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Abstract. In a world in which every processing cycle is proportional
to used energy and the amount of available energy is limited, it is es-
pecially important to optimize source code in order to achieve the best
possible runtime. In this paper, we present a side-channel secure C frame-
work performing elliptic curve cryptography and improve its runtime on
three 16-bit microprocessors: the MSP430, the PIC24, and the dsPIC.
To the best of our knowledge we are the first to present results for the
PIC24 and the dsPIC. By evaluating different multi-precision and field-
multiplication methods, and hand-crafting the performance critical code
in Assembler, we improve the runtime of a point multiplication by a
factor of up to 5.41 and the secp160r1 field-multiplication by 6.36, and
the corresponding multi-precision multiplication by 7.91 (compared to a
speed-optimized C-implementation). Additionally, we present and com-
pare results for four different standardized elliptic curves making our data
applicable for real-world applications. Most spectacular are the perfor-
mance results on the dsPIC processor, being able to calculate a point
multiplication within 1.7 – 4.9 MCycles.

Keywords: Elliptic Curve Cryptography, ECC, Prime Field, MSP430,
PIC24, dsPIC, Assembler Optimization.

1 Introduction

Public-key cryptography is an active research area with a lot of applications.
The applications range from desktop computing, over (wireless) smart cards
down to low-energy sensor networks. On desktop computers one can use special
instructions or graphic processors in order to implement asymmetric cryptogra-
phy. Even nowadays mobile phones are equipped with powerful 32-bit processors
making the job of implementing public-key cryptography easier. However, there
are a lot of circumstances which call for cheap, energy saving, and fast solutions.

Especially applications utilizing small, embedded processors are interesting
for elliptic curve cryptography (ECC). An ECC implementation for such a mi-
croprocessor must be resource-conscious, aware of practically dangerous power,
timing, and fault attacks and still deliver a runtime, which is fast enough for real-
world applications. Additionally, many applications require the use of standard-



ized elliptic curves [1, 5, 27] that exceed a defined security threshold. Previous
work [20, 29, 31, 36] did only consider a part of those requirements.

This paper focuses on a fast and secure implementation of ECC on three
embedded 16-bit processors. By optimizing performance critical field operations
in Assembler, we drive the PIC24 [22], dsPIC [23], and MSP430 [32] to their
limits. To the best of our knowledge we are the first to report runtime results on
the PIC24 and dsPIC. Furthermore we present runtime results on the MSP430
using standardized NIST curves [27]. Especially by taking advantage of the 16-
bit multiply-accumulate unit of the dsPIC, we were able to improve its runtime
for a point multiplication by a factor of up to 5.41, a field multiplication by
6.36, and a big-integer multiplication by 7.91 (compared to a speed-optimized
C-implementation). Thus we reduced a 160-bit multi-precision multiplication to
180 cycles, with 100 cycles being the theoretical minimum.

Our framework is written and verified in C, uses a side-channel aware Mont-
gomery Ladder including y-recovery (formulae by Hutter et al. [16]), and verifies
the resulting point in order to check for fault attacks (see Ebeid et al. [9]). Addi-
tionally a projective point randomization [7] was used in order to strengthen the
side-channel resistance of the Montgomery ladder. Having fixed our high-level
algorithms, we investigate different big-integer multiplication methods (operand-
scanning, product-scanning, and hybrid) and field-multiplication methods (Bar-
rett, Montgomery, and fast-NIST-reduction) on the three processors. Our results
can be the foundation for choosing suitable embedded processors (e.g. smart
cards or sensor networks), for the investigation of important ECC-related fea-
tures for future microprocessors, and for follow-up research on custom ECC-
hardware designs.

The remainder of the paper is structured as followed. Section 2 discusses
relevant related work. Section 3 gives an introduction to elliptic curve cryptog-
raphy and the used algorithms. Whereas Section 4 gives a short introduction
into the MSP430 processor, Section 5 discusses the performance optimizations
made for the Microchip processors. Section 6 gives a comparison of all results
and Section 7 concludes the work.

