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Abstract—Software Defined Networking (SDN), as an emerging
paradigm, offers a centralized control platform by disassociating
the forwarding process of network packets (data plane) from
the routing process (control plane). However, the distributed
state of the Openflow rules across various flow tables and the
involvement of multiple independent rules writers may lead to
problems of inconsistencies and conflicts within configurations
at the infrastructure level. To tackle these issues, we propose,
in this paper, an offline approach to fix violations at data
plane side and a fine-grained control of SDN switches flow
tables. OQur solution considers Flow entries Decision Diagram
(FeDD) as data structure and relies on formal techniques for
analyzing the policy defects and resolving misconfigurations.
It allows ensuring that the operator’s policies are correctly
applied in an optimal way. The implemented prototype, on top of
OpendayLight, of our solution and experimentations, based on a
real network configurations topology, demonstrate the scalability
and applicability of our approach.

Index Terms—Software Defined Networking, Security Policy,
Invariants Detection, Flow entries Decision Diagram, SDN Flow
Tables Analysis.

I. INTRODUCTION

Most operators check configurations device by device with
an ad-hoc way in order to debug traditional network faults.
However, network existing tools are unable to automatically
detect, locate and repair the root causes. To solve these
challenges, Software Defined Networking (SDN) proposes the
decoupling of data and control planes in network equipments.
This enables independent development of their equipments and
a centralized control platform where operators can statically
verify network policies. However, many errors caused by
switch software bugs and external modification [6, 15] bring
forth new security challenges. We focus our study on recent
approaches to verify the correctness of network configuration
at data plane side (i.e proposals allowing to detect and correct
misconfigurations at the Openflow switch level). Most of
existent (related) works generate probe packets to check the
existence of rules at switches without verifying additional
network properties ( e.g., access control). These security
properties are dependent on paths under frequent network
updates or reconfigurations. Other works [12, 16, 18], are only
able to simply raise alarms to indicate some violations to users,
but cannot provide an automatic violation resolution.
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To make our discussion concrete, we consider an example of
network topology, shown in Fig.1, with three switches, three
hosts, and a simple firewall application used to deploy the
security policy. We assume in our study that the SDN con-
troller program is correct and the firewall rules are consistent.
One such challenge is introduced by the feature of packet
modification bypassing a firewall. In the following scenario,
we demonstrate a detection of indirect access violation due to
modification of field values: a packet from the host 191.55.3.4
arrives at switch S1, it matches the first rule that sends it
to switch S3 after replacing its source IP address with the
new 191.55.3.9. Then, the switch S3 drops this packet after
applying its matching first rule. However, this flow must be
forwarded to the destination host 191.55.7.2 according to the
second firewall rule. To overcome the limitations of existing
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Fig. 1. Network Topology Case of Study.

approaches, we proposed to use in [5] a graph-based model,
called Flow entries Decision Diagrams (FeDD), to schematize
the relations between intra and inter switch filtering rules. This
model allows detecting some network properties violations like
blackholes and loops forwarding. However, this prior work is
insufficient to meet the requirements of today’s operators: a
tool that ensures the operator’s configurations will correctly
reflect on packet forwarding paths. More, the defined model




deals only with defects detection and does not focus on defects
analysis and resolution. Given these limitations, we think
a missing part in our previous work that can enhance the
security at SDN data plane configurations. We focus, in the
current paper, on a complementary solution, that enhances the
previous model, allowing: (i) the identification of additional
invariants like partial and entire access violations with regards
to the firewall security policy; and (ii) the correction of all the
detected defects and faulty rules while ensuring the switch
configurations accuracy and correctness in an optimal way.

Therefore, the major contributions of this paper are summa-
rized as follows:

1) We propose a method to investigate access violation
kinds from FeDD analysis: entire and partial violations
by referring to the firewall application to bring out
concrete switches misconfigurations.

2) We propose fine-grained resolution mechanisms to cor-
rect each discovered security invariant in the first step.
This process should be accurate, correct and effective
by applying different controls (such as modifying some
fields of faulty rules, removing some rules, etc.) while
respecting the compliance of switch configurations re-
garding the firewall security policy and without increas-
ing the configurations complexity.

3) To ensure a high level of surety, we formally specified
(via a set of inference systems) and proved the correct-
ness and completeness of our proposal.

