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Abstract—With a rising frequency and scale, Distributed
Denial-of-Service (DDoS) attacks persist as a critical cybersecu-
rity issue. While shared attack fingerprints aid many intrusion
detection systems in identifying threats, their application for
DDoS attacks remains limited due to their distinct nature.
However, fingerprints observed from multiple locations can
provide valuable insights. This paper presents Reassembler, a
novel platform for achieving a global DDoS attack analysis using
attack fingerprints recorded from various locations. Reassem-
bler consolidates these fingerprints into a unified view allowing
to obtain a global overview of DDoS attacks. The evaluation,
conducted on four simulated scenarios, demonstrates Reassem-
bler’s ability to extract novel properties, such as the count of
intermediate nodes and the estimated percentage of spoofed
IPs.

Index Terms—Distributed Denial-of-Service, Attack Finger-
prints, Cooperative Defense

[. INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks signifi-
cantly threaten Internet availability and digital security in
today’s highly connected world. Over time, DDoS attacks
have evolved, not only in their accessibility (e.g., using
stress-testers or Booters [22]) but also in terms of band-
width consumption. Reports of attacks exceeding 1 Tbps
in bandwidth, as noted by Cloudflare, one of the leading
DDoS mitigation companies, serve to underscore this re-
ality [21]. Furthermore, attackers are now leveraging DDoS
attacks for ransomware activities, further compounding the
threat these attacks pose to businesses and individuals alike
[11]. However, despite numerous efforts in both commercial
and research realms, DDoS attacks remain unsolved.

Effective counter-strategies to these distributed attacks
necessitate an equally distributed defense mechanism,
preferably one that mitigates attacking traffic at different
points, potentially closer to their origins [17], [18], [9].
Information sharing is critical to successfully implementing
this approach, which can enhance the distributed DDoS
attack defense. This has motivated the use of fingerprints
or signatures for sharing attack data and patterns in various
Intrusion Detection Systems (IDS) and Intrusion Prevention
Systems (IPS) [14]. The DDoSDB project [7], for example,
was proposed as a central repository where organizations
can share their DDoS fingerprints, thereby expanding the
collective knowledge on the subject. However, the dis-
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tributed nature of DDoS attacks presents unique challenges
in analyzing and aggregating such fingerprints [22].

Historically, DDoS defense strategies have primarily been
implemented at the attack target [10], [16], [12]. This is
largely due to the challenges in universally applying a
specific DDoS attack fingerprint to detect similar attacks.
However, the distributed nature of DDoS attacks provides
a unique advantage: they are also observable by multiple
network nodes. While sharing mechanisms for DDoS attack
fingerprints currently exist [7], they have seldom been
employed to provide a global perspective of these attacks
as they only report the target’s viewpoint. This paper posits
that attack fingerprints recorded at various nodes offer
unique insights into DDoS attacks and when aggregated,
can provide a novel foundation for a global post-mortem
analysis.

To the best of the author’s knowledge, no existing work
has provided a comprehensive analysis of a DDoS attack
based on fingerprints recorded at different locations. Re-
assembler addresses the challenge of filtering and aggre-
gating DDoS attack fingerprints to form a global analysis,
leveraging these observations to derive novel metrics en-
riching DDoS attack analysis and fingerprinting methods
in general. Contributions are summarized as follows:

- Extended Fingerprint Format enhancing the ability
to capture and share intricate details of DDoS attacks,
fostering an improved understanding and enabling
more comprehensive analyses of attacks.

- Topology Generator an additional tool enabling the
creation of realistic, diverse network topologies, essen-
tial for simulating and analyzing a wide range of DDoS
attack scenarios within Reassembler.

- Reassembler Tool that collects and consolidates attack
fingerprints from various locations providing a unique,
holistic view of DDoS attacks. Reassembler’s code is
available in [2], [3].

- Data-driven approach as Reassembler provides a ro-
bust foundation for multi-perspective DDoS post-
mortem analysis.