2 Related Work

In the last years, a lot of research has been done on implementing elliptic curve
cryptography on embedded devices. Most notable is the work by Gura et al. [13],
who compared elliptic curve cryptography and RSA for the 8-bit ATmega128
processor [2]. For achieving high performance, they introduced the hybrid multi-
plication method. The results by Gura et al. for the ATmega128 processor have
been later improved by Uhsadel et al. [33], Scott et al. [29], and Liu et al. [21].
Further results for ATmega128 processors have been shown by Szczechowiak et
al. [31]. Using the preceding work of Scott and Szczechowiak [29], Szczechowiak et
al. [31] presented a comparison of ECC and pairings for the ATmega128 and
MSP430 processors. Those processors are specially interesting, because they are
used for the Wireless Sensor Network nodes MICA2 [8] and Tmote Sky [26]. They



compared the performance of the sensor nodes for the NIST K-163 Koblitz curve
over GF (2163) and a custom curve with p = 2160 − 2112 + 264 + 1 over GF (p).
Their results are based on MIRACL [30], a Multiprecision Integer and Rational
Arithmetic C/C++ Library.

Similar work with focus on sensor nodes has been published by Liu et al. [20].
They used the by SECG standardized secp160r1 prime field [4]. Note that for
security reasons this curve has been removed from the latest version of the
standard [5].

In 2009, Yan et al. [36] used the 32-bit DSP processor TMS320C6416 from
Texas Instruments to implement the secp160r1 and secp224r1 elliptic curves.
This very powerful processor fits only partly within the scope of this paper, but
uses 16-bit multipliers internally. It operates at 1 GHz, has 64 32-bit registers
and 1,024 KB L2 cache.

In contrast to the MSP430 and TMS320C6416 processors, we use the ECC-
processors by Kern et al. [18], Hutter et al. [15], and Wenger et al. [35] as refer-
ences. Those papers present specially optimized semi-custom ASIC designs that
use 16-bit multipliers. This makes them perfectly suitable for a comparison with
the performance of the dsPIC processor.

The design by Kern et al. [18] generates an ECDSA signature within 511 kCycles
for the elliptic curve secp160r1. Specially notable is their fast reduction tech-
nique taking advantage of two carry registers.

Hutter et al. [15] are using an 8-bit RISC microcontroller supporting 32 in-
structions, which is used for higher-level control-flow operations. In order to pro-
cess ECC efficiently, they use eight microcode ROM tables. Those tables control
a 16-bit multiply-accumulate unit and a dual-port 16-bit RAM. For NIST P-
192 prime field, without reduction a multiplication only needs 168 clock cycles.
This is very close to the optimum of N2 = 122 = 144 clock cycles. The design
performs ECDSA and has a chip area of only 19,115 gate equivalents.

The focus of the work of Wenger et al. [35] was to reduce the area footprint
(11,686 gate equivalents) of their processor. They use a custom 16-bit RISC
processor, featuring 46 instructions and 12 registers. The most notable feature
of their Arithmetic Logic Unit (ALU) is a 16-bit multiply-accumulate unit. In
order to reduce the disadvantage from their single-port RAM, they parallelized
and combined the arithmetic and memory access instructions. Hence the run
time of the same 192-bit multi-precision multiplication needs 252 clock cycles,
which is 33 % longer than the design of [15].

3 Elliptic-Curve Cryptography

Elliptic-Curve Cryptography (ECC) is defined over the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

with ai=1,2,3,4,6, x, y ∈ K. K defines the finite field. If a combination of x and
y fulfills Equation (1), it is noted a point P = (x, y) on the elliptic curve. Using
formulas for the addition and doubling of points, a point multiplication Q = kP



can be derived. Finding k, if Q and P are given, is known as the Elliptic Curve
Discrete Logarithm Problem (ECDLP).

Throughout this paper, K is a prime field Fp. n = dlog2(p)e bits or N =
dn/W e words are needed to represent an element of Fp. W is the word size of
the processor used. The binary representation of a field element a can be stored
in an array A = (A[N − 1], . . . , A[2], A[1], A[0]) of N W -sized words. The least
significant bit of a is stored in the rightmost bit of A[0].

