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Abstract—Network traffic monitoring using IP flows is used
to handle the current challenge of analyzing encrypted network
communication. Nevertheless, the packet aggregation into flow
records naturally causes information loss; therefore, this paper
proposes a novel flow extension for traffic features based on
the time series analysis of the Single Flow Time series, i.e., a
time series created by the number of bytes in each packet and
its timestamp. We propose 69 universal features based on the
statistical analysis of data points, time domain analysis, packet
distribution within the flow timespan, time series behavior, and
frequency domain analysis. We have demonstrated the usabil-
ity and universality of the proposed feature vector for various
network traffic classification tasks using 15 well-known publicly
available datasets. Our evaluation shows that the novel feature
vector achieves classification performance similar or better than
related works on both binary and multiclass classification tasks.
In more than half of the evaluated tasks, the classification per-
formance increased by up to 5 %.

Index Terms—time series, unevenly spaced time series, time
series analysis, classification, lomb-scargle periodogram, spectral
analysis, network traffic, machine learning

I. INTRODUCTION

Network traffic monitoring provides information about ac-
tivities in a computer network—an essential insight for main-
taining the service and its security. As the technology evolves,
a classical approach using Deep Packet Inspection (DPI) is no
longer feasible due to the increased privacy protection using
encryption. Additional security features, such as the RFC draft
Encrypted Server Name Indication (ESNI) [1], which encrypts
even domain names, forces the development of new ways of
monitoring and analysis to detect network threats and mali-
cious activities.

Contrary to DPI, flow-based [2] monitoring uses only aggre-
gated information and statistics about the communication—IP
flows. The IP flow term is defined, e.g., by Internet Protocol
Flow Information Export (IPFIX) specification as aggregated
information about the sequence of packets observed within
a specific timeslot with the same properties—usually IP ad-
dresses, transport protocol (often TCP or UDP), and ports. The
most commonly used simple statistics are the sum of packets
and the sum of bytes of the observed communication. Such
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representation of the traffic is universal enough to get a high-
level overview of large networks with high volumes of traffic
and even encrypted traffic.

Since flows contain mainly information from packet headers
and do not extract the payload, they are not affected by the
payload encryption and are the ideal candidate for encrypted
traffic monitoring. Many research works [3]–[10] thus use it
together with machine learning for encrypted traffic classifi-
cation to increase visibility and identify encrypted malicious
communication.

Nevertheless, simple statistics such as the sum of transferred
bytes and packets do not usually carry enough information
for reliable traffic classification. The information about indi-
vidual packet sizes, which has been found extremely useful
in previous research works [11]–[13], is lost in the packet
aggregation into flow records. Therefore, several approaches
to extend flows were proposed to increase the classification
performance. For example, flows are often extended by the
Sequence of packet lengths and times (SPLT) [11] or Sequence
of packet Burst Length and Time (SBLT) [12], and application-
specific information fields [14], [15].

The SPLT and SBLT sequences significantly increase the
amount of information we can leverage for classification. Still,
they cannot carry information about all packets transmitted
in the flows for practical reasons such as limited memory
of flow exporter or constrain on flow record size. Therefore,
SPLT often contains only the first n packets from the flow. For
example, the Cisco joy exporter1 exports detailed information
(packet size, timestamp, direction) up to the first 200 packets
in a flow, ipfixprobe flow exporter2 exports this information
for only the first 30 packets.

Even these packet-extended flows thus still miss a lot of
information when dealing with longer communications. There-
fore, our approach proposes an additional feature set to extend
IP flows with Time Series Analysis (TSA) to mitigate the infor-
mation loss due to aggregation or limited SPLT or SBLT se-
quence size. Instead of extending flows for information about
individual packets, we extend flows for 69 novel features and
test them for network traffic classification. In our approach,
we consider the flow as time series of network packets, i.e.,

1https://github.com/cisco/joy
2https://github.com/CESNET/ipfixprobe
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Single Flow Time Series (SFTS). Using the analysis of SFTS,
we generate a set of significant features, which describes time
dependencies between packets, packet sequences, distribution
of packets, and behavior of packets. We evaluate the usability
and universality of the feature set using 23 different network
classification tasks with 15 well-known public datasets and
machine learning algorithms. Our evaluation showed that the
novel feature vector achieves excellent classification perfor-
mance, similar to or better than related works in both binary
and multiclass classification tasks. In more than half of the
evaluated tasks, the classification performance increased by up
to 5 %.

