
A New Scale for Attribute Dependency in Large

Database Systems

Soumya Sen
1
, Anjan Dutta

2
, Agostino Cortesi3, Nabendu Chaki

4

1,2,4 University of Calcutta, Kolkata, India

3 Universita Ca Foscari, Venice, Italy

{1iamsoumyasen@gmail.com, 2anjanshines@gmail.com, 3cortesi@unive.it,
4nabendu@ieee.org}

Abstract. Large, data centric applications are characterized by its different

attributes. In modern day, a huge majority of the large data centric applications

are based on relational model. The databases are collection of tables and every

table consists of numbers of attributes. The data is accessed typically through

SQL queries. The queries that are being executed could be analyzed for

different types of optimizations. Analysis based on different attributes used in a

set of query would guide the database administrators to enhance the speed of

query execution. A better model in this context would help in predicting the

nature of upcoming query set. An effective prediction model would guide in

different applications of database, data warehouse, data mining etc. In this

paper, a numeric scale has been proposed to enumerate the strength of

associations between independent data attributes. The proposed scale is built

based on some probabilistic analysis of the usage of the attributes in different

queries. Thus this methodology aims to predict future usage of attributes based

on the current usage.

Keywords: Materialized view; Query Processing; Attribute dependency;

Numeric scale; Query Optimization.

1 Introduction

Success of any large database application depends on the efficiency of storing the data

and retrieving the same from the database. Contemporary database applications are

expected to support fast response and low turn-around time irrespective of the

mediums and applications. Speeding up the query processing in distributed

environment is even more challenging. Users demand high speed execution over

internet, mobile phone or any other modern electrical gadgets. Fetching of closely

related data attributes together would help to reduce the latency. This would be

particularly significant to reduce communication cost for query processing in a

distributed database. The core technology proposed in this paper could further be

extended in cloud computing environment where data is distributed in different data

centers. Faster query processing in cloud computing environment result in quick

service processing to the users. Each of these diverse application platforms have

specific, and distinct features and could be differentiated based on their nature. Thus

not only the data stored in the database is subject of interest. Proper analysis of

different run time parameters of the execution environment could excel the

performance.

In this paper, a numeric scale has been proposed to measure the degree of

association among attributes based on their usage in recent queries. This forms the

foundation for several optimization aspects that could improve different database

perspectives such as building materialized view, maintain indexes, formation of

database clusters etc.

Attribute is the most granular form of representing data in database applications.

Thus this analysis based on attributes give a deep insight of the system. Hence the

deployment of optimization techniques based on this scale would help to improve the

performance of the application from the granular level. Once developed, this numeric

scale could be rebuilt dynamically depending on the changing nature of the queries

over time. The proposed scale takes into consideration the independent characteristics

of diverse applications or execution environment. Hence, by incorporating the

assumptions and constraints of the specific system, this scale could be used in

heterogeneous applications.

The rest of this paper is organized in several sections after this brief introduction.

Section 2 describes different existing work on optimization of query execution. Section

3 contains the proposed methodology of constructing the numeric scale. In section 4,

the selection of parameters is discussed along with the complexity analysis of this

method. In section 5, the entire process is illustrated through an example. The

concluding remarks in section 6 summarize the work and mention the future extensions

and applications of the proposed methodology.

2 Related Work

Optimizing the query processing in large data centric application has traditionally

been studied under the name of query optimization. Several works has been reported

on this area. Initially the focus was on simple database. Over the time, multiple

aspects including diverse performance criteria and constraints as well as the

requirements for specific applications are taken into consideration. In the rest of this

section, a brief survey work has been presented focused on query optimization.

