin, scws staux, scws stout)

(0) means that the file system is not modified by this transition.
(1) means the current SCWS state (scws stin) contains some request to be pro-

cessed.
(2) means the servlet invocation produces the output state of the JCVM (jcvm stout),

an temporary SCWS state (scws staux) and no error.
(3) means the servlet invocation has no effect on the HTTP response (because

the response component of scws staux is that of scws stin). In other words,
all servlets refuse the HTTP request. In this case, the request is forwarded
to the file system (static resource).

(4) returns a file (pointed by the requested URL) or an error included in the
output SCWS state (scws stout).

4 Proof of the Security Properties

This section describes the formal statement and the proof of the security prop-
erties presented in Section 2.2. The security properties are formally expressed as
Coq theorems in the following form:

∀ scws stin, scws stout, jcvm stin, jcvm stout, fsin, fsout.

transition(A, scws stin, jcvm stin, fsin, scws stout, jcvm stout, fsout)⇒
Pre(A, scws stin, jcvm stin, fsin)⇒ Post(A, scws stout, jcvm stout, fsout)

where Pre states the conditions on the input states of the transition and Post
states the property of the output states.



11

Theorem 1. (No map on static resource) Mapping a servlet to a URL already
mapped to a static resource, returns error status code and this mapping will not
be registered.

Theorem 2. (Admin access required) Access to a URL protected by a protection
that requires ADMIN authentication is only allowed if the authentication status
of the input state is ADMIN.

Theorem 3. (Invalid Static Resource) If the SCWS provides a response con-
taining some data (i.e., some file), then this file was already in the file system
before the request processing and the status code of the response is 0x200 (suc-
cess).

Theorem 4. (Invalid Authentication) If the requested URL is protected by a
protection set (or inherits a protection set from its ancestors) and if the authen-
tication failed i.e., (i) no authentication parameter in the request or, (ii) wrong
password or, (iii) the user is not defined in the protection set, then the response
is an error status code.

4.1 External observation of servlet invocation

In order to formalize the properties requiring that a servlet is not invoked by the
SCWS, we use the external observation approach. A servlet is not invoked by
the SCWS if the final state of any SCWS transition is independent of the code
of this servlet. In other words, the servlet’s behavior has no effect on the SCWS
transitions. This approach simplifies the formalization of these properties and
keeps it independent of the Java Card model.

Theorem 5. (Unregistered servlet) Unregistered servlets have no effect on the
final state of a SCWS transition.

To this end we suppose the determinism of the JCVM transitions and of the file
system transitions (i.e., those transitions are functions). The JCVM transition
describes the modification of the JCVM due to the invocation of a servlet by
the SCWS while the file system transition describes the modifications of the
file system due to static resource access requests (e.g., PUT or GET). Intuitively,
all JCVM and file system operations (bytecode execution and file access) are
deterministic. Those are two properties of the JCVM and file system model that
are not in the scope of the SCWS.

The formalization is based on two actions call servlet1 and call servlet2 that
represent the effects of any two different codes of the unregistered servlet (these



12

two actions having an identical effect on other servlets).

∀ S, scws stin, scws stout1, scws stout2, jcvm stin, jcvm stout1, jcvm stout2

fsin, fsout1, fsout2.

transition(call servlet1, scws stin, jcvm stin, fsin,

scws stout1, jcvm stout1, fsout1)⇒
transition(call servlet2, scws stin, jcvm stin, fsin,

scws stout2, jcvm stout2, fsout2)⇒
∀ serv.(S 6= serv ⇒ call servlet1(serv) = call servlet2(serv)) ⇒
unregistered(scws stin, S) ⇒ scws stout1 = scws stout2

Theorem 6. (Unmapped servlet) Unmapped servlets have no effect on the final
state of a SCWS transition.

This theorem is formalized similarly as Theorem 5 using the hypothesis that the
unmapped servlet is not mapped to the requested URL and any of its ancestors.

4.2 Proof

Notice first that these Coq theorems are sufficient to verify the security properties
presented in Section 2.2. Indeed:

– Property 1 is verified by Theorem 1; Property 2 is verified by Theorem 3;
Property 3 is verified by Theorem 4; Property 4 is verified by Theorem 5.

– Property 5 is verified by Theorem 6; Property 6 is verified by Theorem 6;
Property 7 is verified by Theorem 4.

– Properties 8 and 9 is verified by Theorem 2 under the hypothesis that the
URLs used in the administration commands and the Global Platform com-
mands are only accessible to an “Admin” user. This hypothesis corresponds
to the security policy required by the SCWS administration and the Global
Platform card content management [8].

– Property 10 is the corollary of Theorem 3.

The proof of the Coq theorems is interactive. According to the data structures
used in the model, a relevant proof scheme (e.g., case analysis, induction) is used.
Most of the proofs of the different properties relies on a case analysis of the
different transitions provided by the SCWS and modeled through the transition
predicate. Therefore, for each of this case there are two possibilities :

– The “nominal” case corresponds to the proof hypotheses (e.g., wrong pass-
word), thus the transition relation provides us the corresponding conclusion
(e.g., sending an error code) is in general simple.