Furthermore, we also performed feature reduction to en-
able the deployment on networks with size-constrained net-
work telemetry (e.g., due to available bandwidth allocated for
monitoring). Despite the decrease in available information,
the reduced feature vector of only ten features still achieves
very good performance and reduces the average classification
accuracy (compared to the full feature vector of 69 features)
by only 0.03%.

The main contributions of our work can be summarized as
follows:

– We proposed a novel approach that uses Time Series
Analysis to generate 69 novel features.

– We computed the proposed feature vector for 15 well-
known network datasets and made them publicly available
at Zenodo platform [16].

– Using the novel features, we designed network classi-
fiers capable of multiple potential network threat detec-
tion using machine learning algorithms. The novel classi-
fiers achieved excellent accuracy, exceeding the previous
best results from relevant works. Threats include Botnet,
Cryptomining, DoH, (D)DoS, Malicious DNS, Intrusion
in IDS, IoT Malware, Tor, and VPN.

– Using the novel features, we designed several multiclass
classifiers, which performed better than previously pub-
lished state-of-the-art algorithms. The multiclass classifi-
cation concerns Botnet, IDS, IoT Malware, Tor, and VPN.

This paper is divided as follows: Section II summarizes
the related work of flow-based network traffic classification.
Section III provides information about time series analysis
concepts and describes a novel approach to time series anal-
ysis in the IP flow exporter. Section IV provides a complete
description of features exported in the novel extended IP flow.
Section VI describes the complete classification pipeline with
classification results. Section VII concludes this paper.

II. RELATED WORKS

Flow-based network classification is an important area with
multiple challenging tasks and various approaches. The main
constraint of the detection method lies in the input data and
information extracted by the monitoring system. For example,
the flow monitoring systems based on NetFlowV53 can export

3https://www.cisco.com/c/en/us/td/docs/net mgmt/netflow collection
engine/3-6/user/guide/format.html

only basic statistics about the ongoing communication, sig-
nificantly constraining the subsequent network detectors that
often need additional data sources to maintain reasonable accu-
racy [17]. Thus, many proposals extend the basic flow records
for various information. We can divide the flow extension into
two main approaches: 1) Extension for packet sequences and
2) Extension for precomputed features.

A. Extension for raw packet information

The extension of flows for packet sequences embeds the
raw packet-level information about ongoing connections into
the flows. Typically, flows are extended for a sequence of
packets lengths and times (SPLT) that can be directly used for
classification as in the case of Luxemburk et al. [11], or can
be additionally processed for additional feature extraction as
in the case of [18].

Nevertheless, the SPLT sequence cannot contain data about
all packets in the flows due to practical reasons. The larger
flows require more processing power and consume more mem-
ory and bandwidth. Thus the ipfixprobe flow exporter limits
the size of the SPLT sequence to 30 packets.

To capture information about the packets that do not fit into
the SPLT, researchers extend flows for additional features that
we consider raw. For example, Tropkova et al. [12] proposed
to use a Sequence of Burst lengths and Times (SBLT), which
carries the information about individual packet bursts (times,
amount of transferred data). Nevertheless, even SBLT has its
length limit. Moreover, the aggregation of packets into the
bursts loses some information about the exact timing of pack-
ets inside the burst.

B. Extension for precomputed features

Instead of exporting raw packet data that can be then pro-
cessed by additional feature extraction, this approach computes
the statistical features inside the exporter itself. An example of
such an exporter is the CICFlowMeter4 that extends each flow
with 80 statistical features—mainly mean, standard deviation,
max, and min of multiple countable information from packets,
such as the number of packets and bytes. These features are
then used by multiple researchers in various network classifi-
cation tasks [19]–[23].

Similarly, as CICFlowMeter, MontazeriShatoori et al. [24]
created a DoHLyzer exporter5 that produces features directly
within the flows. Nevertheless, the feature vector is entirely
different from the features supported by the CICFlowMeter.