4) We conducted several experimental results and eval-
uations that highlight the efficiency, effectiveness and
scalability of our approach.

This paper is organized as follows: Section 2 presents a
summary of related works. Section 3 overviews background
technologies and security challenges. In Section 4, we detail
our approach . In Section 5, we address the implementation
and evaluation of our solution. Finally, we present our con-
clusions and discuss our plans for future work.

II. RELATED WORKS

Previous efforts on automatic network debugging addressed
the correctness of network configurations [7, 11, 6, 14, 20].
However, despite the fact that the SDN controller program
and the configurations are correct, the data plane may show
misconfigurations due to switch software bugs [22, 24] or
malicious attacks [4]. Existing verification tools can only
ensure network correctness at the controller side, but cannot
guarantee the correctness of rules at flow tables or data plane
behaviors. The data plane verification tools are classified into
three categories as follows [3]:

Network policies verification : Anteater [14] is a tool that
analyzes the data plane state of network devices by encoding
switch configurations as boolean satisfiability problems (SAT)
instances. Veriflow [13] can perform reachability checking in
real time. FlowChecker [20] identifies intra-switch misconfig-
urations within a single flow table. NetPlumber [12] checks
incrementally the compliance of state changes and use Header
Space Analysis (HSA) to capture all possible data paths via

the plumbing graph. Hu et al. [11] propose the FlowGuard
tool for building SDN firewalls, but, it cannot monitor dynamic
packet modifications. Authors in [9] further extended the work
of FlowChecker for adjusting the structure of multiple flow
tables by treating the table as the location of the state instead
of the device to check the flow table pipeline misconfiguration.
However, the result only returns a single counterexample
for the violation, which is hard to be used to analyze the
reason for failures. Li et al. introduced the field transition
rules into VeriFlow for defending covert channel attacks [8].
However, the header change rules still cannot take action in
the forwarding graphs for verifying the reachability. A recent
tool, called FlowMon [7], addresses challenges created by the
inter-reaction of flow path and firewall authorization space.
However, FlowMon cannot detect indirect violations caused
by rule dependencies. Therefore, these tools cannot detect
inter-federated switches inconsistencies, or packet forwarding.
More, the packet transformations are not efficiently handled
and many invariants like access violations cannot be checked
incrementally.

Controller software verification : Canini et al. [23] present
the NICE tool which checks the correctness of SDN con-
troller but it cannot guarantee the absence of errors. More,
no correction approach or update inter-switches is proposed
after bugs detection. Besides, only the basic invariants are
detected. OFRewind [24] enables recording and replaying of
troubleshooting for the network. However, it does not auto-
mate the testing of Openflow controller programs. Authors,
in [1], propose a method for automatic verification of packet
reachability by automatically generating logical formulas for
reachability verification. However, it cannot handle other more
complex policies such as access violations and loop forward-
ing. Authors, in [2], adopt the concept of atomic predicates
and the parallel process computational framework Spark to
verify data plane properties. However, they don’t propose the
resolution mechanism of these defects.

Packet trajectory tracers and data plane testing tools
ATPG [17] generates automatically test packets by injecting
network probes. However, it cannot localize the faulty rule.
More, this tool does not dictate how these probes should be
constructed. ATPG is limited to detect only liveness properties.
The highlight of VeriDP [21] is that in order to detect the flow
table inconsistencies, it uses the Bloom-filter-based tagging
method. However, this approach doesn’t incorporate all Set-
Actions in the flow tables. These approaches do not include
all types of actions and can detect only some basic invariants.
In our prior work [5], we propose a new approach for a deep
and automated data plane analysis with consideration of flow
rules dependencies. However, it is limited to discover some
reachability issues such as forwarding loops and blackholes.
In addition, we do not propose any method to correct the faulty
rules after localizing misconfigurations.

At the end, the major limitations of these works consist
in simply preventing users from possible anomalies, but it
cannot provide a fine-grained violation resolution. Also, they
ignore rule dependencies and some invariants within security



constraints, such as firewall policies, for compliance checking.
Unlike recent work that provides a manual invariant resolution
process that can trigger possible anomalies, our approach
allows the administrator to automatically correct detected
defects while ensuring that SDN data plane is continuously
compliant with the security policy deployed in the firewall
application.
III. BACKGROUND

In what follows, we formally define some key notions to

explain our approach.