3.1 Algorithms Used

Every point operation uses the underlying field operations, discussed in the fol-
lowing subsection. Speeding up those point operations has been a major goal
of a lot of researchers [3, 14]. Unfortunately most of those formulas are vul-
nerable to power, timing and fault-analysis attacks [10, 34]. So it is important
to use a method that is less vulnerable to such attacks. Such a method is the
Montgomery Ladder. This method performs a point addition and doubling for
every key bit during a point multiplication. We applied the formula by Hutter et
al. [16] which only requires 7 n-bit registers. Their formula needs 12 multiplica-
tions, 4 squarings and 17 additions per key bit and uses a Montgomery Ladder
with common-Z coordinates. By randomly initializing this Z-coordinate [7], an
additional, computationally cheap resistance against side-channel attacks can be
added. In order to make fault attacks more difficult, the y-coordinate is recovered
within the projective coordinates and a point verification [9] is performed.

Having fixed the high-level point-multiplication formula, one can concentrate
on the fast and efficient implementation of field operations.

3.2 Modular Multiplication

The most time-critical field operation is the field multiplication [14] and the most
time-critical part of the field multiplication is the multi-precision multiplication.
Although there exist different multi-precision multiplication methods, for every
multiplication, N2 partial products are needed in order to get a 2N -word result.
Such methods are the operand-scanning, the product-scanning [6], and the by
Gura et al. [13] introduced hybrid method.

The operand-scanning method is shown on the left of Figure 1. During
operand scanning one row is calculated by multiplying one word of the first
operand with all words of the second operand. The resulting partial products
are immediately added to C[k]. Thus this method needs 2N2 + N read opera-
tions and N2 + N write operations. Those are 3N2 + 2N memory operations in
total.

By rearranging the fixed number of partial products, the product-scanning
method (see right part Figure 1) can be derived. Here the intermediate results are
sorted column-wise. By using an accumulator [6, 12], the intermediate results can
be summed up very efficiently. For this method N2 read operations are needed
to access A[i] and B[j] and only 2N write operations are needed to store C[k].
So 2N2 + 2N memory operations are needed in total.
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Fig. 1. Partial products during multi-precision multiplication. (left: Operand Scanning,
right: Product Scanning)

In order to implement the operand and product-scanning multiplication meth-
ods, very few registers are needed. Gura et al. [13] takes advantage of the large
register-set of embedded processors and combines the operand and product-
scanning approaches. In an inner loop, d2 intermediate products are processed
row-wise (operand scanning) and in an outer loop, the intermediate sums are
added column-wise (product scanning). The larger the parameter d is chosen,
the more intermediate products are processed row-wise (d2) and the more regis-
ters are needed (3d+ dlog2(N/d)/W e) to implement this method efficiently. The
advantage of the hybrid-multiplication method is that it can reduce the number
of memory operations to 2dN2/de+ 2N .

3.3 Field Multiplication

The used multi-precision multiplication method has a significant influence on
the runtime of a point and field multiplication. A field multiplication adds a
reduction to the multi-precision multiplication. There are three very popular
ways to perform this reduction: Barrett reduction, Montgomery reduction, and
fast reduction (NIST reduction). We implemented all three methods and the
results convinced us to do no further investigation into the Barrett reduction.

The fast reduction method is based on the special design of the primes
used within the standards (e.g. NIST P-192; p192 = 2192 − 264 − 1). This spe-
cial Mersenne-like prime allows a reduction by only using addition and shift
operations. In practice this method is very fast, because additions are much
faster than multiplications. However there are Mersenne-like primes with a lot
of (e.g. NIST P-256; p256 = 2256 − 2128 − 296 + 232 − 1) or odd (e.g. secp160r1;



p160 = 2160 − 231 − 1) exponents, which have a significant influence on the run-
time.

A method which is not dependent on the kind of the used prime is the
Montgomery multiplication [25]. This method need some special set-up and back
transformation of the field elements, but when there are a lot of operations
involved, this method definitively pays off. First a R = 2WN is selected at
design-time, making sure that R > p and gcd(R, p) = 1. The field elements are
transformed by

ã ≡ aR (mod p), and (2)

b̃ ≡ bR (mod p), (3)

and further ã and b̃ are used instead of a and b. A multiplication is performed
as follows:

c̃ ≡Mont(ã, b̃) ≡ ãb̃R−1 ≡ (aR)(bR)R−1 ≡ abR ≡ cR (mod p). (4)

Utilizing the Montgomery multiplication, the transformation of the field elements
can be carried out easily:

Mont(a, R2) ≡ aR2R−1 ≡ aR ≡ ã (mod p), (5)

Mont(c̃, 1) ≡ (cR)R−1 ≡ c (mod p). (6)

In practice the multi-precision multiplication and Montgomery reduction are in-
terleaved. For the important implementation specific aspects of the Montgomery
multiplication we refer to Koç et al. [19].