Compared to the SPLT and other raw-packet flow exten-
sions, the computation of features directly in the exporter can
capture statistical information across the whole flow, and no
packet is missed. Nevertheless, it also aggregates packets. The
packet aggregation then causes information loss, especially
in the timing domain, which is not properly captured by the
existing exporters and their feature extraction capability. How-
ever, time-related features such as periodicity are essential in

4https://github.com/ahlashkari/CICFlowMeter
5https://github.com/ahlashkari/DoHLyzer
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the network classification, as shown by Koumar et al. [25] or
MontazeriShatoori et al. [24].

In this work, we focus on the IP-flow extension for precom-
puted features to capture information about all packets. Com-
pared to previous approaches, we aimed to create a universal
feature vector that contains features based on statistical, time,
distribution, frequency, and behavior properties acquired from
the Time Series Analysis of the packet time series of each
flow, i.e., SFTS [26]. Moreover, compared to all previous ap-
proaches, the universality and usefulness of the feature vector
have been verified on 23 different network classification tasks
using 15 network datasets.

III. TIME SERIES ANALYSIS IN THE IP FLOW EXPORTER

This section describes several terms to explain our approach
to time series analysis in the flow exporter to create a novel
flow extension. We consider two crucial times for exporting
flows—the inactive timeout is set to 65 seconds, and the active
timeout is set to 300 seconds6. These settings belong to the
open source IP flow exporter ipfixprobe.

In the state of the art of analysis of the time series from
network traffic are mostly time series considered with evenly
spaced time between observations. This type of time series is
called evenly spaced or regularly sampled, and it is defined as
the sequence of observation {Xn} = {x1, . . . , xn} taken in
times {Tn = t1, . . . , tn}, where n is the number of observa-
tions and is always true: tj+1− tj = tj − tj−1,∀j ∈ 2, . . . , n.
Because of this behavior, it is possible to apply subtraction and
division and get the sequence of times {Tn} = 1, 2, . . . , n. So
when an evenly spaced time series is used, then it is written
only as {Xn} where n := 1, 2, . . . , n and absolute observation
times are unnecessary.

It is possible to use evenly spaced time series to analyze
network traffic, mainly for forecasting and anomaly detection.
Some previous works [8] use evenly spaced time series even
for classification. However, network traffic naturally occurs
with unevenly spaced timestamps (packet transmission time).
Moreover, to create an evenly spaced time series, we need
to set the aggregation interval—the time window for a single
datapoint in the series—that highly affects the analysis result
due to packets occurring at the aggregation interval borders.
Badly selected aggregation intervals then cause analysis fail-
ure. Unfortunately, each time series has a different ideal aggre-
gation interval—thus, the analysis failure with evenly spaced
time series is (for some time series) inevitable [26].

In our approach, we create time series from packets within a
flow—the series payload sizes in bytes with the corresponding
transmission timestamp to create a time series. We call them
Single Flow Time Series (SFTS). However, the SFTS created
by the sizes of packets and their timestamps do not have evenly
spaced timestamps between the datapoints. That means a time
series of observations {Xn} = (x1, x2, . . . , xn) taken at times
{Tn} = (t1, t2, . . . , tn) does not have constant δj = tj+1 −

6If no packet is observed within the “inactive timeout” period, the flow is
considered terminated. Flows longer than the “active timeout” are split and
are exported every time this timeout elapses.

tj ,∀j ∈ {1, . . . , n − 1}. This type of time series is called
unevenly (or unequally/ irregularly) spaced.

IV. FEATURES DESCRIPTION

This section contains a detailed description of novel time
series features. We organized the features into five categories:
1) statistical, 2) time-based, 3) frequency-based, 4) distribution
based, and 5) behavioral. Some of our proposed features for
network classification were already used for classification in
other fields of science, such as music classification [27]–[29].
The detailed description with mathematical equations of the
whole feature set is published on the Zenodo platform [16].

A. Statistical-based features

The first set of features is based on statistical evaluation of
the sequence of observation {Xn} of the SFTS. The idea is
a statistical description of data point deviation, i.e., statistical
deviation of the packets’ payload lengths. Table I shows the
list of statistical-based features.