A method of query processing and standardization is proposed in [1] where query

graphs are used to represent the queries. These are converted to query trees which in

turn are represented in canonical vector form. These trees are optimized to enhance

the performance. Another graph based model used in this context help in further

optimization by considering the parameters like relation size, tuple size, join

selectivity factors [2]. An algorithm has also been proposed in [2] to find a near

optimal execution plan in polynomial time. The time complexity of analyzing the

graph is often quite high. In [2], instead of considering the whole execution path,

selective paths are processed. Genetic algorithm and heuristic approaches are also

used for query optimization [3, 4]. A genetic algorithm [3] to minimize the data

transmission cost required for a distributed set query processing is presented. This

work is also a contribution in the distributed database application. On the other hand,

a heuristic approach [4] is proposed to efficiently derive execution plans for complex

queries. These works takes into account presence of index and goes beyond simple

join reordering. Mathematical model is also helpful in this context. Tarski Algebra [5]

along with graphical representation of query is used to achieve efficient query

optimization. Another graph based approach is shown to optimize the linear recursive

queries [6] in SQL. This approach computes transitive closure of a graph and

computes the power matrix of its adjacency matrix. Using this [6], optimization plan

is evaluated for four types of graphs: binary tree, list, cyclic graph and complete

graph. In recent past, the distributed query optimization get serious research attention

as many of the current applications run in distributed environment. A multi-query

optimization aspect for distributed similarity query processing [7] attempts to exploit

the dependencies in the derivation of a query evaluation plan. A four-step algorithm

[7] is proposed to minimize the response time and towards increasing the parallelism

of I/O and CPU.

Creation of materialized view and its archival in fast cache also helps in reducing

the query access time by prior assessment of the data that is frequently accessed. The

view management process would be more effective if such data can be included in the

view that is likely to be accessed in near future. An algorithm was been proposed by

Yang, et. al. that utilizes a Multiple View Processing Plan (MVPP) [8] to obtain an

optimal materialized view selection. The objective had been to achieve the

combination of good performance and low maintenance cost. However, Yang’s

approach did not consider the system storage constraints. Gupta proposed a greedy

algorithm [9] to incorporate the maintenance cost and storage constraint in the

selection of data warehouse materialized views. The AND-OR view graphs were used

[9] to represent all possible ways to generate warehouse views such that the best

query path can be utilized to optimize query response time.

Materialized views are built to minimize the total query response time while there

is an associated overhead towards the creation and maintenance of these views. Thus,

an effort has always been to balance a strike between optimizing the processing cost

[10] and time for view selection vis-à-vis increasing the efficiency of query

processing [11] by utilizing well-organized materialized view.

Use of index also helps to achieve faster data processing. The application of bitmap

index [12] helps in query processing for data warehouse and decision-making

systems. The work proposed in [13], couples the materialized view and index

selection to take view-index interactions into account and achieve efficient storage

space sharing.

However, none of these existing works of query optimization and query processing

is based on the outcome of a quantitative analysis on the intensity of association

between the attributes. The work proposed in this paper, therefore, aims towards

finding a numeric measure to assess such inter-attribute associations. This numeric

scale provides the relationship between attributes in terms of both present and future

usage. Hence this scale could be applicable in any optimization methods that involve

the association of a set of attributes. The knowledge of this scale could be used in

building and maintenance of materialized views or indexes.

3 Attribute Scaling

The motivation behind this work is to create a numeric scale to represent the degree of

associations between different attributes based on a set of queries. This scale would

help to generate different materialized views based on the requirement of the users.

The proposed methodology of constructing this numeric scale is explained using a

seven step algorithm named Numeric_Scale (described in section 3.1). In the pre-

processing phase, a set of queries (say m number of queries) are picked from the

recent queries evoked in an application. Say, a total of n numbers of attributes

participate in the query set. The proposed scale is based on these n attributes.

The 1st step of the proposed algorithm builds the Query Attribute Usage Matrix

(QAUM), which shows what attributes are used by which queries (described in

section 3.2). In the next step, mutual dependencies among every pair of attributes are

computed, yielding to the Attribute Dependency Matrix (ADM) (described in 3.3).

This is a symmetric matrix. Based on the result of ADM a new matrix, called

Probability Distribution Matrix (PDM), is computed. PDM shows the dependencies

among every pair of attributes based on a probabilistic function (described in 3.4).

This is followed by the computation of standard deviation of each attribute (described

in section 3.5). Then for every attribute, scaling is calculated using a function of

standard deviation and frequency of attribute occurrences (described in section 3.6).

This result is stored in the Numeric Scale Matrix (NSM). Now this result is

normalized in a scale of 10 for every attribute and stored in Normalized Numeric

Scale Matrix (NNSM) (described in section 3.7). The NNSM Matrix shows the

dependency among all pair of attributes in the query set based on a numeric scale.