Every one of the previously discussed multiplication and reduction meth-
ods has advantages and disadvantages on certain microprocessors and the used
prime. Those are discussed in the following sections.

4 Texas Instruments MSP430

The 16-bit MSP430 processor [32] by Texas Instruments is a very popular RISC
processor. Especially its vast field of application makes it interesting (e.g. Tmote
Sky [26]). The processor has 16 fully-addressable, single-cycle CPU registers that
can be used with 27 instructions (24 additional instructions are emulated). Four
of those registers are special purpose registers (program counter, stack pointer,
status register, and constant generator), so not all registers can be used for an
Assembler-optimized elliptic-curve implementation. A very important module
for the multi-precision multiplication algorithm is the multiplier. The MSP430
does not have a multiplication instruction. Depending on the series, it only offers
a 16-bit or 32-bit memory-mapped hardware multiplier. In order to perform a
16-bit multiplication, four memory accesses are necessary (write the two operand
words and read the two resulting words).

For the MSP430, we implemented the three major multi-precision multipli-
cation operations, discussed in Section 3.2 in Assembler. The advantage of the



operand-scanning method is that in average only three memory accesses are
necessary for a single integer multiplication. Remember that one operand stays
constant during the calculation of a row. The product-scanning multiplication
method takes advantage of the MAC instruction. This instruction uses the result
register as accumulator and provides a carry bit. So for every partial product,
the two operands have to be written and only the carry flag has to be processed.
For the hybrid multiplication results in Section 6, we used an implementation
with d = 2.

In order to summarize our results for the MSP430, the biggest disadvantage
in terms of ECC is that its hardware multiplier is memory mapped. Having
a processor with a multiplication instruction improves ECC significantly. Such
processors are the PIC24 and dsPIC.

5 Microchip PIC24 and dsPIC

The PIC24 and dsPIC microcontroller families by Microchip [22, 23] are 16-bit
RISC processors that are using a modified Harvard architecture. They are widely
used for motor control, signal processing, and intelligent sensor applications.
These controllers use 24-bit instruction words with a variable length opcode field.
Almost all instructions can be executed in a single cycle. Only commands which
change the program flow, table operations and the double word move instruction
take two or more cycles. Similar to the MSP430, the used PIC processors have
16 16-bit registers labeled as W0 to W15. W14 and W15 are used as frame and
stack pointer.

The dsPIC processors facilitate different features that make them perfectly
suited for public-key operations. First of all, the processor comes with a Digital
Signal Processing (DSP) engine. This engine provides two 40-bit accumulators
and a corresponding Arithmetic Logic Unit (ALU). This ALU is equipped with
a multiply and accumulate (MAC) instruction. Additionally a second Address
Generation Unit (AGU) is integrated. The primary address generation unit is
called X, the secondary is called Y. Some of the DSP instructions can utilize these
two AGUs and therefore fetch two operands at the same time while processing
the data in the registers. However, not the whole address space is available to
both AGUs. The X unit can read and write to all addresses while the Y unit
can only read from a certain device specific region. Nevertheless it is possible to
improve the performance considerable by taking the hassle of placing the data
at the correct position in memory.

In order to minimize the overhead of loop constructs, special loop instructions
named REPEAT and DO are provided. While DO needs two cycles to set up the loop
and can execute several instructions multiple times, REPEAT needs one cycle and
operates on a single command only. Another feature is the possibility to post
increment or decrement pointers when indirect memory addressing is used. With
this capability, the pointer arithmetic can be sped up significantly.

When performance is not the first priority using PIC24 processors is an op-
tion. Beside the missing DSP engine and the lack of the DO instruction the cores



of the PIC24 and the dsPIC processors are the same. Due to this compatibil-
ity we can give detailed results on the impact of the DSP engine concerning
performance.

In order to find the fastest implementation for this processor architecture we
start by presenting a generic product scanning algorithm which takes advantage
of the DSP instructions. As the code of the inner loop is the most important code
segment concerning speed, the following subsection focuses on this part. In the
next step additional ideas to further optimize the multi-precision multiplication
for speed are explained.

