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Abstract—Software-defined networking (SDN) is a network
architecture that enables the network to be centrally controlled
using software. The network administrators can reprogram the
network using SDN without changing hardware devices to provide
new solutions for controlling network traffic. However, SDN has
its drawbacks in security, scalability, and elasticity. The security
validation of SDN configurations is an important issue that should
be addressed. Therefore, there is a need for automated methods
to analyze, investigate and fix switch configurations faults. The
objective of our work is to propose: (1) a new formal approach to
discover security challenges using Flow entries Decision Diagram
(FeDD) analysis, to identify loop freedom, access violation, black-
holes, and controller misconfiguration; (2) an optimal and fine-
grained resolution mechanisms to correct these misconfigurations
in different topologies: (3) a tool that implements the proposed
techniques and effectively helps administrators in detecting and
resolving switch misconfigurations.

Index Terms—Software Defined Networking, Security Policy,
Invariants Detection, Flow entries Decision Diagram, Formal
Method.

I. INTRODUCTION

Traditional networks follow an “inside the box” paradigm.
This increases the complexity and cost of network configu-
ration, management and troubleshooting. Thus, proposals for
a new networking paradigm, namely Software Defined Net-
working (SDN), have emerged. The principal endeavors of
SDN are to decouple control plane from the data plane and
to centralize network’s intelligence. However, this new archi-
tecture is prone to many data plane faults, mainly caused
by inconsistent rules in the switch configuration. The recent
violation resolution proposals help administrators manually
resolve each reachability issue. These mechanisms can cause
possible defects in the switch configuration and can subse-
quently damage network security [3]. To deal with switch
rules analysis problem, many solutions have been proposed [6],
[14], [15]. For example, the authors in [1] propose a method
for automatic verification of packet reachability by automati-
cally generating logical formulas for reachability verification.
However, it cannot handle other more complex policies such
as access violations and loop forwarding. The authors, in [2]
adopt the concept of atomic predicates and the parallel process
computational framework Spark to verify data plane properties.
However, they do not propose any resolution mechanism for

these defects. ATPG [17] automatically generates test packets
by injecting network probes. However, it cannot localize the
faulty rule. Moreover, this tool is limited to detect only liveness
properties. [21] uses a Bloom-filter tagging method in order
to detect the flow table inconsistencies. However, they do not
incorporate rewrites into the current framework, in order to
support actions that need to modify packet headers. In addition,
they do not provide an automatic resolution for repairing the
faulty switch configurations. These approaches can detect only
some basic invariants. Some other approaches try to verify
the compliance of switch configuration with respect to the
security policy [12], [16], [18]. For example, [7] addresses the
challenges created by the interaction between flow path and
firewall authorization space by proposing the FlowMon tool.
However, their solution cannot detect indirect violations caused
by rule dependencies. FlowChecker [20] only identifies intra-
switch misconfigurations within a single flow table. Authors
in [9] further extended the work of FlowChecker for adjusting
the structure of multiple flow tables by treating the table as
the location of the state instead of the device to check the flow
table pipeline misconfiguration. However, the result only returns
a single counterexample for the violation, which is hard to be
used to analyze the reason for failures. Li et al. introduced the
field transition rules into VeriFlow [13] for defending covert
channel attacks [8]. However, the header change rules still
cannot take action in the forwarding graphs for verifying the
reachability. Authors in [11] propose the FlowGuard tool for
building SDN firewalls. They propose resolutions strategies
designed for diverse network update situations but, they cannot
inspect dynamic packet modifications.
Related works [4], [10], [22]–[24] do not address automated
resolutions, they only raise alarms, indicate violations and
ignore rule dependencies and some invariants within security
constraints. In this work, we propose a new approach to detect
and fix misconfigurations in a SDN switch.
This paper is organized as follows: Section 2 overviews the
formal representation of OpenFlow switch flow table and secu-
rity policies and details FeDD structure. Section 3 details our
approach. Finally, we present our conclusions and discuss our
plans for future work.
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II. PRELIMINARIES

A. Security Policy

A security policy SP represents a collection of all packets
either allowed or denied by the firewall rules. We consider two
sets, SPd and SPa where SPa consists of packets accepted to
pass through the set of directives SP and SPd is the subset of
denied packets. In this paper, we suppose that SP is consistent,
i.e.SPd∩SPa=∅.