B. Time-based features

The time-based features describe the time axis of the
unevenly-spaced time series {xn}. For computation time-
based features, we use a sequence of relative times {rtn} =
ti − t0, i ∈ {1, . . . , n}, i.e., time from the beginning of a
flow. Additionally, we use the sequence of time differences
{dtn−1 = ti+1 − ti, i ∈ {1, . . . , n− 1}}, i.e., time spaces be-
tween packets. The set of time-based features that are exported
in the extended flow is listed below:
Mean, median, 1st, and 3rd quartile of relative times

features are computed from the relative times rtn to
capture the statistical properties of packet times.

Mean, median, min, and max of time differences features
are statistics of the time differences dtn and represent
information about spaces in the SFTS of the flow.

Duration is the last data point in the relative times rtn.

C. Distribution-based features

The set of distribution-based features that are exported in
the extended flow describes the distribution of data points in
the SFTS {xn}. The distribution features are listed below:
Hurst exponent can identify three behavior of time series—

long-term switching between high and low values, long-
term autocorrelation, and random (uncorrelated) time se-
ries.

Stationarity indicates the stationarity of the time series.
Benford’s law computes the probability of satisfaction of

Benford’s law for occurrence counts of the nine most
frequent packet lengths.

Normal distribution captures the probability that the SFTS
is distributed by the normal distribution.

Count distribution captures the packet distribution within
the SFTS—if the majority of data was sent at the begin-
ning or at the end.

Count non-zero distribution is similar to feature Count dis-
tribution but filters the data points with zero value.
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TABLE I
LIST OF STATISTICAL-BASED FEATURES

Feature Feature Feature Feature Feature Feature Feature
Mean Median Standard deviation Percent above mean Fisher-Pearson G1 skewness Coefficient of variation Kurtosis
Variance Burtiness First quartile Percent below mean Fisher-Pearson g1 skewness Pearson SK1 skewness Entropy
Third quartile Min Max Min minus max Fisher µ3 skewness Scaled entropy
Percent deviation Mode Average dispersion Root mean square Pearson SK2 skewness Galton skewness

Time distribution describes the deviation of time differences
between individual packets within the SFTS.

D. Frequency-based features

The idea of frequency-based features is to transform time
series into the frequency domain and analyze it. Based on
recent research [30]–[32], the frequency domain has several
advantages over the time-domain. Frequency domain analysis
is particularly useful for analyzing periodic behaviors because
it allows analysis of the individual frequency components, and
can be used to compare the frequency content of different time
series. So, it is possible that we can get suitable features for the
classification of network traffic from the frequency domain.

Since the SFTS are unevenly spaced, we must use the
Lomb-Scargle (LS) periodogram [33] to transform the time
series into a frequency domain. LS was originally developed
for unevenly spaced time series in astrophysics.

The set of frequency-based features is listed below:
Min power, Max power features represent the minimum and

maximum power of the LS periodogram.
Frequency of min power, Frequency of max power

features describe the frequency of the minimum and
maximum power of the LS periodogram.

Power mode, mean, stdev features describe the statistics of
the power spectrum of the LS periodogram.

Spectral bandwidth describes the difference between upper
and lower frequencies.

Spectral centroid indicates at which frequency the energy of
a spectrum is centered upon.

Spectral energy represents the total energy present at all fre-
quencies in LS periodogram.

Spectral entropy is the degree of randomness or disorder in
the LS periodogram.

Spectral flatness estimates the uniformity of signal energy
distribution in the frequency domain.

Spectral flux is the rate of change of periodogram power with
increasing frequency.

Spectral kurtosis can indicate a non-stationary or non-
Gaussian behavior in the power spectrum.

Spectral periodicity decides if in the LS periodogram is a
significant peak that indicates the periodicity.

Spectral rolloff is defined as frequency bellow at is concen-
trated 85% of the distribution power.

Spectral spread is the difference between the highest and
lowest frequency in the power spectrum.

Spectral skewness is the measure of peakedness or flatness
of power spectrum.

Spectral slope is the slope of the power spectrum trend in a
given frequency range.

Spectral zero crossing rate refers to the rate of power shifts,
i.e., the change from negative to positive or the reverse.