5.1 Generic Product Scanning on the dsPIC

The inner loop of the product scanning algorithm consists of one 16-bit mul-
tiplication and one addition (32-bit plus overflow handling). Additionally two
load operations are required to fetch the values of A[i] and B[j] from memory.
Furthermore the increment or decrement of i and j has to be handled as well.
Usually this operations would involve two registers for the operand values, two
registers for the multiplication product and three registers for the result of the
addition.

As we have the DSP extension we take advantage of one of the 40-bit ac-
cumulators. The multiply-accumulate (MAC) instruction is used to multiply two
16-bit operands and to add the result to the accumulator. This means that we
can handle the multiplication and the addition with the necessary precision in
one clock cycle.

Now that we know how the data can be processed efficiently we still need
to find a performant way to fetch the operand values. This can be implemented
with the MAC instruction as well. As this DSP command possesses the capability
to pre-fetch values by utilizing the two AGUs, it is possible to load both operands
during one clock cycle.

By the use of pointers to address the current operands, the update of i and
j can be implemented through applying post increments and/or decrements to
those pointers. Due to the fact that this pointer arithmetic is also supported
by this DSP operation the complete inner loop can be reduced to a single MAC
instruction plus REPEAT command.

The result of this optimization can be seen in Figure 2 in Lines 14 to 16.
At first the number of iterations for the REPEAT is calculated by subtracting the
current loop count in DCOUNT (addressed via pointer in W0) from the total
loop count (stored in W3). Afterwards the loop is set up using REPEAT followed
by the MAC instruction which should be repeated. This MAC invocation reads as
follows: Multiply the operands stored in a temp and b temp and add them to
accumulator A (A ← A + W5 ∗W6). At the same time fetch the next a temp
via AGU X by dereferencing aPtr temp (W5← [W8]). Simultaneously, the next
b temp is fetched via AGU Y by dereferencing bP tr temp (W6 ← [W10]). The
pointers are updated by incrementing aPtr temp ([W8]+ = 2) and decrementing
bP tr temp ([W10]− = 2) by two.



1 ; W0 = pointer to the DCOUNT register ; W7 = pointer to the ACCAL register
2 ; W2 = result pointer ; W8 = temporary pointer (aPtr temp)
3 ; W3 = integer length in words (length) ; W9 = operand pointer (aPtr)
4 ; W4 = temp register (tmp) ; W10 = temporary pointer (bPtr temp)
5 ; W5 = value of operand a (a temp) ; W11 = operand pointer (bPtr)
6 ; W6 = value of operand b (b temp)
7
8 DO W3, loop ; main loop, iterates length+1 times
9 MOV W9,W8 ; aPtr temp = aPtr

10 SUB W11,#2,W10 ; bPtr temp = bPtr − 2
11 ; pre−fetch operands for the inner loop ; a temp = ∗aPtr temp++
12 MOVSAC A, [W8]+=2, W5, [W11]+=2, W6 ; b temp = ∗bPtr++
13 ; calculate iteration count and execute the loop
14 SUB W3,[W0],W4

; tmp = length − DCOUNT
15 REPEAT W4
16 MAC W5∗W6, A, [W8]+=2, W5, [W10]−=2, W6
17 ; store the resulting word and shift the accumulator
18 MOV [W7],[W2++] ; ∗resPtr++ = ACCAL
19 loop: SFTAC A, #16

Fig. 2. One of the two loops in the generic product scanning implementation.

As the MAC instruction always operates with the values which are already
stored in a temp and b temp, it is mandatory to initialize them before this inner
loop is executed. These fetches are done by using the MOVSAC operation in Line 12.

By looking at the pre-fetch behavior it can be seen that the last MAC operation
loads operands which are not needed for the algorithm. By unrolling this last
MAC invocation from the REPEAT it is possible to use the last pre-fetch to initialize
a temp and b temp with the needed data for the next iteration. By doing this,
the MOVSAC operation in the outer loop can be omitted.