B. Openflow Switch Flow Table [19]

Flow table entries consist of a set of instructions which
are applied to all matching packets. Every packet has a set
of actions associated with it. These are policies determining
what should happen to the packet: it decides how packets are
processed after they have matched against an entry found in the
flow table. Examples of actions are forward (output) the packet
to port X, drop the packet, modify the packet header and send
to controller. The action set is empty by default.Formally, a
flow entry is Ft = {ri; 1 ≤ i ≤ n} = {fi ⇒ actioni; 1 ≤ i ≤
n} where fi =< @sourceIP,@destinationIP, portDest >
and actioni = {Forward,Drop,Empty, Set F ield ∧
Forward, Controller} where action ”Controller” sends pack-
ets to the controller which will filter according to the security
policy.

C. Flow Entries Decision Diagrams Representation

In this paper, we used the data structure used for multiple
switches, called Flow entries Decision Diagrams (FeDDs) and
built from a set of rules in the switch configurations. A FeDD
is an acyclic and directed graph that has exactly one root node.
A directed path from the root to a terminal node is called a
decision path dpi. We discussed in [5], the algorithm used to
construct a FeDD. A decision path dpi is depicted as follows:
dpi = (dpi.S)∧ (dpi.D)∧ (dpi.P )∧ (dpi.Sid.r)∧ (dpi.r.id)∧
(dpi.r.actions) where:

• dpi.S, dpi.D, dpi.P are the domain of 3-tuple fields (Source
address IP, Destination address IP and Port destination)
matched by the direct path dpi.

• dpi.Sid.r is the identifier of the current switch that owns
the rule matching the domain of packets in the dpi.

• dpi.r.id identifies the rule overlapped with the packets
domains represented by this dpi.

• dpi.r.actions is the action of each direct path that depends
on the actions of each flow entry handled by this direct
path from every switch in this path. It can be Exit, Drop,
Fwd nextSw, Empty or Controller.

All FeDD based models convert the switch flow tables into the
flow entries decision diagram. Therefore, FeDD of our network
is : FeDD = ∪iFeDDi = ∪ik:1..ndpk

III. APPROACH OVERVIEW

A. Case Study

To make our study concrete, we use an example of network
topology shown in Fig.1. It consists of three switches S1, S2
and S3 , three hosts where H1 and H2 are linked to the switch

S1 and one host H3 is attached to S2. We also consider one
firewall application as the set of requirements to be respected
and used to identify the switches misconfigurations. We assume
that the firewall rules are consistent. For a concrete example,

Fig. 1. Network Topology Study.

we illustrate the rules in the three flow tables respectively to
S1, S2 and S3:

• In the flow table 1, rule 1 alters the source address H1
of the ingress packet, replaces it by new one 10.0.1.2
and sends this flow to S3. Rule 2 and rule 3 redirect
the HTTP traffic from the source address 10.0.1.1. and
10.0.1.2 to switch S2. Rule 4 forwards all other packets
towards 10.0.1.10 to S3.

• In the flow table 2, rule 1 directs the source address
10.0.1.1 to the firewall. Rule 2 forwards other packets with
destination address 10.0.1.10 to switch S1 and H3 to S3.

• In the flow table 3, rule 1 at switch S3 drops all traffic
from H2. Other rules are plain forwarding rules ensuring
connectivity. The default action is Empty.

We notice that when the ingress packet matches rule 1 in the
flow table 1, its source address IP must be modified to new
one 10.0.1.2 and forwarded to switch S3 which in turn drop
this packet. However, according to the second rule (fr2) in the
firewall configuration, the flow must be forwarded not rejected:
this scenario demonstrates the security policy violations and
therefore, the switch misconfiguration must be fixed.

B. Switch Misconfigurations Detection

1) Security Policy Space Partition: In Fig.2, we represent
our inference system to convert a list of firewall rules into
two disjoint security policy subspaces denied SPd and allowed
space SPa as defined in section 2. In fact, for each fr in SP,
if this rule is an ”accept” rule, its domain is compared with
existing domains in the denied space SPd. If the dom(fr) is
covered by any existing domain in SPd, the covered spaces(s)
is removed from dom(fr) and the modified dom(fr) is added
into SPa. Hence, SPa is updated by applying the inference
rule Append SPa. The similar process is applied to a ”deny”
rule and by applying the inference rule Append SPd.



Fig. 2. Inference System for Partitioning Security Policy space.