Higher the value in each cell of NNSM lower the dependency among the pair of

attributes corresponding to the particular cell. Thus the entry of 10 in some cell say,

[i, j] means that for ith attribute it has lowest dependency on jth attribute.

3.1 Algorithnm Numeric_Scale

Begin

Step 1. The association between the queries and attributes is computed in Query

Attribute Usage Matrix (QAUM).

Call method QAUM_Computation;

Step 2. Mutual dependencies of the attributes are stored in Attribute Dependency

Matrix (ADM). The sum of 1 to nth columns (except the diagonal cell) for a given

tuple is stored in the newly inserted (m+1)
th

 column of ADM known as Total

Measure.

Call method ADM_Computation;

Step 3. The probability that an attribute is dependent on another attribute is calculated

and stored in a Probability Distribution Matrix (PDM).

Call method Probability_Calculation;

Step 4. Standard Deviation (SD) of each attribute is calculated.

Call method StandardDeviation_Computation;

Step 5. A particular attribute (PIVOT attribute) is selected and scaling of each

attribute is done using the methodology Scaling_Calculation and the result is stored in

Numeric Scale Matrix [NSM].

Call method Scaling_Calculation;

Step 6. Normalize the computed value of NSM in the closed interval of [1, 10] and

stored in Normalized Numeric Scale Matrix[NNSM].

Call method Normalized_Scale;

End Numeric_Scale.

3.2 Method QAUM_Computation

In this stage, a m x n binary valued matrix is constructed named as Query Attribute

Usage Matrix (QAUM). Here, m is the numbers of queries in the query set and n is

the total numbers of attributes used in this query set. If query h uses k
th

 attribute,

QAUM[h, k] would be 1 else 0.

Begin QAUM_Computation
/* Procedure to build Query Attribute Usage Matrix (QAUM) */

∀ℎ	�	�1. . �	, ∀�	�	�1. . �	, �	�	�	����	�	ℎ,				
�����,� = 1;		

����	
�����,� = 0;

End QAUM_Computation

3.3 Method ADM_Computation

In this stage, a n x n symmetric matrix named Attribute Dependency Matrix (ADM) is

built. Each cell say [h, k] of this matrix keeps a count on the number of times that both

h
th

 and k
th
 attributes are used simultaneously in the set of m queries. As this is a

symmetric matrix at this stage ADM[h, k] = ADM[k, h]. The diagonal of this matrix is

marked as ‘#’. The diagonal cells contain trivial information that the dependency of an

attribute is with itself only. After this new column is inserted into ADM named Total

Measure, which stores the sum of every row. So, finally ADM is a n x (n+1) matrix.

Begin ADM_Computation

/* Procedure to count number of times two attributes a, b occur simultaneously and

store it in matrix ADM and finally adding the values of each row to store in column

Total Measure.*/

∀ℎ, �	�	�1. . �	, �	ℎ = �				
����,� = #;		

����	
����,� = � �!�	" ���	 �	 ""�#��"��	 �	
!��#$����	ℎ	!��	�	� %��ℎ�#	�	�ℎ�	���	 �	&	'��#��	;

 ∀ℎ, �	�	�1. . �	,	
 ����,�() = ∑�+)

, 	����,� 	∀	ℎ ≠ �.
 End ADM_Computation

Variance5X7 = ∑�+)
, 8�.59� − μ72

Standard	Deviation5SD7=√Variance5X7

Mean5μ7 = ∑�+)
, 8�.9�

3.4 Method Probability_Calculation

 In this stage an n x n Probability Distribution Matrix (PDM) is constructed. This

matrix is build to estimate a probabilistic measure of dependencies of every h
th

attribute with other attributes. Every value of PDM[h, k] is computed by dividing the

value of ADM[h, k] by the value of Total Measure (ADM[h, n+1])corresponding to the

h
th

 row of ADM. However, computing the measures of two types of cells are not

required. These are diagonal cells and the cells for which ADM entry is 0. These types

of cells are marked as ‘#’ in PDM

Begin Probability_Calculation
/* Procedure to build Probability Distribution Matrix (PDM) on the basis of use of
attributes */

∀ℎ, �	�	�1. . �	, �	5ℎ = �7	⋁	5����,� = 07,			
E���,� = #;		

����	
E���,� = FGHI,J

FGHI,KLM
;

End Probability_Calculation

3.5 Method StandardDeviation _Computation

In this stage the mean, variance and standard deviation of attributes are computed as

function of ADM and PDM. This is computed to measure the deviation of mean of

other attribute from a given attribute.