A. Security Policy

A security policy SP represents a collection of all packets
either allowed or denied by the firewall rules. We consider two
sets, SP; and SP, where SP, consists of packets accepted
to pass through the set of directives SP and SP; is the
subset of denied packets. In this paper, we suppose that SP
is consistent,i.e.S P;NSP,=0.

B. Flow Policy

Openflow-enabled devices support the abstraction of a flow
table, which is manipulated by the Openflow controller. When
a packet arrives at the OpenFlow switch from an input
port, it is matched against the flow table to determine if
there is a matching flow entry. Formally, a flow entry is
Ft = {ri;1 < i < n} = {fi = action;;1 < i < n}
where f; =< Qsourcel P, Qdestinationl P, port Dest > and
action;={Set_Field \Forward, Forward, Drop, Empty,
Controller}. The action Controller forwards packets to the
controller which in turn will filter according to the security
policy.

C. FeDD Description

In this paper, we referred to the data structure used for mul-
tiple switches, called Flow entries Decision Diagrams (FeDDs)
and built from a set of rules in the switch configurations.
A FeDD is an acyclic and directed graph that has exactly
one node, called the root. A directed path from the root to
a terminal node is called a decision path dp;. The algorithm
used to construct a FeDD is detailed in [5]. A decision path
dp; is depicted as follows:
dp; = (dp;.S)A(dp;.D) A (dp;.P) A(dp;.Sid.r) A (dp;.r.id) A
(dp;.r.actions) where:

o dp;.S, dp;.D, dp;.P are the domain of 3-tuple fields
(Source IP address, Destination IP address and Port
destination) matched by the direct path dp;.

o dp;.Sid.r is the identifier of the current switch that owns
the rule matching the domain of packets in the dp;.

e dp;.rid identifies the rule overlapped with the packets
domains represented by this dp;.

e dp;.r.A is the action of each direct path that depends
on the actions of each flow entry handled by this direct
path from every switch in this path. It can be Exit, Drop,
fwd_nextSw, Empty or Controller.

All FeDD based models convert the switch flow tables into a

flow entries decision diagram. Therefore, FeDD of our network
iS . FGDD = UZFeDDz = Uik:l“ndpk

D. Security Challenges
Openflow switch misconfigurations have a direct impact on

the security and the efficiency of the network. To highlight
this situation, we introduce the following invariants:
Loop freedom: it means that there should not exist any packet
injected into the network, that it would cause a forwarding
loop. The loop invariant can be identified by checking the
flow history to determine if the flow has passed through the
current switch before. For example, according to our topology
shown in Fig.1, PreviousPaths = {52 — S1 — 53 — 52}.
Therefore, the faulty switch is S2.
Access violation : Openflow allows various Set-actions, which
can rewrite the values of header fields in packets. This
challenge can influence the path parsed by some packets.
More, flow rules may overlap each other in the same switch
or between switches which cause indirect network breaches.
Depending on the complexity of an overlap found in violated
space, we distinguish between two types of access violations:
o Entire Violation: if the fields domain of the decision
path covers the whole space (denied or accepted) of the
security policy.
« Partial Violation: if the fields domain of the decision path
partially covers the space of the security policy.
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Fig. 2. Indirect Access Violation due to field modification.

For a concrete example, consider the toy network in Fig.2. In
this scenario, the H1 wants to send a packet to the H3 machine.
When the packet arrives at the switch entry, it matches its first
rule that changes its source address to that of H2 and then it
sends it to the S2 switch, which in turn allows this packet to
exit the network. This contradicts the first firewall rule (frl)
that drops all traffic from H1 to H3 : it leads to an entire
violation. In addition, the second firewall rule (fr2) allows all
traffic sent to the H2 host. But the R2 rule of switch S2, drops
the packet sent from H3 to the H2 host. This results in a partial
violation.

Blackholes and Controller: in order to pinpoint the “Black-
hole” and ”SendTo controller” invariants, the SDN switch
configuration considers the default-action (Drop, Empty or
SendTo controller) as an action used for packets that don’t
match any existing flows. As depicted in Fig.1, the default
action deployed in the two switch configurations S1 and S2
is ”Drop” and in the S3 flow table is "Empty”. Hence, S3
engenders a blackhole.