2) Misconfigurations classification: In our work, at first, our
goal is to propose an automatic method that parse network
properties with respect to the security policy from our data
structure FeDD already constructed. To achieve our goal, we
propose a solution based on inference systems as depicted in
Fig.3. In order to formally specify the analysis and detection

Fig. 3. Inference System for discovering various invariants from FeDD.

process and prove the correctness of our approach, we first
present the following definition:

Definition 1. FeDD is called invariants-free if and only if
6 ∃dpi ∈ FeDD that verifies one of these conditions:
- Loop (LP): a direct path dpi ∈ FeDD invokes forwarding
of loop iff the previous Paths stores twice the same switch
traversed by this dpi. Hence LP is the set containing all dpi
causing loop defects and identified according to the rule Loop
in the inference system defined in Fig.3.
- Blackhole (BLK): a direct path dpi ∈ FeDD depicted a
blackhole iff the packet matched the default action Empty as
configured in the switch. Hence BLK is the set containing all
dpi causing blackhole defects and hence BLK is identified by
applying the rule BlackH .
- Entire Violation (EnV): A direct path dpi ∈ FeDD is
totally violated iff all the packets tracked by this path ap-
ply a different action as applied in the security policy SP.
Formally: (dom(dpi) ⊆ SP!dpi.rvi.action) ∧ (dom(dpi) ∩
SPdpi.rvi.action = ∅)
- Partial Violation (PaV): A direct path dpi ∈ FeDD is
partially violated iff some packets tracked by this path ap-
ply a different action as applied in the security policy SP.
Formally:dom(dpi) ∩ SPdpi.rvi.action 6= ∅. In Fact, EnV and

PaV are identified according to the rule AccessViolation defined
in Fig.3.

Theorem 1. (Soundness of Success) if (FeDD, ∅, ∅, ∅, ∅) `∗
Success then FeDD is invariants-free.

Proof. FeDD is loop-free, then ∀dpi ∈ FeDD, we apply the
inference rule Loop to define the set of LP where for this direct
path dpi, we verify the precondition of Loop, it means that
∃Swid in the previousPaths was visited twice. Also, FeDD is
blackhole-free then dpi applies the default action Empty in
the flow table Ft. Thus, for this direct path dpi we apply the
inference rule BlackH to define the set of BLK which contains
all Blackholes paths. Otherwise, FeDD is access violation-free.
Thus, we apply the inference rule AccessViolation to distinguish
two sets of violations EnV and PaV. In fact, it compares the
domain of the direct path with the set of packets of the security
policy having two different action : if it is totally included by it
then we have entire Violation EnV and if it is partially included
by it then we have a partial Violation PaV. It follows that in all
steps Pass inference rule is applied, ie. LP = ∅ and BLK = ∅
and EnV = ∅ and PaV = ∅, therefore (FeDD, ∅, ∅, ∅, ∅) `∗
Success.

Theorem 2. (Soundness of Failure) if (FeDD, ∅, ∅, ∅, ∅)
`∗ Failure then FeDD is not invariants-free.

Proof. if (FeDD, ∅, ∅, ∅, ∅) `∗ Failure then we have :
(1) LP 6= ∅; or (2) BLK 6= ∅; or (3) EnV 6= ∅ or (4) PaV 6= ∅
then we conclude that FeDD is not invariants-free.

For example, if we consider the network topology shown
in Fig.1, we have three sets of possible input addresses
(h1:10.0.1.1, h2:10.0.1.2 and h3:10.0.2.1) and by applying
inference system, shown in Fig.3, we obtain, as illustrated by
Fig.4 and Fig.5, the network invariants discovered from our
FeDD.

Fig. 4. Discovering invariants from
FeDD2.

Fig. 5. Discovering invariants from
FeDD3.

C. Misconfigurations resolution techniques

1) Inference System for Resolving Loop Forwarding: :
The main idea is to compare the domain of each dpi ∈ LP



with existing header spaces in the space SP set. Thus, we have
two cases: Case 1: dom(dpi) ∈ SPd, we just change the action
of the rule rli which caused a loop to Drop by applying the
inference rule CorrectLoop1 depicted in Fig.6; and Case 2:
dom(dpi) ∈ SPa, we have two situations: (1) the destination of
this dpi is linked to the switch that caused a loop, therefore we
just modify the rule action to Exit; (2) otherwise, we forward
a packet to next switch according to variable Paths ( the set
of possible paths to send a packet from source to destination)
until we attain the last switch (terminal), and change the rule
action of the terminal switch to Exit. Thus, to achieve our goal,
we apply the inference rule CorrectLoop2. In order to prove

Fig. 6. Inference System for resolving loop defects.

the correctness of our approach, we start with the following
definition:

Definition 2. A direct path dpi in FeDD is called totally well-
configured iff for all rule rvi in dpi, dom(dpi) ⊆ SPaction(rvi).