Fig.1. Formulas for Mean, Variance and Standard Deviation.

If the random variable X is discrete with probability mass function

x1→p1,….,xn→pn then Mean, Variance and Standard Deviation(SD) are calculated

using the three formulas shown in Figure. 1. Here, ph and xh are the entries of PDM

and ADM respectively. However those entries which are marked as # in PDM they are

not considered in this computation. The results of Mean, Variance and Standard

Deviation of every attribute are stored in MVSD table. The 1
st
 row contains the mean,

2
nd

 row contains the variance and 3
rd

 row contains the standard deviation.

Begin StandardDeviation_Computation

/* Procedure to compute and store mean, variance and standard deviation for attributes

in MVSD matrix*/

∀h	ϵ	�1. . n	

S = 0;	
 ∀k	ϵ	�1. . n		if	5PDMR,S ≠ #7		

S = S + ADMR,S × PDMR,S; /*Value stored in ADM [h, k] is multiplied with

the value stored in PDM[h,k] */

MVSD),R = S; /* Stores mean(µ) */

∀h	ϵ	�1. . n	
SD = 0;	

 ∀k	ϵ	�1. . n		if	5PDMR,S ≠ #7		
SD = SD + PDMR,S × 5ADMR,S −	MVSD),R7

2
;

MVSDW,R = SD; /* Stores Variance(X) */

MVSDX,R = √SD; /* Stores Standards Deviation */

End StandardDeviation_Computation

3.6 Method Scaling _Calculation

In this stage an n x n matrix is constructed and named as Numeric Scale Matrix
(NSM). The values of this matrix are computed as the function of standard deviation in
MVSD and ADM. The result of every MVSD[h, k] is computed as : modulus
difference of standard deviation of h

th
 and k

th
 attribute, which is divided by the

ADM[h,k]. However, if the PDM[h, k] is #, it is not considered for computation. This
matrix is constructed taking the help of both the probabilistic estimate of attribute
usage as well as the current context of attribute usage. Thus this matrix identifies the
degree of interdependence among every pair of attribute. Lower the value in every cell
of NSM, higher the degree of dependence among the attributes corresponds to the row
and column.

Begin Scaling_calculation

/* Procedure to compute and store degree of interdependence among attributes to

build Numeric Scale Matrix (NSM)*/

∀ℎ	�	�1. . �	, ∀�	�	�1. . �	, �	E���,� = #,				
&Y��,� = #;		

����	
� = ����,�;

 &Y��,� =
ZH[\G],I^	H[\G],JZ

G
;

End Scaling_Calculation

3.7 Method Normalized_Scale

In this stage another n x n matrix named Normalized Numeric Scale Matrix

(NNSM) is constructed by normalizing every row of NSM in a scale of 10. For every

row the highest value is mapped to 10, similarly all other values of the row are mapped

to the new value with the same mapping function. For a row (say, for attribute h) if the

attribute k has the value 10, that means h has the weakest relationship with attribute k

where as the lowest entry (say, for attribute p) in some column signifies that h has the

strongest relationship with attribute p.

Begin Normalized_Scale

/* Procedure to compute normalized numeric scale and result stored in NNSM*/

∀ℎ	�	�1. . �	
�!9 = 0;	

 ∀�	�	�1. . �		�	5&Y��,� ≠ #7	∧ 5&Y��,� > �!97		
�!9 = &Y��,�;

∀�	�	�1. . �		�	5&Y��,� ≠ #7		
 &&Y��,� = #;
 ����

 &&Y��,� = 5&Y��,�/�!97 × 10;

End Normalized_Scale

4 Selection of Parameters and Complexity Analysis

The proposed model is based on set of queries and the attributes belonging to this set.