This paper is organized as follows. Section II presents
related work. Section III describes Reassembler’s design.
Section IV presents evaluation results and discussion. Sum-
mary and future work are presented in V.
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II. RELATED WORK ON DDOS FINGERPRINTING

The literature on DDoS attack fingerprinting does not
consistently define what a fingerprint means. Lee and Shieh
[12] consider the route a packet has traversed between
source and destination to be its fingerprint. They propose
a filtering scheme that recognizes and drops packets with
a spoofed IP address based on their path fingerprint.
Osanaiye [16] denotes a fingerprint as the operating system
of an attacking device. A combination of active and passive
fingerprints detects whether an IP packet is spoofed. The
passive fingerprint is generated by analyzing incoming
packets; the active fingerprint is by probing the source
IP. An IP packet is considered valid if both fingerprints
extracted from operating systems match.

Wang et al. [20] employ an IP packet hop count as a
fingerprint against which future requests are compared to
filter out packets with spoofed IP addresses. They infer
the hop count from each packet’s IP header’s Time-to-Live
(TTL) field. In the learning state, the Hop-Count-Filterig
(HCF) technique generates and collects fingerprints. Once
packets that do not match the stored fingerprint for that IP
are detected, HCF changes to the filtering state and discards
those packets.

The fingerprint definition of [10] and [5] is closest to
the proposed definition, as the fingerprint represents a
standalone view of a distinct DDoS attack. The problem
with other presented fingerprinting methods is that they are
only a means to detect an attack, but they do not uniquely
characterize an attack. As such, they cannot comprehen-
sively analyze a specific DDoS attack. Furthermore, not all
methods can be deployed directly but require a change in
the underlying Internet protocol (e.g., path fingerprint [12]).

All of the above-mentioned fingerprinting methods are
destination-based. They help to detect and mitigate an
attack on the target’s side. This is certainly important from
a victim’s perspective. However, more global views of DDoS
attacks are also required to mitigate such threats efficiently.
In this regard, Akella et al. [1] propose a detection method
that helps ISP networks detect attacks on themselves and
external attacks that use a certain ISP network. Their
detection method relies on stream-sampled profiles of
normal traffic and applies anomaly detection. Aggregated
fingerprint data is then shared among the routers in the
ISP networks using a simple consensus mechanism based
on a predefined confidence threshold.

Another approach to get a global view of DDoS attacks is
analyzing darknet traffic (i.e., routable but unused Internet
addresses). This idea was initially proposed in [15] and was
based on the assumption that DDoS attackers randomly
generate a spoofed source IP for each packet. When ob-
serving a large enough IP range (e.g, 1/256 of the IPv4
space), Moore et al. [15] were able to sample an attack
overview of the whole Internet space using backscatter
analysis. Following these footsteps, Fachkha et al. [8] extend
this idea without relying on backscattered analysis. They
conduct a flow-based traffic analysis on DNS queries to the

darknet space. Their results show that the global increase
of DNS queries of type ANY is caused by DNS amplification
attacks.

There is no unified definition of an attack fingerprint,
and various detection methods employ different fingerprint
formats [12], [16], [20], [10], [13]. Also, not all are ready to be
deployed, either requiring changes to underlying protocols
[12] or collecting data over months up to years [15], [8].
Reassembler builds upon the definition proposed in [10]
and [5] as they represent a standalone view of a distinct
DDoS attack. Reassembler uses fingerprints not only as an
attack description but also as a simple traffic observation
and introduces novel properties (cf. Extended Fingerprint
Format III-1) that allow a global analysis. For example, re-
porting on the detection threshold, number of packets, and
Time-to-Live (TTL) per source. These properties, although
not precisely reported at an intermediary node, can present
valuable insights when aggregated.

ITI. REASSEMBLER’S DESIGN

Reassembler is a tool for comprehensive post-mortem
DDoS attack analysis utilizing attack fingerprints from
various locations. Simultaneously, a unique module for
generating custom attack scenarios has been developed,
fostering the production of realistic attack fingerprints to
test and enhance Reassembler’s performance. Altogether,
Reassembler’s contribution lies in its ability to provide a
global, holistic view of DDoS attacks by using and aggre-
gating attack fingerprints from various locations.