E. Behavior-based features

The behavior-based features are focused on describing the
specific set of behaviors of the SFTS. The set of behavior-
based features that are exported in the extended flow is listed
below:
Significant spaces indicates if there are some significantly

bigger spaces between packets.
Switching ratio represents a value change ratio (switching)

between payload lengths.
Transients indicates if a set of data points occurring in a short

time window has significantly larger values.
Count of zeros represents a percentage of one-second inter-

vals that do not contain any packets.
Biggest interval contains the maximal amount of data trans-

ferred in a one-second interval.
Directions describes a percentage ratio of packet direction.
Periodicity is the length and time of periodically occurring

packet, if present.

V. DATASET SELECTION

We explored multiple publicly available datasets previously
used or published in the network traffic classification domain.
Nevertheless, a lot of datasets consist of already precomputed
features and do not contain raw packet-based data, which
is necessary for our feature extraction based on time-series
analysis. Thus, we considered mainly the datasets where raw
packet captures (PCAP files) were available. Together we
selected 15 well-known network datasets that are written in
Table II and processed them with our feature extraction. The
processed datasets with our feature set were also published at
Zenodo [16].

The selected datasets cover the most important traffic de-
tection (binary) or classification (multiclass) tasks: 1) Botnet
detection/classification, 2) Cryptomining detection, 3) DNS
malware detection, 4) DNS over HTTPS detection, 5) DoS
attack detection, 6) HTTPS Bruteforce detection, 7) Intru-
sion detection/classification, 8) IoT malware classification,
9) TOR detection/classification and 10) VPN traffic detec-
tion/classification.

In order to evaluate the performance of the novel features,
we needed to create the baseline—a best-performing classifier
for each concerned dataset. We searched for recent classifier
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TABLE II
SUMMARIZED BEST-RELATED WORKS FOR CLASSIFICATION. IF THE “–” APPEARS, THEN THE RELATED WORKS DO NOT PRESENT THE METRICS, OR THE

DATASET IS NOT DESIGNED FOR MULTICLASS CLASSIFICATION.

Binary classification Multiclass classification
Detection problem Method Accuracy F1-score Method Average Accuracy F1-score
CTU-13 [34] Stergiopoulos et al. [4] 99.85 99.90 Marı́n et al. [5] macro 99.72 76.04
CESNET-MINER22 [35] Plný et al. [7] 93.72 90.59 –
CIC-Bell-DNS [20] Kumaar et al. [36] 99.19 99.20 –
CIC-DoHBrw-2020 [8] Zebin et al. [19] 99.98 99.91 –
DoH-Real-world [17] Jeřábek et al. [9] 97.5 98.7 –
HTTPS Brute-force [37] Luxemburk et al. [10] 99.93 96.26 –
Bot-IoT [38] Shafiq et al. [39] 99.99 99.99 –
Edge-IIoTset [40] Khacha et al. [41] 99.99 99.99 Khacha et al. [41] weighted 98.69 –
IoT-23 [42] Sahu et al. [43] ∼ 96 ∼ 96 –
TON IoT [44] Dai et al. [45] 99.29 99.03 Tareq et al. [46] weighted 98.5 98.57
CIC-IDS-2017 [21] Agrafiotis [22] 98.5 95.4 Kunang et al. weighted 95.79 95.11
UNSW-NB15 [47] Ding et al. [23] 92.39 94.39 Ding et al. [23] macro 90.39 79.64
ISCX-Tor-2016 [13] Sarkar et al. [48] 99.89 99.88 Yang et al. [49] weighted 96.04 95.97
ISCX-VPN-2016 [50] Aceto et al. [51] 93.75 91.95 Dener et al. [52] macro 89.29 87.83
VNAT [53] Jorgensen et al. [53] – 98.00 Jorgensen et al. [53] micro 96 96

proposals (published after 2017) using public research paper
databases such as Google Scholar, IEEE Explore, and ACM
Digital Library. We went through more than 300 papers and
selected the best-performing proposals that met the follow-
ing conditions ensuring fair comparability: 1) it was a flow-
based method, 2) it uses the dataset as a whole and clas-
sifies all the dataset classes and types of samples, 3) does
not use IP addresses as input features7, 4) does not combine
the concerned dataset with additional data. The selected best-
performing proposals for both binary or multiclass versions of
the classification tasks for each dataset are written in Table II.