Thus some selection criterions are important for successful execution of it. The

different performance issues for the proposed numeric scale include scalability,

dynamicity, and generalization aspect. The roles of the identified parameters are

discussed below:

1) Query Selection: This algorithm starts with a set of queries. The entire analysis

process is based on this query set. Hence, identification of query set is an important

parameter for this process. It could be done in different ways. Two of the widely used

methods are random selection, and interval based Selection. The first method extracts

some of the executed queries from a given set randomly. In the second approach,

certain time interval is chosen and the queries that have been executed during this are

taken for analysis purpose.

2) Attribute Selection: Once the queries have been selected a set of attributes

belonging to this query set is clearly identified. However, all of the attributes may not

be subject of interest. As for example, if an attribute is used rarely in a query set,

discarding that attribute would reduce the size of ADM and hence result in a faster

execution of this method.

3) Threshold Selection: In the preceding step the requirement of attribute selection is

defined. This is to be supported by some proper usage ratio. Thus the selection of

threshold value of usage is also need to be defined.

The overall asymptotic run-time complexity of this algorithm is O(n
2
), where n is

the number of attributes selected for analysis. Therefore, the effectiveness of our

approach relies on one hand on the ratio n/M, where M is the overall number of

attributes in the database, and on the other hand variance degree of attributes

appearing in the query sequence. Measuring the actual computational advantage of

our algorithm is the main subject of our ongoing work.

5 Illustrative Example

Let's consider a small example set of queries. This is only for the sake of a lucid

explanation of the steps to be followed in the proposed algorithm. There are ten queries

(q1, q2, …. ,q10) in the set which use ten different attributes namely a1, a2,…….,a10.

The queries are not given here due to space constraint, the example is shown starting

from QAUM. The results are shown up to 2 decimal places.

Step 1: The use of these 10 attributes, by these 10 queries is shown in the

QAUM(Table 1) using the method QAUM_Computation. If we consider query q1 we

can say this query uses attributes a1, a2, a3, a4, a5 and a9.

Table 1. QAUM.

 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

q1 1 1 1 1 1 0 0 0 1 0

q2 1 0 0 1 0 1 1 0 0 0

q3 0 0 1 0 1 1 1 1 0 0

q4 1 0 0 0 1 1 0 0 1 1

q5 0 1 0 0 0 0 1 1 1 1

q6 0 0 1 1 0 1 0 0 0 1

q7 1 1 1 0 0 1 0 1 1 0

q8 1 1 1 0 1 0 0 0 0 1

q9 0 1 1 0 1 0 0 1 1 1

q10 1 0 0 1 0 1 1 0 1 1

Step 2: The mutual dependencies among all the attributes are stored in Attribute

Dependency Matrix (ADM). For example the attributes a1 and a2 are used

simultaneously in three queries, namely q1, q7 and q8. Thus, the entry in ADM for (a1,

a2) is 3. The Total Measure is computed in ADM by adding the attribute dependency

in every row. For instance, the Total Measure for a1 is 24. (Table 2)

Table 2. ADM.

 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Total

 Measure

a1 # 3 3 3 2 3 2 1 4 3 24

a2 3 # 4 1 3 2 1 3 4 3 24

a3 3 4 # 2 4 3 2 3 3 2 26

a4 3 1 2 # 1 3 2 0 2 2 16

a5 3 2 4 1 # 2 1 2 3 3 21

a6 3 2 3 3 2 # 3 2 3 3 24

a7 2 1 2 2 1 3 # 2 2 2 17

a8 1 3 3 0 2 2 2 # 3 2 18

a9 4 4 3 2 3 3 2 3 # 4 28

a10 3 3 2 2 3 3 2 2 4 # 24

Step 3: PDM is built (Table 3) using the method Probability_Calculation to define

the probabilistic estimate of attribute occurrence; e.g., (a1, a2) in PDM is computed by

dividing ADM(a1,a2) with the Total Measure of a1 from ADM.

Table 3. PDM.