IV. OUR APPROACH
A. Principle

The principle of our approach, depicted in Fig.3, is based on
three main phases: Phase 1: Security Policy Space Analysis—
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given the security policy deployed in the firewall application as
input, we extract accepted and denied packets which is shown
in Fig.3 respectively as two spaces S Fyccept and S Pgeny.
Phase 2: Security Analysis & Violation Detection— in this
step, we analyze each decision path in our FeDD in order to
detect possible defects in the configuration. We identify basic
anomalies as well as network security policy access violations.
This detection is based on the verification of a set of invariants
according to the Security Policy (SP). The major advantage
of this detection is to specify the rule that caused the error,
unlike other related works which reject the flow or identify
only the set of faulty switches. This step will help us directly
and quickly correcting the wrong decision without analyzing
all the paths in our FeDD.

Phase 3: Automatic Violations Resolution & Refinement—
in this step, we define a set of resolution methods for each
detected invariant with respect to the following technical
requirements: accuracy, flexibility and scalability.

B. Security Analysis & Defects Detection

In this section, we introduce our algorithm, depicted in
Fig.4, for discovering various invariants from our FeDD. To
achieve our goal, we start with the following definition:

Definition 1. FeDD is called misconfiguration-free if and only
if 3dp; € FeDD that verifies one of the following conditions:
- Loop (LP): a direct path dp; € FeDD invokes forwarding
of loops if the previousPaths stores twice the same switch
traversed by this dp;.

- Blackhole (BLK) : a direct path dp; € FeDD depicted a

Input: FeDD, a set of decisions paths dp
SF,, aset of accepted packets from SP
SP; , a set of denied packets from 5P
Output : EnV, a set of dp detecting an entire violation
PaV, a set of dp detecting a partial violation

foreach dp € FeDD do
if (r. actions # fr. actions) A (Dom(dp) € 5Py zcrions)
dp.append("EnV ") ;
else
if Dom(dp) E SPyactions ) A (Dom(dp) N 5Py actions * D)
dp.append("Pav ") ;

EREEEE

L7 |FeDD «—— FeDD' {dp};

Ls return EnV, PaV ;

Fig. 4. Algorithm: Discovering Access Violations from FeDD.

blackhole if the packet matched the default action Empty as
configured in the switch.

- Entire Violation (EnV) : a direct path dp; € FeDD is totally
violated if all the packets tracked by this path apply a different
action as applied in the security policy SP. Hence EnV is
identified by applying the algorithm shown in Fig.4 (L1-L3) .
Formally: (domain(dp;) C SPiap, ry;.action)

- Partial Violation (PaV) : a direct path dp; € FeDD
is partially violated if some packets tracked by this path
apply a different action as applied in the security policy SP.
Hence PaV is identified by applying the algorithm shown in
Fig.4 (L4-L6). Formally: (domain(dp;) ¢ SPap,.ry:.action) /\
(domain(dp;) NS Py, r.; .action # 0).

In fact, it compares the domain of the direct path with the set
of packets of the security policy having two different actions,
if it is totally included by it, then we have the entire Violation
EnV and if it is partially included by it, then we have a partial
Violation PaV.
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For example, in our case study and according to Fig.1,
we have three sets of possible input addresses (h1:191.55.3.4,
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Fig. 8. Algorithm for resolving loop defects.

(51,52,53) v (51,.53). Then, for each dp; € LP, we com-
pare the domain of this dp; with allowed or denied spaces
from the space SP set. Thus, we have two cases:
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Fig. 7. Discovering Invariants from FeDD3.

h2:191.55.3.9 and h3:191.55.7.2), and by applying our algo-
rithm, shown in Fig.4, we obtain all invariants discovered
from FeDD depicted in Fig.5, Fig.6 and Fig.7. FeDD2 of
switch S2: we identify a loop at dp3 caused by rule R3 of
switch S3 because it forwards a packet to switch S2 which
is already visited. We also have one entire violation EnV at
dp2, according to the firewall rule fr4. We identify at dpl
one partial violation PaV because some packets of this dpl
will be accepted (191.55.3.0, 191.55.3.25, 25) according to
the firewall rule fr3.

C. Invariants Correction & Refinement

Our objective is to determine which correction method
should be used for each detected invariant.