5.2 Unrolled Product Scanning on the dsPIC

By unrolling the code for a fixed n-bit integer multiplication, advantage of the
constant input size can be taken to improve the pointer arithmetic. The tem-
porary pointers can be omitted when an appropriate sequence for the partial
products is chosen as the post-in/decrement functionality of the MAC instruc-
tion is sufficient to update the pointers. The resulting zig-zag like pattern is
nicely visualized in Figure 3. A part of the resulting source code is shown in
Figure 4. Observe that the multiplicands for the multiplication are loaded in the
preceding operations W5← [W9] and W6← [W11]. In the once more preceding
operation, the pointer registers are updated using the post in/decrement feature:
[W9]− = 2, [W11]+ = 2.

At this point, we have to note that there is a prerequisite which has to be
fulfilled. The pre-fetch mechanism requires that the operands are in different
address spaces (X and Y). We ensure this by copying the input integers into
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Fig. 3. Note the zig-zag product scanning multiplication method, which is specially
suited for the dsPIC. (e.g. four word multi-precision multiplication)

temporary variables at the beginning of the multiplication. Although these copy
operations are quite cheap (15 cycles for one 160-bit integer) it is possible to omit
them by placing the operands in the correct memory region before the function
call. As the generic implementation uses the pre-fetch technique too, the same
constraint applies.

5.3 Montgomery Multiplication on the dsPIC

Like proposed by Koç et al. [19], various implementations of the Montgomery
multiplication are possible which mainly differ in the underlying multiplication
method (operand scanning, product scanning, . . . ) and the degree of integration
of the reduction step. As product scanning provides the best results on the dsPIC
architecture we have chosen the Finely Integrated Product Scanning (FIPS)

1 MAC W5∗W6, A, [W9]−=2, W5, [W11]+=2, W6
2 MAC W5∗W6, A, [W9], W5, [W11]+=2, W6
3 MAC W5∗W6, A, [W9]+=2, W5, [W11]−=2, W6
4 MOV [W7],[W2++]
5 SFTAC A, #16
6
7 MAC W5∗W6, A, [W9]+=2, W5, [W11]−=2, W6
8 MAC W5∗W6, A, [W9]+=2, W5, [W11]−=2, W6
9 MAC W5∗W6, A, [W9]+=2, W5, [W11], W6

10 MAC W5∗W6, A, [W9]−=2, W5, [W11]+=2, W6
11 MOV [W7],[W2++]
12 SFTAC A, #16

Fig. 4. Unrolled calculation of the result word two and three.



method for our implementation. The interleaving of multiplication and reduction
makes it necessary to implement the whole Montgomery multiplication using
Assembler. Otherwise no decent performance can be gained following the FIPS
approach. Through the high similarity of the product-scanning and the FIPS
method most of the optimizations presented in the last sections can be applied
as well, resulting in a fast implementation of the field multiplication.

6 Comparison Results

For the results shown in this section, we avoided to select the parameters for
ECC ourselves. Instead we chose curves that have been standardized [1, 5, 27].
NIST [28] gave recommendations about the security margin for future applica-
tions. They recommend to use elliptic curves that exceed 160 bits. Also SECG
removed the 160-bit curve in their latest release of the SEC standard [5]. Never-
theless, we present results for the secp160r1 curve for comparison with related
work. Additionally, the relative performance results shown in Subsection 6.1 are
also applicable for larger elliptic curves. Those elliptic curves are discussed in
Subsection 6.2.

For the generation of the results, for the MSP430 we used the IAR Embedded
Workbench 5.30 [17] with the maximum optimizer settings available ’-Ohs’. All
results have been generated for the MSP430F1611 device which comes with an
embedded 16-bit multiplier.

For the PIC24 and dsPIC results, we used the simulator of the MPLAB IDE
v8.63 [24], the MPLAB C30 v3.25 compiler with settings ’-o3’, ’-funroll-loops’,
and the PIC24FJ96GA006 and dsPIC30F6015 devices.

For the following comparisons it should be noted that we neglect parameters
such as chip area, power consumption and cost factors, because they signifi-
cantly differ from processor to processor. However energy is defined as product
of power and time. So by minimizing the runtime, we also optimize the energy
consumption.