– The specific cases contradict the proof hypotheses, and we have to construct
the right premise (from the current context)that allows us to prove the con-
tradiction. This construction can be costly due to the size and the complexity



13

of the context. If a recursive data structure or action is involved in the prop-
erty (e.g., the URLs or the servlet resolution), then the proof requires an
induction on this structure or action.

Proof of the external observation properties (Theorem 5 and 6) also relies on
case analysis of the two separate transitions (that respectively use call servlet 1
and call servlet 2):

– if the transitions are identical and the request does not invoke the (unregis-
tered or unmapped) servlet S, then we can use the determinism hypotheses
to conclude that both output SCWS states are also identical

– if the transitions are identical and the request invokes S, then one can prove
that because S is either unmapped or unregistered, the SCWS does not
invoke it and thus S has no effect on the output state

– otherwise, the transitions being different, the model is proved to be deter-
ministic by showing that the intersection of the premises in two transitions
is empty.

Dedicated tactics have been used to factorize the proof and reduce the mainte-
nance workload. However, a lots of user-interactions are still required to allow
the Coq’s kernel to re-check the whole proof at the end in order to increase the
trustworthiness. In other words, user-interactions are somewhat the cost to pay
for getting a higher level of trust.

5 Related Work

The SCWS is a pretty new software component and to our knowledge, no formal
analysis has been done on it. However, formal techniques have been used by
numerous researchers to analyze the security of the Web-related systems. The
network protocols are the preferred targets for formal methods (see [11, 13, 4, 3]).
The SCWS uses the well-known HTTP and HTTPS protocols that have been
intensively investigated and hence, are not in the scope of our model.

In [1], the authors formalize part of a SMTP mail server in Coq. This model
only covers the mail receiving process. The authors build the model following a
Java implementation rather than the SMTP specification. In contrast, we aim
at preserving the generality of the SCWS specifications as much as possible. If a
choice is required between several specifications, the generality is considered as
the first criterion. Our objective is to ensure that no new smart card backdoor
is introduced by the SCWS and the security services provided by the smart card
are preserved. We do not focus on a specific implementation as done in the
source-code verification approach. Source-code verification is trendy because it
may detect bugs on a real implementation. However, in the current state of the
art, source-code verification is usually limited by the size and the complexity of
the code.

Model checking is also widely used to formalize and verify the properties of
the Web applications (or services). The drawback of the model checking approach



14

is that an abstraction is usually required on the properties in order to avoid
state explosion. Finding a correct abstraction is not always possible for any
property. The paper [9] describes an attempt to apply SPIN model checker to
the verification of the Web applications. The authors formalize the properties in
a communicating finite automate and use SPIN to verify these properties. Also
using SPIN, [7] presents a tool built upon it to formally analyze the Web services.
In [14], a recovery framework of the Web services is modeled and checked. The
Web applications (or servlets) are not in the scope of our work. Actually, we
focus on the interactions between the servlets and the external world through
the SCWS. Hence, in some sense, this work complements the verification of Web
applications.

The difficulty in designing secure Web systems is partly due to the lack of
a formal foundation: [2] is a recent attempt to bridge this gap. That paper
presents several attack models on the Web system and evaluates some well-
known counter-measures w.r.t. these models. This is a promising approach to
formally analyze the robustness of the Web systems.

6 Concluding Remarks

In this paper, we presented a formal security model of the SCWS. The formaliza-
tion identified some ambiguities as well as dangerous behaviors of the specifica-
tion (see Section 2.1). This feedback is useful for the standard institutions such as
Global Platform consortium, OMA and ETSI in order to improve their specifi-
cations. On the other hand, several security properties of the SCWS were proved
on the model. These security properties ensure that the SCWS preserves the
overall security of the Java Card/Global Platform model. These security policies
are also required by different protection profiles4 of SCWS-embedded products.
Hence, this work can be used to fulfill the ADV SPM.1 evaluation task5 that is
the only formal method related task of the Common Criteria EAL6 level.

It is worth to highlight the modular approach advocated by this work. The
reuse of the model (and associated proof) bricks provided by the existing Java
Card/Global Platform baseline model6 reduces the overall workload to roughly two
man-months for a Formal Methods expert having general knowledge on smart
(Java) cards. Three thousand lines of model and ten thousand lines of proof have
been developed in this project. The SCWS model also extends the baseline model
by new bricks such as “HTTP protocol” and “servlet management”. Without the
existing bricks, building the Coq model and proof for a new software component
from the scratch may not comply with the industrial constraints. Indeed, the

4 A protection profile defines the set of security requirements on an IT product for a
Common Criteria security evaluation.

5 This task requires to build a formal security model of the product and to prove the
evaluation security objectives on this model.

6 More than 100 000 lines of Coq model have been developed for fulfilling the highest
requirements on the ADV (Application DeVelopment) assurance class [5].



15

formal analysis is best done between the specification/design freeze and the im-
plementation. Otherwise, the formal analysis does not generate sufficient added
value on the final product.

