
Workload Placement with Bounded Slowdown in
Disaggregated Datacenters
Amirhossein Sefati˚, Mahdi Dolati:, and Majid Ghaderi˚

˚Department of Computer Science, University of Calgary, Calgary, Canada.
:School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Emails: {amirhossein.sefati, mghaderi}@ucalgary.ca, m.dolati@ipm.ir

Abstract—Disaggregated Data Center (DDC) is a modern
datacenter architecture that decouples hardware resources from
monolithic servers into pools of resources that can be dynamically
composed to match diverse workload requirements. While disag-
gregation improves resource utilization, it could negatively impact
workload slowdown due to the latency of accessing disaggregated
resources over the datacenter network. To this end, we consider
CPU and memory disaggregation and conduct measurements to
experimentally profile several popular datacenter workloads in
order to characterize the impact of disaggregation on workload
execution slowdown. We then develop a workload placement
algorithm, called Iterative Rounding-based Placement (IRoP),
that given a set of workloads, determines where to place each
workload (i.e., on which CPU) and how much local and remote
memory allocate to it. The key insight in designing IRoP is that
the impact of remote memory latency on slowdown can be sub-
stantially masked by assigning workloads to higher-performing
CPUs, albeit at the cost of higher energy consumption. As such,
IRoP aims to find a workload placement that minimizes the
DDC energy consumption while respecting a bounded slowdown
for each workload. We provide extensive simulation results to
demonstrate the flexibility of IRoP in providing a wide range of
trade-offs between energy consumption and workload slowdown.
We also compare IRoP with several existing baselines. Our results
indicate that IRoP can reduce energy consumption and slowdown
in the considered scenarios by up to 8% and 12%, respectively.

I. INTRODUCTION

Motivation. Today’s data centers (DCs) are designed based
on a server-centric model. The building block of this model
is a monolithic server that includes all necessary hardware re-
sources such as CPU, RAM, and NIC to run typical datacenter
workloads. One of the main limitations of the server-centric
model is the difficulty to achieve full resource utilization
due to resource stranding, where a server that has used
up one type of resource cannot run more workloads even
though it may still have large amounts of other resources
available. Indeed, measurements in production DCs show that
the average utilization of hardware resources is relatively low.
For example, a recent report [1] reveals that 80 percent of
the time datacenter clusters utilize 10–30% of their CPU
capacities and more than half of the time the average memory
utilization is around 50%. Beyond the cost of hardware, under-
utilization of resources also results in elevated energy con-
sumption, as static energy consumption of fixed-ratio servers
in a datacenter is significant [2], which has financial and
environmental consequences. Addressing the stranded resource
problem has become even more critical as the model of

computing is evolving in response to emerging data-centric
workloads such as those in ML/AI. These workloads require
large amounts of processing capacity as well as memory to
work efficiently. Simply over-provisioning servers with more
hardware resources not only exacerbates the stranded resource
problem but faces practical limitations (i.e., limited DIMM
slots for memory on the server board).

To overcome the limitations of the server-centric model,
a resource-centric model is proposed for datacenters based
on resource disaggregation. In a disaggregated datacenter
(DDC), server hardware resources are physically or logically
disaggregated into homogeneous resource pools from which
resources can be allocated to workloads on-demand. The scale
of disaggregation can be within a single rack, a group of racks
(i.e., a cluster), or the entire datacenter. One of the most cru-
cial components of a disaggregated architecture at any scale is
the network that interconnects resource pools. Recent advances
in low-latency networking demonstrate that microsecond-scale
host-to-host latency is achievable in datacenters [3], with sub-
microsecond latency within the host networking stack [4].
Nevertheless, even such network latencies are still high when
accessing remote disaggregated memory, noting that accessing
local memory on the same server box takes in the order
of tens of nanoseconds [5]. As memory access latency in-
creases, execution slows down for those workloads that are
memory intensive. To compensate for the slower memory
access, workloads can be assigned to higher performing CPUs,
e.g., CPUs with higher compute capacity or higher clock
frequency. However, this strategy increases datacenter energy
consumption (the higher the frequency, the higher the energy
consumption) and infrastructure costs.