1) Resolving loop forwarding: our approach to resolve
loop forwarding from our FeDD is shwon in Fig.8. At
first, we extract all possible paths from our topology to
track a packet from source to target destinations. For
example, (source,target) = (191.55.3.4,191.55.7.2) =

o Case 1: domain(dp;) € SP,; in this case, we have two
situations: (i) the destination of this dp; is not linked to
the switch caused a loop : in this situation, we forward
the packet to the next switch. In Fig.9, we demonstrate
our loop resolution process at dp5 of Fig.5. In fact, given
a network topology, we identify the paths followed by the
packet from the source address (dp.SourcelP) to the target
destination (dp.destIP). Then, we retrieve the following
switch identifiers from these paths. When, we reach the
last switch (terminal), we assign the action “Exit” to
the corresponding rule (L11-L12). (ii) Otherwise, we just
modify the rule action to “Exit” as depicted in Fig.8 (L3-
L5);
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Fig. 9. Application of the loop resolution process.




o Case 2: dom(dp;) € SP,, we just change the action of
the rule r; which caused a loop to "Drop” (L16-L17).

2) Access Violations Resolution: the inference system rules,
shown in Fig.10, apply to triplet (EnV, PaV, FeDD). The

Init _—
EnV,PaV,FeDD
EnV U {dp;}, PaV,FeDD
Correctgpy
EnV,PaV,FeDD’
Where  FeDD' = UpdateFeDD(Sw,r,,.id, SP.gy, .. action)
EnV,PaV U {dp;'}, FeDD
Correctp,y
EnV, PaV,FeDD’
FeDD' = FeDD\ {dp;} U FeDDinter U FeDD™meer’
FeDD™r = UpdateFeDD(Sw, T U, dpi'.r(,,_lj,.actian) A
Where (domain(dp,™") = domain(dp,") n SP ! rpaction)
FeDD™*"' — UpdateFeDD™®" (Sw,1,,.id, ! dp,’.1,;.action) A
(domain(dp,™ ) = domain(dp,’)\domain(dp, ™))
0,9,FeDD
Success E—
FeDD

Fig. 10. Inference system for resolving entire and partial access violations.

inference rule Correctgny is used to correct EnV. It deals
with each dp; from the set EnV and changes the action of
the rule that caused this violation in dp;. The inference rule
Correctpgyis used to divide dp;, into two sets :

1) dpinter is the set that has the correct action as defined
in the security policy;

2) dpi"te"‘/ represents the subset of dp; that should be fixed.
This inference rule is used to correct the action of this
path dp;.

The function UpdateFeDD(Sw, 71;.id, dp;.Ty;.action)
allows to update the FeDD by replacing dp; by the
new direct path. As an example, we deal with the case
of PaV discussed in Fig.6. We consider dplier =
dpl N SP, = the branch represented by these values:
[Qsre;p, Qdest_ip, port_dest]=[191.55.3.0,191.55.3.25, 25].
Therefore, dpl=(dp1 \ dp1‘"*") U (dpl Ndp1™™te"). Then, by
using our inference rule correctp,y to divide this direct path
into two sub paths where the first dpl N dpl¥™*" represent
paths which are conform to SP and the second one (dpl
\dp1¢T) is the totally violated path. In order to prove
the correctness of our approach, we start with the following
definition:

Definition 2. A direct path dp; in FeDD is called well-
configured with respect to SP if and only if for all rule r,; in
dpiv dom(dpl) - SPaction(rm)~

Theorem 1. (Correctness): if there exists a finite derivation:
(EnV,PaV,FeDD) t* FeDD then FeDD is well config-
ured with respect to the security policy SP.

Proof. it (EnV,PdV, FeDD)I—*FeDD/ then we have
(FeDD1 ,EnV1,PaV1) F (FeDD2 ,EnV2,PaV2)...

(FeDDn/,EnVn, PaVn) + Success where EnVn = () and
PaVn = (). For each step, we update FeDD (FeDD") by
applying the function UpdateFeDD, we have two cases: (i)
by applying the inference rule Correctgy,y . In this situation,
we assign the same action deployed in SP to the rule r,;. We
can easily show by induction on i that for all 1 < ¢ < n,
if dp; is in EnV then r,; is removed from dp;. Therefore,
action(dp;) = action(r,_1y;) # action(r,;) which is
conform to the action applied by SP on the packets matched
by dpi ie dom(dpl) - SPaction(?"vi); and (ii) by applying
the inference rule Correctp,y. In this case, we divide dp;
into two sets: (1) the set dpi™*®" that has the correct action
as defined in SP; and (2) the subset of dp;(dpént”/) that has
been fixed by assigning the same action deployed in SP to
the rule r,;. Thus, for all 1 < ¢ < n, if dpﬁ"ter, is in PaV
then r,; is removed from dp;. Hence, action(dpﬁ"t”/) *
action(r,;) which complies with the SP requirement on the
packets matched by dpi™*"" (i.e dom(dp,) C SPyction(re))-
Therefore, our reasoning is correct. O