1) Extended Fingerprint Format: Different definitions of
DDoS fingerprints exist (cf. Section II). This paper extends
a dedicated program DDoS Dissector [6] used to generate
fingerprints from network traces (e.g, PCAP files). The
Dissector employs a straightforward detection mechanism,
identifying IP addresses that received more than 50% of
the analyzed traffic. If the 50% threshold is unmet, the
Dissector looks for a target subnet.

While this is optimal for analysis at a single point
(i.e, at the victim), it poses problems when fingerprints
from multiple recorded locations are combined. For global
analysis, it is also desirable to have attack fingerprints with
less certainty as they can be interesting in a global context.
For example, with a high threshold of 50%, only nodes that
are very close to the target (and the target itself) report a
fingerprint, but with high certainty. Targets that receive less
than 50% are discarded, and no fingerprint is generated.
With a lower threshold (e.g., <10%), nodes farther away
might also produce a fingerprint with lower certainty. While
a single fingerprint with low certainty cannot identify or
describe an attack, it helps to build a global picture.

To address the difficulty in attributing fingerprints to
their recording locations due to the imprecision of IP
address and TTL value assumptions, we introduce a
location property. This property accurately pinpoints
where a fingerprint was captured. Figure 1 illustrates an
example where Router R receives traffic using the same
protocol and port from three different sources.
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TABLE I: Proposed Additional Properties for Attack Fingerprints (Extending [10])

Level Field name Description

Data type

Fingerprint location

The IP of the location where the fingerprint was recorded

String

Attack Vector | nr_packets_by_source

Number of packets in the attack vector grouped by source IP

Map<String, Integer>

Attack Vector | ttl_by_source

Observed TTLs in the attack vector grouped by source IP

Map<String, Integer(]>

Attack Vector | detection_threshold

Percentage of attack traffic compared to all observed traffic

Float
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Fig. 1: Loss of Source Context During a Fingerprint Aggre-
gation

Client A maliciously sends a lot of packets (e.g., SYN
flood), while client B and C solely try to access the website.
Due to the aggregation per port and protocol, router R
calculates a fingerprint with three attack sources and a
total number of 1’000 packets. This means non-malicious
source IPs are included in the fingerprint if they use the
same protocol and port within the same timeframe. Such
behavior can be detected using the reported TTL values
to a certain extent. However, if all arriving packets at
router R have the same TTL, the fingerprint makes no
distinction between malicious or non-malicious source IPs.
As mentioned before, such properties in the fingerprint
are not required when generating a fingerprint at a single
location with high certainty. However, the additional in-
formation provides an interesting basis for further analysis
of a global picture. The additional proposed properties are
summarized in Table I.

A. The Reassembler Module

The Reassembler module generates a global overview of
a DDoS attack given a set of attack fingerprints recorded at
different locations. This is crucial to identify patterns and
efficiently develop countermeasures that cannot be derived
from observing the DDoS attack at a single point. For
example, the number of intermediate nodes and their level
of involvement in an attack or the number of intermediate
nodes helps to understand an attack’s scale and assess
attackers’ resources and strategies. The Reassembler can
be structured into four major steps.

1) Pre-process Fingerprints: Pre-processing attack fin-
gerprints includes two main actions:

- Read/Load Attack Fingerprints from a shared location
(e.g, an online repository) Since this paper uses a
simulated scenario, the shared location is emulated
by a local folder.

. Convert Fingerprints to a format allowing further
processing. To make the lookup and filtering of data

TABLE II: Output of the Attack Identification Stage

Parameter
Attack Target

Description

One single attack tar-
get of a globally ob-
served attack

List of nodes
that (potentially)
observed the attack
List of attack sources
(not  filtered for
spoofed addresses)

Finality
Final

Intermediate Nodes Requires Refinement

Attack Sources Requires Refinement

efficient, fingerprints are converted to a flat (i.e., non-
nested) data format.