Different workloads have different levels of sensitivity to
memory access latency. In Fig. 1, we have plotted mea-
sured slowdown for several popular datacenter workloads
(see Section II-B for details). The slowdown of a workload
is defined as the ratio between its completion times when
executed in a disaggregated DC and when executed in a
traditional DC. The figure clearly shows that some workloads
such as Kmeans [6] are highly sensitive to memory access
latency, while others such as WordCount [7] show negligible
sensitivity. This behavior can be exploited to minimize the
impact of memory disaggregation on workload slowdown.
Recently, a few works have considered optimizing workload
slowdown through runtime management [8], [9]. But runtime

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

0 1 2 3 4 5
Remote Memory Latency (s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sl
ow

do
w

n

Kmeans
HPCG

Hadoop-WordCount
Spark-WordCount

Fig. 1: Workload slowdown as remote memory access latency in-
creases. The local memory ration is fixed at 25%. The x-axis shows
the amount of additional latency when accessing remote memory
compared to local memory.

management alone is not sufficient as it cannot help during
the startup time. For example, workloads with a low ratio
of hot to cold pages severely suffer from insufficient low-
latency memory at startup [10]. Moreover, when the starting
resource configuration of a workload is far from optimal, it
would suffer from slowdown while the runtime management
tries to transition the workload to an optimal resource config-
uration. As such, in addition to runtime management, careful
workload placement at the time of deployment is needed
to ensure workload slowdown is not unacceptably degraded
due to remote memory access, while minimizing datacenter
energy consumption. The workload placement determines: i)
on which CPU to run the workload, and ii) how much local and
remote memory allocate to it. Several works have considered
workload placement in DDC. However, these works focus
on either optimizing workload slowdown [3], [11], [12] or
minimizing datacenter energy consumption [2], [13]–[17],
without considering the trade-off between the two. In this
paper, we aim to study workload placement with bounded
slowdown, i.e., guaranteeing slowdown does not exceed a
pre-specified target level based on SLAs, while minimizing
DDC energy consumption.

Our Work. We consider CPU and memory disaggregation
in DC, where each CPU is provisioned with a fixed (small)
amount of local memory, but can access remote memory
modules, which are considerably larger, over the datacenter
network. We assume resource disaggregation is at cluster
scale, although our placement algorithm is independent of the
aggregation scale. Our first objective is to devise a technique
to accurately profile workloads in order to model the impact
of remote memory latency and CPU processing capacity on
slowdown. To this end, we consider several popular workloads
and run each of them in isolation on a modified Linux system
and measure its completion time. The modified Linux system
allows us to inject arbitrary amount of delay when accessing
remote memory (emulated using the swap space), change
the ratio of remote and local memory, and scale the CPU
frequency dynamically. We then approximate the impact of re-
mote memory latency and CPU frequency on slowdown using
piece-wise linear functions. Our second objective is to design

a fast algorithm for energy-efficient workload placement with
bounded slowdown. To this end, we use the constructed
workload profiles and formulate the workload placement prob-
lem as a mixed-integer linear problem (MILP). The MILP
formulation is NP-hard, and thus we focus on designing a
fast polynomial time algorithm to solve it called IRoP. The
design of IRoP is based on transforming the MILP problem
into a modified variant of the multi-dimensional bin packing
problem [18] and applying the framework of deterministic
rounding of relaxed integer programs. We mathematically
analyze IRoP and derive its theoretical approximation ratio and
runtime complexity.

The main contributions of this paper are:
‚ We present a framework for profiling workload slowdown

with respect to remote memory and CPU processing capac-
ity using simple piece-wise linear functions. We empirically
show that the linear functions provide highly accurate esti-
mation of real-world workload slowdown.

‚ We formulate workload placement in DDC as an MILP.
We then design an efficient approximation algorithm, called
IRoP, to solve the MILP based on the deterministic rounding
framework and analyze its theoretical performance.

‚ We conduct extensive experiments to evaluate the perfor-
mance and utility of IRoP in terms of energy consumption
and workload slowdown in a variety of realistic scenarios.
Our results indicate that IRoP reduces both energy consump-
tion and slowdown in the considered scenarios by up to 8%
and 12%, respectively.

Organization. Section II describes the proposed disaggre-
gation and workload models. Sections III and IV present
the workload placement problem formulation and proposed
algorithm, respectively. Evaluation results are presented in
Section V. We review related works in Section VI while
Section VII concludes the paper.

II. PROFILING DATACENTER WORKLOADS

In this section, first we present the datacenter model con-
sidered in our work and then focus on developing work-
load profiles that succinctly capture the impact of resource
disaggregation on slowdown. Table II summarizes the main
notations used throughout the paper.

A. Datacenter Model

Disaggregation Model. We consider a physically disaggre-
gated datacenter consisting of two types of modules. The
first type, denoted by C, encompasses modules that provide
computing capacity. Each module c P C is equipped with Nc

CPU cores operating at a maximum frequency of Fc, which
determines their processing capacity. Additionally, each mod-
ule c P C is equipped with Lc amount of local memory (i.e.,
DRAM). This local memory is accessible only by the CPU
cores within the same module. The second type of modules
exclusively offer memory capacity and can be accessed by any
CPU core in the datacenter via the datacenter network. The

2023 19th International Conference on Network and Service Management (CNSM)

TABLE I: Profiled Workloads.