Theorem 2. (Completness): for all FeDD there exists a
finite derivation:(FeDD, EnV,PaV) v* FeDD such that
FeDD is well configured with respect to the security policy
SP.

Proof. We have two cases: (i) case 1: FeDD is well configured.
Therefore, PaV=EnV=(). In this case, the Success rule will
be applied; (ii) case 2: we assume that FeDD is not well
configured. Then, there exists dp; in FeDD belonging to one
of two sets (1) dp; € EnV which means EnV #(). But, the
rule Correctg,y removes this dp; from EnV and assigns the
action that conforms to SP ; (2) dp; € PaV which means
PaV#0(. In this case, the rule Correctp,y fixes the subset
of dp; by removing the rule r,; from PaV. It follows that in
finite steps, we will obtain FeDD' as well configured with
respect to SP. O

It is easy to show that our inference system is terminating:

Theorem 3. (Termination): The inference system, shown in
Fig. 10, is terminating.

Proof. The inference system is terminating since the cardinal-
ity of EnV + cardinal of PaV decreases at each step of the
application of the inference system, in a finite number of steps:
cardinal of EnV + cardinal of PaV = 0, then EnV =0 and PaV
= () and therefore the Success rule will be applied. O

3) Blackholes and Controller Resolution: the main idea to
resolve blackhole defects is to compare the domain of each
dp; € BLK with the space of set packets in SP. Hence, we
have two cases :

e domain(dp;) C SP,;, we change the action of matched
rule in this dp; to ”Drop”.

e domain(dp;) C SP, we replace the Empty action by
Exit.

For example, we resolve the blackhole identified at dp3,
highlighted in Fig.6, by assigning the action “Drop” to rule
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Fig. 11. Modified FeDD of Fig.5
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Fig. 12. Modified FeDD of Fig.6

R4 of switch S3 because domain(dp3) C SP; (see fr4
depicted in Fig.1). An invariant ”Controller” is detected when
a switch is enable to decide about a packet, so it forwards it
to the controller. Therefore, the SDN Controller will filter a
packet according to the security policy. As an example, SMTP
traffic will be accepted from source 191.55.3.4 to destination
191.55.7.2 according to second rule deployed in the firewall
configuration (see fr2 in Fig.1). After applying our correction
methods shown in Fig.8 and Fig.10, we obtain the new updated
FeDD shown in Fig.11, Fig.12 and Fig.13.

D. SDN Switch Configuration Validation

We observe that after resolving an invariant “loop” (identi-
fied at dp5 of Fig.5 and dp3 of Fig.6) by changing the two rules
actions of S2 and S3 (S2.R2.Forward_ S3 and S3.R3.Exit),
a partial violation PaV (identified at dpl of Fig.6) and an
entire violation EnV (identified at dp2 of Fig.7) are also well
corrected as shown in Fig.11, Fig.12 and Fig.13. As results,
we obtain the new switches configurations validated and well

A=)

53;.R4. Drop

S:;-R;.Drop |S;.R;.Exit|

Fig. 13. Modified FeDD of Fig.7

consistent after applying our anomalies analysis and resolution
techniques as depicted in TABLE I and TABLE II.