6.1 Relative Performance

In Table 1, we compare the run times for big-integer multiplication, field mul-
tiplication and point multiplication using the secp160r1 curve [4]. For all pre-
sented platforms, we started with a reference implementation in C. In C, the
operand-scanning multiplication outperforms the product-scanning multiplica-
tion by 12.6 % (MSP430) and 16.4 % (PIC24). Consequently, the point mul-
tiplication is 8.2 % and 13.5 % faster. By manually writing the multi-precision
multiplication in Assembler, the run time was reduced by a factor of 1.53 to 2.42.
Implementing the hybrid multiplication method with d = 2 on the MSP430 im-
proved the runtime by just 4.8 %. By only using 3.1 kbytes of program memory
and 274 bytes of stack, this implementation is very resource friendly. Unrolling
the product-scanning multiplication method improved the multi-precision multi-
plication by another 15.1 %, but came at the cost of additional 1.5 kbytes (47 %)
more program code.



Table 1. Comparison of the multi-precision multiplication, the field multiplication and
the ECC point multiplication for secp160r1.

Implementation Multi-Prec. Mult. Fp160 Mult. Point Mult.

MSP430 C op. sc. 4,103 6,069 16,985,654
MSP430 C pr. sc. 4,699 6,665 18,512,606
MSP430a ASM op. sc. 2,583 4,127 11,380,361
MSP430a ASM pr. sc. 1,945 3,489 9,745,805
MSP430a ASM hybrid 1,851 3,395 9,504,977
MSP430a ASM + unrolled pr. sc. 1,570 3,112 8,779,931

PIC24 C op. sc. 1,423 2,393 6,703,476
PIC24 C pr. sc. 1,702 2,675 7,753,292

PIC24b ASM op. sc. 929 1,909 5,463,648

PIC24b ASM pr. sc. 1,031 2,011 5,739,732

dsPICc ASM + DO/REP. op. sc. 622 998 2,840,921
dsPICc ASM + DO/REP. pr. sc. 727 1,104 3,127,253
dsPICc ASM + DSP op. sc. 546 923 2,648,377
dsPICc ASM + DSP pr. sc. 267 644 1,932,431
dsPICc ASM + unrolled pr. sc. 180 557 1,709,537
dsPICc ASM + DSP Montgomery — 554 1,696,433
dsPICc ASM + unrolled Montgomery — 376 1,239,281

MSP430 Liu et al. [20] 12,645,040

MSP430d Scott et al. [29, 31] 1,746 2,736 5,760,000
TMS320 Yan et al. [36] 150 290 810,000

ASIC Kern et al. [18] pr. sc. 167 511,864

a Multi-precision addition and subtraction were manually unrolled in Assembler.
b Only multi-precision multiplication was manually written in Assembler.
c Multi-precision addition, subtraction, and shift operation were manually written in

Assembler.
d Did not use secp160r1.

Up to this point, the results on the PIC24 processor are identical to the
results of the dsPIC processor. In the following steps, we utilize the special fea-
tures of the dsPIC to further improve the performance. By making use of the
DO and REPEAT commands, the run-time of a single multi-precision multiplica-
tion was reduced by 29 % to 33 %. A more significant performance improvement
was achieved by utilizing the DSP part of the dsPIC processor. A speedup of
2.72 has been achieved for the product-scanning multiplication method. Using
the same methodology, the operand-scanning multiplication method improved
by only 1.14. So only when we take advantage of the DSP-unit, the product-
scanning method is (2.04 times) faster. A further experiment showed that by
unrolling the Assembler code and performing the product-scanning in a zig-zag-
like fashion, the run time could be further reduced by 32.6 %. At this point it
should be noted that although the performance of the multi-precision multipli-
cation has been improved by a factor of 7.91 (unrolled DSP vs. best C version),
the performance of the field multiplication improved by 4.30 and the point mul-



tiplication improved by 3.92. A reason for that is the slow reduction modulo
p160 = 2160− 231− 1. The term 231 results into a relatively slow shift operation.
So we investigated the Montgomery multiplication technique. Utilizing the FIPS
multiplication method from Koç et al. [19], the field multiplication was improved
by 14.0 %. Unrolling the Assembler code resulted in the fastest field multiplica-
tion, just needing 376 cycles. This is 32.5 % faster than the fastest combination
of unrolled product-scanning and fast reduction.

By investigating the related results for the MSP430, it becomes obvious that
in comparison to Liu et al. [20], our point multiplication method is 25 % faster
even though they used a memory-hungry sliding-window point multiplication
method.