While one could argue that loading attack fingerprints
falls outside the pre-processing stage, it is included as the
purpose of pre-processing is to provide the data for the
next step such that it can be analyzed efficiently.

2) Attack Identification: An attack fingerprint describes
a specific attack generated by a previously identified attack
[10]. This assumption is weakened so that a fingerprint
does not necessarily describe an attack but serves as a
mere traffic observation. On the one hand, this removes the
complex logic and computational overhead of identifying
an attack from the network nodes. On the other hand, it
requires identifying attacks later by looking at a large set
of possible attack fingerprints.

Considering a case where many nodes in the network
contribute their recorded attack fingerprints in a shared
repository, there are different ways to infer an attack target.
Three possible scenarios arise in DDoS attack reporting.
First, a node actively signals to be an attack target and pro-
vides a detailed fingerprint. In the second, there is no active
declaration of being a target, but fingerprints are submitted
to a shared repository as a background operation of the
DDosS Dissector [6]. In the last, the attack target neither
announces the attack nor provides a fingerprint, leading
to missing key observations despite potential detection by
other network participants.

While Reassembler supports the first two possibilities,
this paper focuses on the second variant, where the attack
is automatically inferred from a set of attack fingerprints.
The core principle is to use a relatively high detection
threshold while leveraging the fact that a node under attack
also submits fingerprints. Thus, an attack can be identi-
fied by searching for fingerprints that have recorded an
attack on themselves while having a high enough detection
threshold. In summary, the attack identification step of
the Reassembler produces the three outputs parameters
summarized in Table II. Both intermediate nodes and
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attack sources are not final but serve as a basis for further
analysis.

3) Attack Analysis: An attack fingerprint indicates the
absolute number of packets to a target and the detec-
tion threshold used to capture the fingerprint. Detection
threshold aids in putting the number of packets into
context, depending on the AS capacity. For example, a
router from a local ISP might have a conspicuously high
detection threshold of over 75%. However, if the total attack
percentage reveals that this node accounts for less than
0.5%, it becomes less interesting again. Conversely, nodes
with a low detection threshold might still be interesting
if they account for a large percentage of the total attack.
Examples include large DNS servers that can be exploited
for a reflection attack.

Distance of attacker. The distance of an attacker to the
attack target is calculated based on the TTL values recorded
at the target. For the calculation, the knowledge of the
initial TTL value of an attack packet is required. Borrowing
the idea employed in Hop-Count Filtering [20], the initial
TTL value of the packet is derived by finding the smallest
common initial TTL value that is higher than the TTL value
recorded at the target. This is possible because commonly
observed initial TTL values are relatively far apart, but paths
between two internet hosts rarely exceed 30 hops in the
distance [4], [19]. We consider 32,64,128, and 255 as com-
mon initial TTL values, and both the Fingerprint Generator
and the Reassembler employ this list for generation and
calculation.

Distance of an intermediate node. Compared to cal-
culating the attacker’s distance, determining the distance
between intermediate nodes and the target does not require
knowing the initial TTL value. In this context, calculating
the distance is more straightforward, as it simply involves
finding the relative difference between observed TTL values
for a packet sent to the same target. While the calculation
is trivial, some factors can make this calculation imprecise.
A network packet is not always guaranteed to take the
same route in the real world. This means the TTL values
at intermediate nodes and the target may fluctuate slightly.
That factor is neglected as the simulated network scenario
returns a stable shortest path between any two nodes.
Detecting Spoofed Sources. Utilizing the TTL field of an
IP packet for identifying spoofed addresses has proven
effective in learning spoofed sources, as shown by Wang
et al. [20]. The learning phase can rely on the fingerprint
aggregation process with the extended fingerprint format.
Rather than comparing TTL values with previously recorded
values in a database, the detection can be performed solely
by examining the fingerprint data. If a fingerprint contains
more than one TTL value per source IP, the IP address has
likely been spoofed.