TABLE I
NEW SWITCH S2 CONFIGURATION
Rule Source Destination Port action
1 191.55.3.4 191.55.7.2 * | Forward_Firewall
2 ® 191.55.3.25 * | Forward_S3
3 * 191.55.7.2 * | Forward_S3
4 * * * | Drop
TABLE 11
NEW SWITCH S3 CONFIGURATION
Rule Source Destination Port action
1 191.55.3.9 * * | Exit
2 * 191.55.7.2 * | Drop
3 * 191.55.3.25 * | Exit
4 * * * | Drop




V. EXPERIMENTAL RESULTS AND EVALUATION
A. Complexity Study

Given a Switch of n rules, the maximum number of paths
in the FeDD updated using our solution is (2n — 1)f, where f
is the number of the fields in each rule. Hence, the complexity
of the inference system for modifying FeDD is O(n'). The
inference system, shown in Fig.10, allows to modify FeDD by
inserting some direct paths and by modifying the field dp;.r.
Therefore, the complexity of this inference system is equal
to the complexity of a tree-set insertion operation (which is
equal to O(log(n))) plus O(nf). Thus, the complexity of this
inference system is equal to O(n'). Given that f is typically
small (generally, we have 3-5 fields) our algorithms have a
reasonable response time in practice.

B. Implementation and Experimentals Results

The experiments were run on desktop with an Intel Core
i7 CPU 3.6GHz and 32GB Memory. Then, to implement
our methods, we use Java JDK 1.8 with Eclipse. In order
to easily integrate our solution, we used all-in-one pre-built
virtual machine by SDN Hub [20] within Ubuntu-14.04.4.
We emulate networks with Mininet and use the controller
OpendayLight with support of Openflow v1.3. It is supposed
that we have IP v4 addresses with netmasks and port numbers
of 16 bits unsigned integer with range support. For example,
IP prefix 191.55.0.0/24 can be converted to the interval from
191.55.0.0 to 191.55.255.255, where an IP address can be
regarded as a 32-bits integer. To evaluate the practical value of
our methods, we have implemented them based on the FeDD
data structure using the rules set provided by two topologies:

1) Simple network topology shown in Fig.1. We used, at

first, the following command to build the configuration
of our topology from a file "MyTopo”:

ubuntu@sdnhubvm : /mininet/configurationS sudo mn --custom
MyTopo.py ——topo MyTopo

Then, We used the ping tool in order to populate the
switches configurations with shortest-path forwarding
rules. As result of our application, Fig.14 demonstrates
a resolution of loop identified at path3 (case: @IP
191.55.3.25 is not linked to the faulty switch S2).
Then, it modifies the action of the second rule of S2 to
”Forward_S3”. This leads to fix the third rule of S3 (the
new action is “Exit”). The green rectangle surrounds
the validated rule R2 of S2 in the tabular list.
2) The Internet2 topology [25] which consists of 9
Juniper routers. For Internet2, the configuration files
are translated to correspondent OpenFlow rules, and
installed at Open vSwitches. Then, we extracted
data from switches using the command line tool
rodvand@atpgSsudo ovs-ofctl dump

We have also conducted a set of experiments to measure
the performance of our algorithms. Hence, we consider time
treatment factor that we review by varying the number of rules
for each dataset. The maximum number of rules, deployed in
a single switch, is 3000. In overall terms, we consider the

[£) DASDA : DEEP AND AUTOMATED SDN DATA PLANE ANALYSIS - O X
Choose the starting switch @

Path3 =]
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Fig. 14. DASDA violation resolution interface.
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Fig. 15. Resolution Time Changes. Fig. 16. Scalability Analysis.

average processing time, in seconds, of the main procedures
of misconfigurations detection and correction. The violation
detection and resolution overhead were increased linearly as
the switches size increases as shown in Fig.15. The exper-
imental results, depicted in the Fig.16, show a polynomial
increase with the growth of flow rules in scalable architecture
such as Internet2 topology. The traffic latency in Internet2 is
due to rules complicated dependencies. Therefore, obtained
processing time shows that our tool performed efficiently
within the case studies.

VI. CONCLUSION AND FUTURE WORK

We presented in this paper, techniques for fine-grained man-
agement of openflow SDN switch misconfigurations. More
precisely, our proposal is intended for a comprehensive dis-
covering and fixing of data plane security invariants based
on formal techniques and by using FeDD as data structure.
The main advantages of our proposal are the following: First,
unlike other works, our approach ensures continuous SDN
data plane compliance with the security policy without causing
further errors as a result of our accurate and optimal resolution
mechanism. This is justified by our study of the implemented
methods complexity. Second, we formally proved the correct-
ness and completeness of our formal reasoning for validating
SDN data-plane configurations. Third, our experimentations,
that have been conducted on different case studies, highlighted
promising results. As a future work, we plan to consider
techniques for verifying SDN security policies and resolving
violations in a real time context.

rules number
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