 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 # 0.13 0.13 0.13 0.08 0.13 0.08 0.04 0.17 0.13

a2 0.13 # 0.17 0.04 0.13 0.08 0.04 0.13 0.17 0.13

a3 0.12 0.15 # 0.08 0.15 0.12 0.08 0.12 0.12 0.08

a4 0.19 0.06 0.13 # 0.06 0.19 0.13 # 0.13 0.13

a5 0.14 0.10 0.19 0.05 # 0.10 0.05 0.10 0.14 0.14

a6 0.13 0.08 0.13 0.13 0.08 # 0.13 0.08 0.13 0.13

a7 0.12 0.06 0.12 0.12 0.06 0.18 # 0.12 0.12 0.12

a8 0.06 0.17 0.17 0.00 0.11 0.11 0.11 # 0.17 0.11

a9 0.14 0.14 0.11 0.07 0.11 0.11 0.07 0.11 # 0.14

a10 0.13 0.13 0.08 0.08 0.13 0.13 0.08 0.08 0.17 #

Step 4: Using the method StandardDeviation_Computation Mean(µ), Variance,

standard deviation for all the attributes are computed and stored in table MVSD (Table

4). It has three data rows and n columns for the attributes. The first row of the table

contains the mean, the second row contains variance and the third row contains the

standard deviation (SD). The formulations for these three counts are specified in Fig. 1.

Table 4. MVSD

 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Mean 2.92 3.08 3.08 2.25 2.71 2.75 2.06 2.44 3.29 2.83

Variance 0.30 2.09 2.61 5.54 3.95 3.82 3.46 3.41 6.98 7.38

SD 0.55 1.45 1.62 2.35 1.99 1.95 1.86 1.85 2.64 2.72

Table 5. NSM

 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 # 0.30 0.36 0.60 0.72 0.47 0.66 1.30 0.52 0.72

a2 0.30 # 0.04 0.90 0.18 0.25 0.41 0.13 0.30 0.42

a3 0.36 0.04 # 0.37 0.09 0.11 0.12 0.08 0.34 0.55

a4 0.60 0.90 0.37 # 0.36 0.13 0.25 # 0.15 0.19

a5 0.48 0.27 0.09 0.36 # 0.02 0.13 0.07 0.22 0.24

a6 0.47 0.25 0.11 0.13 0.02 # 0.03 0.05 0.23 0.26

a7 0.66 0.41 0.12 0.25 0.13 0.03 # 0.01 0.39 0.43

a8 1.30 0.13 0.08 0.00 0.07 0.05 0.01 # 0.26 0.44

a9 0.52 0.30 0.34 0.15 0.22 0.23 0.39 0.26 # 0.02

a10 0.72 0.42 0.55 0.19 0.24 0.26 0.43 0.44 0.02 #

Step 5: Using the method Scaling_Calculation, the NSM table (Table 5) is

constructed. The entries in NSM are derived from the corresponding entries in ADM

and MVSD. As for example NSM(a1, a2) is computed at first by taking the modulo

subtraction result of standard deviation of a1 and a2. Then this result is divided by

ADM (a1, a2). In this case, the difference from the modulo subtraction is 0.90 and

ADM(a1, a2) is 3. Thus the NSM(a1, a2) is 0.30.

Table 6. NNSM.

 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 # 2.31 2.74 4.62 5.54 3.59 5.04 10 4.02 5.56

a2 3.33 # 0.47 10 2.00 2.78 4.56 1.48 3.31 4.70

a3 6.48 0.77 # 6.64 1.68 2.00 2.18 1.39 6.18 10

a4 6.67 10 4.06 # 4.00 1.48 2.72 # 1.61 2.06

a5 10 5.63 1.93 7.50 # 0.42 2.71 1.46 4.51 5.07

a6 10 5.36 2.36 2.86 0.43 # 0.64 1.07 4.93 5.50

a7 10 6.26 1.83 3.74 1.98 0.46 # 0.08 5.95 6.56

a8 10 1.03 0.59 # 0.54 0.38 0.04 # 2.03 3.35

a9 10 5.69 6.51 2.78 4.15 4.40 7.46 5.04 # 0.38

a10 10 5.85 7.60 2.56 3.36 3.55 5.94 6.01 0.28 #

Step 6: Using the method Normalized_Scale, every row of NSM is scaled in a factor

of 10. For every row the highest value of NSM is scaled to 10 and similarly all other

attributes are mapped to new values in NNSM(Table 6). As for example in the 1
st
 row

of NSM a8 has the maximum value thus it is scaled to 10 using the algorithm described

in section 3.7. Similarly all other values of 1
st
 row are mapped.