4) Global Fingerprint: The aggregation to build a global
fingerprint is the fourth and last step in the Reassembler
process. Reassembler provides a compact fingerprint that
summarizes the major properties of the attack from a global

TABLE III: Reassembler’s Global Fingerprint Format

Category Attribute Data Type
Start Time Timestamp

Attack End Time Timestamp
Duration (s) Float
Attack Service String
Attack Protocol String

Target 1P Addfess String
Detection Threshold Float
Nr. Nodes Integer

. Discarded Nodes Integer

Intermediate Nodes Detection Threshold Percentiles Mapg<Integer, Float>
Key Nodes Object

Sources Nr. Sources Integer
Pct. Spoofed Float

view. Table III shows the attributes into four categories.
Attack properties offer insights about the attack, with
attributes such as ’Attack Service’ and ’Attack Protocol’
Start and end times of the attack are based on a global
perspective, considering only filtered intermediate nodes.
The Target properties identify the attack target and its
configuration parameters. Intermediate Nodes form the
most significant portion of the global fingerprint. These
properties describe the filtered count of intermediate nodes
observing the attack traffic and give data on the detection
threshold distribution among these nodes. Lastly, Sources
properties detail the attack’s origins, including number of
observed IPs targeting during the interval and an estimate
of Percentage of Spoofed Addresses, assessing whether the
reported number of sources is likely inflated or accurate.

IV. EXPERIMENTAL EVALUATION

The evaluation of the Reassembler module is based
on different networks and adversarial scenarios. From a
network topology perspective, two scenarios exist (cf. Table
IV). The small network NI consists of 268 network nodes
(cf. Figure 2 left). The large network N2 consists of almost
10’000 network nodes grouped in 15 subnets (cf. Figure 2
right).

TABLE IV: Topology Configuration for the Evaluation

Network # Subnets | Max Levels | Max Clients | # Nodes
N1 5 3 5 268
N2 15 6 5 9’356

Fig. 2: Visualization of the N1 (left) and N2 (right) networks

Based on the two networks, four different attack scenar-
ios are created with increasing attack size (cf. Table V). For
each network, a small and a large attack are simulated.
With the percentage of spoofed IPs constant at 25%, the
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TABLE V: Evaluation Scenarios for N1 and N2

ID | Netw. | #Sources | #Background | Spoofed | Fingerprints
S1 N1 5 10 25% 85

S2 N1 20 50 25% 343

S3 N2 100 200 25% 2’777

S4 N2 500 1000 25% 12’712
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Fig. 3: Left: Attack Vector (AV) Composition. Right: Percent-
age of Observing Nodes.

number of resulting fingerprints mainly depends on the
number of sources and background routes. For the large
scenarios (S2, S4), it can be observed that the number
of fingerprints generated exceeds the number of nodes in
the respective network. For example, scenario S4 generates
12’712 fingerprints in a network (N2) of 9’356 nodes. This
means that some of the network nodes submit more than
one attack fingerprint.

A. Ground Truth Data

Ground truth data provides insights into how the con-
figuration parameters and the proposed simulated net-
work topology influence generated fingerprints. With the
background traffic configuration of the scenarios (cf. Table
V), it is clear that not all nodes observe actual attack
traffic. Figure 3 (right) shows the percentage of nodes
observing the attack out of all nodes submitting at least
one fingerprint. The percentage values range from 28% to
35%. This aligns with the expected results from the attack
configuration, where the number of attack sources is about
half of the background traffic for all scenarios. The observed
variations can be explained by the randomness in the
scenario, where an attack traffic path might have a different
length (i.e., involves fewer nodes) than a background traffic
path.

Similar fluctuations can also be observed when analyzing
the composition of observed attack vectors (i.e., flattened
fingerprints). Figure 3 (left) shows a significantly lower
percentage of true attack vectors in Scenario 1. This is
because three of the five randomly assigned attack sources
are located in the same subnet as the attack target, thus
producing much shorter attack traffic paths that involve
fewer nodes. In the other scenarios, the true and back-
ground attack vectors are roughly split into 40% and 60%.
The deviation from the expected value of 33% can be at-
tributed to the difference in path length between attack and
background traffic paths. Attack sources are only selected

from leaf nodes in the subnet tree, but background traffic
paths are randomly sampled from the whole network.