Theorem 3. (Correctness): if (FeDD,LP, Paths) `∗
Success then for all dpi in FeDD, dpi is corrected according
to the security policy.

Proof. if (FeDD,LP, Paths) `∗ Success then we have
(FeDD1

′
, LP1, Paths) ` (FeDD2

′
, LP2, Paths) ...

(FeDDn
′
, LPn, Paths) `∗ Success where LPn = ∅.

For each step, We use the UpdateFeDD function to update
our FeDD graph. The result is its derivative, called FeDD

′
,

and provided according to one of two situations: (i) we
assign the action ”Drop” to the rule rvi by applying the
inference rule CorrectLoop1; and (ii) we assign the action
”ForwardNextsw” to the rule rvi until to reach the terminal
switch by applying the inference rule CorrectLoop2. In this
situation, we assign the same action deployed in SP to the rule
rvi (the action ”Exit” i.e it agrees to forward traffic).
We can induce on i that for all 1 ≤ i ≤ n, if dpi is in LP then
rvi is removed from dpi. Therefore, action(dpi) 6= action(rvi)
which is conform to the action applied by SP on the packets
matched by dpi i.e dom(dpi) ⊆ SPaction(rvi). Hence, our
reasoning is correct.

In our illustrative example, dp3 of Fig.4 depicted that the
rule R2 of switch S2 caused a loop. According to the rule fr3
of the firewall, dom(dp3) ∈ SPa, and dp3.D = {10.0.1.10} is
not linked to S2. Therefore, we apply the action Forward S3
where S3 is the next switch of S2, then S3 is a last switch, so,
we assign the action Exit to the rule R3 of S3 (the matched
rule with dom(dp3)). Thus, to correct this loop rule, we apply

our inference rule CorrectLoop2 shown in Fig.6 and therefore,
the corrected dp4 is presented in Fig.7.

2) Access Violations Resolution: : First, we try to correct
the entire violation by removing misconfigured rules using an
inference system. It deals with each dpi from the set EnV via
changing the action of the rules that caused the violation in dpi.
To fix partial violations we use an inference system that allows
to divide each partially misconfigured direct path dp

′

i, into two
sets: 1) dpinteri is the subset of paths that has the correct action
as defined by the security policy and 2) dpinter

′

i represents the
subset of dp

′

i that should be fixed.
To clarify this reasoning, we refer to our illustrative ex-
ample, particularly the case PaV depicted by Fig.5. We
consider dp1inter = dp1 ∩ SPa = the branch represented
by the following values : [@srcip,@dest ip, port dest] =
[10.0.1.0/24, 10.0.1.10, 80]. Therefore, dp1 = (dp1 \
dp1inter) ∪ (dp1 ∩ dp1inter). Then, we divide this direct path
into two sub paths where the first dp1∩dp1inter represents paths
which are conform to SP and the second one (dp1 \dp1inter)
is the totally violated path. Thus, PaV identified at dp1 of Fig.4
is resolved by adding two branches (dp1 and dp2) as shown in
Fig.7.

3) Blackholes and Controller Resolution: : the main idea
to resolve forwarding of Blackholes is to compare the domain
of each dpi ∈ BLK with the space of the set of packets in SP
using an inference system. Hence, we have two cases:

1) dom(dpi) ⊆ SPd, we change the action of the matched
rule in this dpi to Drop;

2) dom(dpi) ⊆ SPa, we replace the Empty action by Exit.

Fig. 7. the new corrected FeDD2.

IV. CONCLUSION

We defined a comprehensive solution for enhancing the
security of SDN configurations via detecting, analyzing and
resolving defects. To ensure a high level of surety, our proposal
relies mainly on FeDD, as data structure, and formal techniques,
a set of inference systems, which allow formally proving
security properties. We have implemented our new technique
and the first computer experiments were very promising. We
plan to experiment with more complex topologies, such as the
Stanford backbone [25]. As a future work, we plan to consider
techniques for verifying security policy and resolving violations
in real time.
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