Further work consists in refining the security model in more concrete repre-
sentations (e.g., “Functional Specification” and “Design” in Common Criteria
scheme) to get a complete formal chain from the specification to the implemen-
tation and hence, fulfills the Common Criteria highest requirements on the ADV
assurance class that ensures the correctness of the product. Again the develop-
ment of the formal chain will be facilitated by the existing bricks provided by [5].
Note that in order to get a full EAL7 certificate, the other assurance classes
are still to be addressed, in particular, the ATE (Application TEsting) assur-
ance class and the AVA (Application Vulnerability Analysis) assurance class.
These classes are not really related to formal methods: in the current state of
the art, formal models and proofs are mainly used to ensure the correctness
(the robustness of the product being ensured by the ATE and AVA assurance
classes).

Finally, it is worth to mention that in the latest Java Card specification
(version 3.0 - connected edition), the Web server is part of the virtual ma-
chine that also includes almost all Java features such as garbage collection and
multi-threading. Java Card 3.0 platform requires significantly more computing
resources than the previous version and is still yet to be accepted by the market.
On the contrary, the SCWS is a pragmatic implementation of a HTTP-based
I/O for the currently deployed smart cards. A security model of the Java Card
3.0 Web server can also be built at a reasonable cost using the model bricks
provided by this work.

Acknowledgments. We thank the anonymous reviewers for their comments on
the previous version of this paper.

References

1. R. Affeldt and N. Kobayashi. Formalization and verification of a mail server in
coq. In M. Okada, B. C. Pierce, A. Scedrov, H. Tokuda, and A. Yonezawa, editors,
ISSS, volume 2609 of Lecture Notes in Computer Science, pages 217–233. Springer-
Verlag, 2003.

2. D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and D. Song. Towards a for-
mal foundation of web security. In Proc. of the 23rd IEEE Computer Security
Foundations Symposium, pages 290–304. IEEE Computer Society, 2010.

3. A. Barth, C. Jackson, and J. C. Mitchell. Securing frame communication in
browsers. In Proc. of 17th USENIX Security Symposium, 2008.

4. K. Bhargavan, C. Fournet, and A. D. Gordon. Verified reference implementations
of ws-security protocols. In M. Bravetti and G. Zavattaro, editors, Proc. of 3rd WS-
FM, volume 4184 of Lecture Notes in Computer Science, pages 88–106. Springer-
Verlag, 2006.

5. B. Chetali and Q. H. Nguyen. Industrial use of formal methods for a high-level
security evaluation. In J. Cuéllar, T. S. E. Maibaum, and K. Sere, editors, Proc.



16

of 15th Intl. Symposium on Formal Methods, volume 5014 of Lecture Notes in
Computer Science, pages 198–213. Springer-Verlag, 2008.

6. European Telecommunications Standards Institute. Smart Cards; Application
invocation Application Programming Interface (API) by a UICC webserver for
Java Card platform (Release 7), 2008. Ref: ETSI TS 102 588. Available at
http://pda.etsi.org/pda/queryform.asp.

7. X. Fu, T. Bultan, and J. Su. Wsat: A tool for formal analysis of web services.
In R. Alur and D. Peled, editors, Proc. of 16th Int. Conf. on Computer Aided
Verification, volume 3114 of Lecture Notes in Computer Science, pages 510–514.
Springer-Verlag, 2004. Tool available at http://www.cs.ucsb.edu/~su/WSAT/.

8. Global Platform. GlobalPlatform Card Specification 2.2 - Remote Application
Management over HTTP - Amendment B, version 0.5, 2008. Available at http:

//www.globalplatform.org/specificationscard.asp.
9. M. Haydar, A. Petrenko, and H. Sahraoui. Formal verification of web applications

modeled by communicating automata. In de Frutos-Escrig David and N. Manuel,
editors, Proc. of FORTE 2004, volume 3235 of Lecture Notes in Computer Science,
pages 115–132. Springer-Verlag, 2004.

10. International Organization for Standardization. Identification cards – Integrated
circuit(s) cards with contacts. Part 1-11, 1987-2007. Available at http://www.iso.
org/.

11. J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of ssl 3.0. In
Proc. of 7th USENIX Security Symposium, pages 201–216, 1998.

12. Open Mobile Alliance. Smartcard Web Server V1.1, 2009. Available at http:

//www.openmobilealliance.org/technical/release_program/SCWS_v1_1.aspx.
13. A. W. Roscoe. Modelling and verifying key-exchange protocols using csp and fdr.

In Proc. of 8th IEEE Computer Security Foundations Workshop, pages 98–107.
IEEE Computer Soc Press, 1995.

14. G. Shegalov and G. Weikum. Formal verification of web service interaction con-
tracts. In Proc. of the 2008 IEEE International Conference on Services Computing,
pages 525–528. IEEE Computer Society, 2008.

15. The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr/.
16. The Internet Society. HTTP Authentication: Basic and Digest Access Authentica-

tion, 1999. Available at http://www.ietf.org/rfc/rfc2617.txt.
17. The Internet Society. Hypertext Transfer Protocol – HTTP/1.1, 1999. Available

at http://www.ietf.org/rfc/rfc2616.txt.