The hybrid multi-precision multiplication method by Scott and Szczechowiak et
al. [29, 31] is 6 % faster than our multiplication method, because they unrolled
their hybrid multiplication. However compared to our unrolled product-scanning
method they are 11 % slower. The differences within the field and point multi-
plication come from a different elliptic curve and sliding-window point multi-
plication formula used. Because the sliding window technique needs additional
memory, they need 2.9 kbytes of data memory and 31.3 kbytes of program mem-
ory, which is more than 10 times the resources we need.

The results on the dsPIC processor made us confident enough to compare
them with the powerful TMS320C6416 processor (Yan et al. [36]) as well as the
custom designed ASIC by Kern et al. [18]. The implementation by Yan et al. [36]
using the mighty TMS320C6416 processor1 and the custom designed ASIC ought
to be faster. But the difference is only a factor of 1.53 – 2.42.

With this comparison we showed that the field multiplication utilizing a
memory-mapped multiplication unit is more than 2 times slower. Also the ad-
vantages of having DO/REPEAT and DSP instructions have been discussed. Uti-
lizing the full potential of the Montgomery multiplication method, the point
multiplication has been improved by a factor of 5.41 versus the fastest C-only
implementation.

6.2 Scaling of Performance

The last subsection limited the comparison to the secp160r1 curve. This sub-
section extends our focuses to the NIST [27] standardized elliptic curves P-192,
P-224, and P-256.

The most remarkable feature within Table 2 is the influence of the chosen
field prime into the run time of the point multiplication. On the dsPIC processor,
the performance of the FIPS Montgomery field-multiplication is better for the
secp160r1 and NIST P-256 fields, but the fast reduction technique utilizing
Mersenne-like primes are faster for the NIST P-192 and P-224 prime fields.

The Assembler optimizations on the MSP430 resulted in a speedup of 1.93
to 2.34. The larger the used prime field, the larger is the achieved speedup. Also
on the PIC24 architecture, speedups between 1.23 and 1.42 have been achieved.

1 64 32-bit registers. Eight independent functional units. 1 GHz.



Table 2. Point multiplication for different field parameters in kCycles.

Implementation secp160r1 P-192 P-224 P-256

MSP430 C op. sc. 16,986 23,405 35,531 47,455
MSP430 ASM hybrid 9,505 11,949 18,464 23,973

PIC24 C op. sc. 6,703 8,985 13,781 18,992
PIC24 ASM op. sc. 5,464 6,754 10,138 13,379

dsPIC ASM + DSP pr. sc. 1,932 2,178 2,880 5,079
dsPIC ASM + DSP Mont. 1,696 2,528 3,582 4,879

MSP430 Liu et al. [20] 12,645
C6416 Yan et al. [36] 810 1,690

ASIC Kern et al. [18] pr. sc. 512
ASIC Wenger et al. [35] pr. sc. 1,377
ASIC Hutter et al. [15] pr. sc. 783

Utilizing the dsPIC, the biggest speedup factors, ranging from 3.89 up to 4.79,
have been achieved.

Our results improved the work of Liu et al. [20] on the MSP430 processor.
Again we compared our results with the powerful TMS320C6416 processor as
well as some custom designed ASICs. The TMS320C6416 performs the point
multiplication only 1.7 – 2.1 times faster, which is quite small compared to
the processing power of the TMS320C6416. Also the ASIC designs ought to be
faster. Although those design focused on area-optimizations the authors [15, 18,
35] achieved good run time results. Consequently the performance differs by a
factor of 1.58 – 3.31.

7 Conclusion

In this paper we presented, evaluated, and optimized an elliptic curve point
multiplication for three different processors using four different elliptic curves.
Starting with a C reference implementation (which includes several countermea-
sures against possible attacks), we were able to improve the runtime by simply
rewriting the performance critical field operations in Assembler. Therefore we
evaluated the most commonly used big-integer and field multiplication methods.
We achieved a speedup for a single point multiplication of 1.93 – 2.34 on the
MSP430, 1.23 – 1.42 on the PIC24 and 3.89 – 5.41 on the dsPIC. Especially
impressing is the possible speedup of 7.91 for a single 160-bit multiplication on
the dsPIC which is 10.5 times faster than fastest corresponding operation on the
MSP430.

By the best of our knowledge, we are the first to present results for ECC
on the PIC24 and dsPIC and those results are especially interesting for future
applications in which embedded processors are required.
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