VI. FEATURE EVALUATION

We evaluated the features by creating a novel classifier
for each concerned network classification task. The classifier
creation pipeline is the set of steps that creates the best final
model. At first, the published datasets were split among Train,
Validation, and Test sets in a ratio of 60:20:20 while keeping
the labeling ratio like in the original datasets. Furthermore,
some additional value sanitation is recommended, e.g., for a
very short time series, it is required to handle “NaN” values:
we replace NaN for the distribution features with 0.5, for the
frequency features with -1, and for the rest of the features
with 0. The source codes of our whole classification pipeline,
including the pre-processing, are available at Github8.

In the validation phase, we first select the optimal ML
algorithm. We test 14 well-known ML algorithms such as
Random Forest, K-NN, or SVM; nevertheless, the XG-
Boost algorithm achieved the best performance among
all of the evaluated classification tasks. After the algo-
rithm selection, we searched for the best model hyperpa-
rameters for optimal performance on each dataset with-
out overfitting. We use the hyperopt library [56]

7The concerned datasets are mainly lab-created; thus usage of IP addresses
is not considered—in this case—as a good practice due to dataset overfitting
as described by Behnke et al. [54]

8https://github.com/koumajos/ClassificationBasedOnSFTS

to tune the following hyperparameters: n_estimators,
max_depth, gamma, reg_alpha, min_child_weight,
and colsample_bytree.

The hyperparameter search was performed using the training
and validation datasets. The best values of the hyperparameters
were selected based on the F1-score measure on the validation
dataset. The final performance of the classifier on each dataset
was obtained from the model trained using the trained part
and evaluated on the test part. The test part was not used
during any stage of the classifier design, ensuring the fairness
of model evaluation on data that was not seen before.

A. Results

The results of binary and multiclass classification are pre-
sented in Table III. On most of the binary classification prob-
lems, the novel feature set achieved similar or better perfor-
mance than the best-performing previous work. Moreover, our
approach outperformed eight related works significantly (by
more than 1%). However, on the TOR detection problem, we
obtained a worse F1-score than the best classifier.

We investigated the differences between the TOR classifier
published by Sarkar et al. [48] and found out that he uses
a specially tailored feature vector that also includes transport
ports. Even though transport ports are often used in network
traffic classification, we intentionally opted to avoid them to
maintain the universality of features. The classifier often tends
to overfit the transport port features, which, in some cases, is
not a desired behavior.

When we analyze the performance of the multiclass clas-
sification, we also outperformed most of the best-performing
classifiers. Specifically, in five out of eight cases, we achieved
more than a 1% classification performance increase. However,
in two cases, we observed a slight decrease—TON IoT and
IDS-UNSW cases.

The best-performing classifier of TON IoT published by
Tareq et al. [46] is based on a 2D convolutional network
(CNN) with very long packet-length data (SPLT with all
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TABLE III
FINAL RESULTS (IN %) OF CLASSIFICATION. THE GREEN-COLORED CELLS REPRESENT RESULTS WHERE OUR APPROACH IS SIGNIFICANTLY (BY 1% OR

MORE) BETTER THAN BEST-RELATED WORK. CONTRARY THE RED-COLORED CELLS REPRESENT RESULTS WHERE OUR APPROACH IS SIGNIFICANTLY
WORSE THAN BEST-RELATED WORK. FURTHERMORE, THE GRAY-COLORED CELLS REPRESENT RESULTS THAT ARE SIMILAR TO BEST-RELATED WORK.