B. Reassembler Evaluation

The Reassembler module derives the ground truth data
and the attack configuration from fingerprints. This esti-
mates intermediate nodes observing an attack (cf. Figure
4 left). Even though the absolute values increase from
scenario 1 to scenario 4, the relative number of discarded
nodes lies between 19% and 28% for all scenarios.
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Fig. 4: Left: Intermediate Nodes Estimation. Right: Detec-
tion thresholds for Scenario S2.

Another insight derived by the Reassembler is the global
distribution of detection thresholds of the participating
nodes. A scatter plot of the detection thresholds from
the nodes in S2 is shown in Figure 4 (right). The x-axis
represents the distance in hops to the attack target. The
size of each marker signifies the total count of packets
observed by a node, helping in determining whether it is
a high-volume node or a comparatively smaller one.

It stands out that up to the fifth hop on the x-axis, one
single node per hop is always significantly larger than the
others. This aligns with the hierarchical network topology,
where, within a subnet, only one path from the root node
to a leaf node (i.e, the attack target) exists. At a single hop
distance to the target, the detection threshold corresponds
to 1 (cf. Figure 4), indicating that every packet observed
is considered part of the attack. Overall, the detection
thresholds shown in Figure 4 are rather high, with only
a few outliers below 50%. This is beneficial because a
standard DDoS Dissector instance would detect the attack
and generate an attack fingerprint.

1) IP Spoofing: Any strategy that hinders the attack’s
detection or analysis process is considered adversarial. The
attack scenario consists of 100 randomly chosen attack
sources within topology N2. Across the different runs, only
the spoofed percentage is updated, while the target nodes
and the network stay the same. Due to the randomness in
setting nodes that use a spoofed IP, an attack source may
use spoofed IPs in one run but a real IP in the next. While
the attack sources stay the same, the set of nodes that use
a spoofed IP is randomly drawn on each run.

The results of the experiment are shown in Figure 5.
Within each plot, the spoofed percentage is increased in
5% steps from 0% to 100% using the same network and
spoofed IP pool size. Each subplot uses a different IP
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Fig. 5: Spoofed Sources in Scenario S2 with Different
Spoofed IP Pool Sizes: Top: 500 (left), 1000 (right). Bottom:
5000 (left), 10000 (right).

Pool Size, ranging from 500 to 10°000. The red horizon-
tal dashed line represents the actual number of sources,
which remains consistent across all experimental runs. The
orange line denotes the number of observed sources at
the attack target. It includes all observed IPs, including
spoofed IPs that, for example, have only been observed
once. The blue line signifies the estimated percentage of
spoofed addresses. Finally, the green dashed line denotes
the normalized count of observed sources, calculated by
subtracting the estimated spoofed percentage (blue line)
from the observed count (orange line).

It can be observed that the number of observed sources
rapidly grows with an increasing percentage of spoofed IPs.
However, as the estimated percentage (blue line) practically
increases linearly with the spoofed percentage on the x-
axis, the normalized count (green) settles around 2.5 times
the actual count. More than that, the normalized count falls
below the actual count for spoofed percentages above 80%.
Such behavior is only observed in 500 (top left), which has
the smallest spoofed IP pool size.

2) Missing Fingerprints: With perfect attack coverage, it
is possible to see from what distances most of the attack
traffic emerged. However, such a scenario is unlikely. Even
minor deviations of just one hop in the distance can result
in an attack coverage chart that is not logical for certain
distances. An example of this is shown in Figure 6 (right),
where the observed coverage 7 hops away from the target
is over 100% (indicated by the red bar). Naturally, a value
over 100% does not make sense and indicates that some
distance estimations are incorrect. As a consequence, some
nodes are attributed to the wrong group (i.e., distance),
which distorts the result.