6 Conclusion

The novelty of this paper is in proposing a methodology to build a numeric scale

based on quantitative analysis on the set of attributes used in recent queries. Use of

the standard deviation in this methodology helps to build a predictive model on future

usage of attributes. Thus this method combines the actual usage with the probabilistic

assumptions.

The proposed scale would find significant usage in diverse aspects of database

management. This would improve the performance towards creation and maintenance

of the materialized views. This in turn would enhance the query execution in both

database and data warehouse applications. As the proposed scale is independent of

any external parameters, materialized views could be formed for heterogeneous

applications. Other database functionalities like indexing, cluster formation, etc. could

also be done on the basis of quantitative measures using the proposed scale as

compared to intuitive approaches. The proposed scale is also useful in any rank based

analysis of attributes. The future research work of this scale includes several aspects.

Firstly, the types of queries to be selected to initiate this process for different

applications are interesting and depend on the business logic. Experimental findings

on diverse database applications by using the proposed scale could unearth interesting

associations. Secondly, incorporating value based analysis over the attributes based

analysis could be one using the scale. As all the values of the attributes are not

accessed during query processing filtering could be used on the values as well.

Combining the value based analysis with the existing numeric scale would help to

achieve high speed query processing. Besides, the proposed scale could be combined

with the concept of abstraction of attributes using concept hierarchy. This would help

to reduce the amount of data to be accessed and to reduce size of materialized views.

References

1. Mukkamala, R.: Improving database performance through query standardization. In: IEEE

Proceedings of Energy and Information Technologies in the Southeast. Southeastcon '89.

2. Chiang, L., Chi Sheng, S., Chen Huei, Y : Optimizing large join queries using a graph-based

approach. In: IEEE Transactions on Knowledge and Data Engineering, Mar/Apr 2001.

3. Chin Wang, J., Tzong Horng, J., Ming Hsu, Y., Jhinue Liu, B : A genetic algorithm for set

query optimization in distributed database systems. In: IEEE International Conferences on

Systems, Man, and Cybernetic, 1996.

4. Bruno, N. Galindo-Legaria, C. ; Joshi, M. : Polynomial heuristics for query optimization.

In: 26th IEEE International Conferences on Data Engineering (ICDE 2010).

5. Sarathy, V.M., Saxton, L.V., Van Gucht, D.: Algebraic foundation and optimization for

object based query languages. In: Proceedings of 9th International Conference on Data

Engineering, 1993.

6. Ordonez, C. : Optimization of Linear Recursive Queries in SQL. IEEE Transactions on

Knowledge and Data Engineering, 2010.

7. Zhuang, Y., Qing, L., Chen, L.: Multi-query Optimization for Distributed Similarity Query

Processing. In: 28th International Conference on Distributed Computing Systems (ICDCS

2008)

8. Yang, J., Karlapalem, K., Li, Q.: A framework for designing materialized views in data

warehousing environment. Proceedings of 17th IEEE International conference on

Distributed Computing Systems, Maryland, U.S.A., May 1997

9. Gupta, H.: Selection of Views to Materialize in a DataWarehouse. Proceedings of

International Conference on Database Theory, Athens, Greece 1997.

10. Ashadevi, B., Subramanian, R.: Optimized Cost Effective Approach for Selection of

Materialized views in Data Warehousing. In: International Journal of Computer Science and

Technology, Vol.9, No.1., April 2009.

11. Bhagat, P.A., Harle, R.B.: Materialized view management in peer to peer environment.

International Conference and Workshop on Emerging Trends in Technology, ICWET 2011

12.Goyal, N., Zaveri. K. S., Sharma, Y.: Improved Bitmap Indexing Strategy for Data

Warehouses. Proceedings of 9th International Conference on Information Technology (ICIT

2006).

13. Aouiche, K., Darmont, J.: Data Mining Based Materialized View and Index Selection in

Data Warehouses. Proceedings of J Intell Inf Syst (2009).