Binary classification Multiclass classification
Detection Macro Weighted
problem Method Accuracy F1-score Method Accuracy avg. F1 avg. F1

Stergiopoulos et al. [4] 99.85 99.90 Marı́n et al. [5] 99.72 76.04Botnet Our approach 99.98 99.93 Our approach 99.73 82.79 99.73
Plný et al. [7] 93.72 90.59 –Cryptomining Our approach 95.29 93.11 –
Kumaar et al. [36] 99.19 99.20 –DNS Malware Our approach 100.0 100.0 –
Zebin et al. [19] 99.98 99.91 –DoH - CIC Our approach 99.90 99.84 –
Jeřábek et al. [9] 97.5 98.7 –

DoH - Real-world Our approach 97.79 98.80 –
Shagiq et al. [39] 99.99 99.99 –DoS Our approach 100.0 100.0 –
Luxemburk et al. [10] 99.93 96.26 –HTTPS Brute-force Our approach 99.99 99.83 –
Agrafiotis [22] 98.5 95.4 Kunang et al. [55] 95.79 – 95.11IDS - CIC Our approach 99.89 99.75 Our approach 99.93 83.23 99.92
Ding et al. [23] 92.39 94.39 Ding et al. [23] 90.39 79.64 –IDS - UNSW Our approach 98.49 98.50 Our approach 95.60 40.22 95.08

IoT Mal. - Khacha et al. [41] 99.99 99.99 Khacha et al. [41] 98.69 – –
Edge-IIoTset Our approach 99.99 99.97 Our approach 99.97 89.75 99.97

Sahu et al. [43] ∼ 96 ∼ 96 –IoT Mal. - IoT-23 Our approach 99.86 99.91 –
IoT Mal. - Dai et al. [45] 99.29 99.03 Tareq et al. [46] 98.5 – 98.57
TON IoT Our approach 99.96 99.98 Our approach 97.53 81.02 97.51

Sarkar et al. [48] 99.89 99.88 Yang et al. [49] 96.04 95.97TOR Our approach 99.84 96.33 Our approach 95.48 79.87 95.20
Aceto et al. [51] 93.75 91.95 Dener et al. [52] 89.29 87.83VPN - ISCX Our approach 94.35 95.48 Our approach 94.80 91.21 94.77
Jorgense et al. [53] – 98.00 Jorgensen et al. [53] 96 – –VPN - VNAT Our approach 99.98 99.72 Our approach 98.60 98.88 98.60

packets from connection) organized in the image. The SPLT
data give the classifier advantage in the opportunity of high-
quality feature extraction that allows accurate classification.
Nevertheless, the long packet sequences (SPLT) cannot be ex-
ported in real-world deployment scenarios due to the technical
limitations of the flow exporters (see Section II).

Besides, Ding et al. [23] achieved better results with IDS
classification using IDS - UNSW dataset. According to our
analysis, the better results are caused by a high-class imbal-
ance of the dataset. Ding et al. thus proposed techniques for
dealing with the imbalance ratio between classes. In our case,
we did not deploy any imbalanced learn techniques in our
classifier design pipeline to maintain comparability with the
previous works—most of the concerned related works do not
deploy any imbalanced learn techniques.

As can be seen in Table III, the proposed feature vector
proved to be universal and performed well on all concerned
tasks. The slight reduction in accuracy in some cases was ex-
pected since universal features cannot compete with specially
tailored ones; however, we still consider the performance re-
duction, especially in the case of TOR or TON IoT as a good
tradeoff for universality and the possibility of deploying all
the network classifiers behind single flow monitoring device.

VII. CONCLUSION

In this paper, we propose a novel feature set built from
Time Series Analysis of Single Flow Time Series that can be
used for classification methods. The proposed feature set is
highly universal and achieves great results for both binary and
multiclass classification. The feature set covers a wide range of
behavior types in the following groups: 1) statistical deviation
of payload lengths, 2) statistical deviation of packets times,
3) distribution of packets, 4) behavior of frequency domain,
and 5) specific behaviors of data points. All groups contain
significant features for classification.

The proposed method and feature set were evaluated on 23
network classification tasks using 15 publicly available and
well-known network traffic datasets which are often used in
recent research. All the collected datasets were processed to
compute the proposed time series features that were published
for any further research by the scientific community.

Overall, we trained and evaluated over 2,500 models across
both binary and multiclass classification tasks and showed the
universality of the proposed features. Furthermore, we pre-
pared a prototype of the C++ implementation of the proposed
feature vector extraction methods inside flow exporter ipfix-
probe9.

9https://github.com/koumajos/ipfixprobe tsa sfts
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