The experimental setup is based on the configuration
of scenario S3 (cf. Table V). The key question is how the
estimated number of intermediate nodes is affected by

. Discarded

= Ground truth

W Estimatad 12
o
£10
S
Eog
e
T o6
=
2
Go4
0.2 II
- y 0.0 l
b= 2 4 & B 10 1z 14 16

Distance to Targat (Hops]

Intermediate Nodes
w B b B0 B B
o o 4 o 2 a & 2
0.0 i ——
7 0.3 [ e—
0.4 i e—

205

0.6 e
0.9

0.2 i ——
#

S 0.6 i e—

7 0.7 J—

1=}
]
-]
-1
@
a

T
=1
g

Fig. 6: Left: Intermediate Nodes Estimation Increasing
Dropped Fingerprints. Right: Attack Coverage in S4.

missing fingerprints. This is evaluated by comparing the
estimated number of intermediate nodes with the ground
truth data across multiple runs with an increasing number
of dropped fingerprints (cf. Figure 6, left).

The number of estimated nodes decreases linearly as the
number of excluded fingerprints increases. This trend is
positive because excluding specific fingerprints causes no
unexpected outliers. In that regard, no minimum amount
of participating network nodes is required to make a global
analysis work.

3) Detection Thresholds: The fraction of the total attack
decreases when moving away from the attack target. The
observation is confirmed by a scatter plot of the observed
fractions of the total attack by distance to the attack target
(cf. Figure 7, left). A linear regression shows that the fraction
of the total attack behaves inversely proportional to the
distance from the attack target.
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Fig. 7: Left: Fraction of total attack vs. hops to target for
scenario S2. Right: Detection threshold vs. fraction of total
attack for scenario S2.

Furthermore, the detection threshold is also related to
the observed fraction of the attack. As Figure 7 (right)
shows, the fraction of total attack behaves proportionally
to the detection threshold in Scenario S2. It confirms the
intuition that nodes located further away from the attack
target perceive a reduced proportion of the total attack and
require a lower detection threshold to identify the attack.

To evaluate the impact of background traffic on the
required detection thresholds, several runs of S3 are per-
formed, progressively increasing the background traffic.
The four runs with 500, 2’000, 5°000, and 10’000 unique
background traffic routes are depicted in Figure 8. Each
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Fig. 8: Detection Thresholds for Scenario S3 Increasing
Background Traffic Routes: Top: 500 (left), 2000 (right).
Bottom: 5000 (left), 100000 (right).

marker’s size represents the network node’s size regarding
observed packets.

With 500 background routes, 2.5 times the number of
attack routes, the median detection threshold is slightly
over 80%. The 75th percentile is nearly at a 100% detec-
tion threshold, suggesting that many nodes observed only
the attack and no background traffic. With 10 times the
number of background traffic compared to attack traffic,
the median detection threshold decreases to around 50%.
In comparison, the 75th percentile with 2’000 background
routes remains relatively high at over 80%. Only when
increasing the number of background routes to 5’000, all
three percentiles for the detection threshold fall below
50%. For 10’000 background routes, which is 50 times the
number of attack routes, the mean detection threshold falls
below 20%.

V. SUMMARY AND FUTURE WORK

This paper introduced Reassembler [2], [3], an open-
source tool to facilitate global DDoS attack analysis using
attack fingerprints. Reassembler is a novel approach that,
through a data-driven approach, provides a global, holistic
view of DDoS attacks by using and aggregating attack
fingerprints from various locations. By extending prior work
on DDoS fingerprinting, Reassembler provides a robust
foundation for multi-perspective DDoS analysis extracting
novel properties, such as the count of intermediate nodes
and the estimated percentage of spoofed IPs.

Also, the open-source repositories [2], [3] include all
evaluation scripts, enabling additional experiments and
further research. Future work will address realistic traffic
mix modeling and the inclusion of various attack types to
augment the fingerprint generator’s efficacy.
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