Workload Implementation Dataset Size Memory Usage
Kmeans Python-TensorFlow [6] 200MB 2GB
WordCount Java SE [7] 10GB 8GB
HPCG C++ [19] 1GB 12GB

total memory capacity provided by remote memory modules
is denoted by M .

Energy Consumption Model. Previous studies have indicated
that servers in a datacenter account for 85% of the overall
energy consumption [17]. Among the server components,
CPU modules contribute to 85%-88% of the total energy
consumption [17]. Therefore, we focus on CPU modules as
the primary energy consumers. The energy consumption of
CPU module c is modeled as:

Ecpx, yq “ Isc ¨ x` Idc ¨ y, (1)

where x is an indicator variable that equals zero if module c
is powered off and one otherwise. The variable y represents
the utilization (i.e., load) of the module. Note that when
x “ 0, y must also equal zero. Coefficient Isc represents the
static energy consumption when the module is powered on,
regardless of the load. Coefficient Idc denotes the maximum
dynamic energy consumption of CPU module c at full load.
The maximum energy consumption of the module, when
operating at full load, is given by Ecp1, 1q “ Isc ` Idc . The
static energy consumption is typically around 75% of the
maximum [17].

Workload Model. We consider a batch of workloads denoted
by W . Each workload w P W is characterized by a tuple
xνw, ϕw, µw,∆wy, where νw denotes the requested number
of CPU cores, ϕw is the requested frequency of CPU cores,
and µw represents the total amount of requested memory. We
assume that the DDC provides incentives for workloads that
are willing to tolerate some level of slowdown, e.g., lower
pricing. Using the parameter ∆w, each workload can specify
how much slowdown it is willing to tolerate as part of its SLA.

B. Slowdown Characterization

We assume that workload w can function with CPU cores
whose frequencies are different from ϕw and varying amounts
of local and remote memory as long as the total memory
received is µw. Modern operating systems have mechanisms to
transparently deal with heterogeneous memory latency through
the support for Non-Uniform Memory Access (NUMA).

We demonstrate that the DDC operator can proactively
generate profiles for popular workloads within the DDC in
an offline manner, as we have done the same in this paper.
This proactive profile-building approach is specifically rele-
vant for large-scale workloads that benefit from disaggregated
memory. Alternatively, a passive profile construction strategy
can be employed, leveraging runtime management. Under this
approach, when a workload arrives at the DDC without an
existing profile, it is treated with zero tolerance during the

TABLE II: Important Notations.

Datacenter Notations

Symbol Definition
C Set of all computation-cable modules
Fc Frequency of CPU cores in module c

Nc Number of CPU cores in module c

Lc Amount of local memory in module c

Is
c Static energy consumption of module c

Id
c Dynamic energy consumption of module c

M Total amount of remote memory in DDC

Workload Notations

Symbol Definition
W Set of all workloads
νw Number of cores requested by workload w

ϕw Processor frequency requested by workload w

µw Total amount of memory requested by workload w

P f
wp.q Model to show the effect of frequency on slowdown of workload w

Pm
w p.q Model to show the effect of memory on slowdown of workload w

∆w Maximum acceptable slowdown of workload w

workload placement phase. Subsequently, the runtime man-
agement system attempts to identify an appropriate resource
configuration for the workload while concurrently constructing
a profile during the process.

To characterize the effect of remote memory and CPU
frequency on the slowdown of workloads, we profile the
behavior of three datacenter workloads that have an iterative
approach which requires multiple accesses to the memory: (1)
K-means clustering [6], (2) WordCount on a sizable 10 GB
dataset obtained from web crawling of Project Gutenberg [7],
and (3) High-Performance Conjugate Gradient (HPCG) bench-
mark [19]. Table I provides further information about the men-
tioned workloads. The profiling was conducted on a computer
equipped with 16 GB of RAM, an Intel(R) Core(TM) i9-12700
processor running at 2.4 GHz, and operating Linux Ubuntu
22.04 LTS.

Effect of Remote Memory. To characterize the impact of
memory, we perform a set of experiments where we change
the ratio of remote to local memory for each workload. To
simulate local and remote memories, we utilize Ramdisk in
Linux, which allows designating a portion of local memory as
a disk representing remote memory. Additionally, we modified
the page swap procedure in the Linux Kernel version 6.1 to
inject an artificial delay to major page swaps to emulate the
network latency experienced when accessing remote memory
in DDC. Finally, while a 5µs delay is artificially injected as the
remote memory latency, we measure the completion time of
each workload using time library in the Linux Kernel. For each
workload, the completion time has been measured 10 times
and the averaged results are presented in Fig. 2. As expected,
by increasing the ratio of remote memory from zero to 75%,
the slowdown also increases. However, workloads exhibit
different levels of sensitivity to remote memory. Specifically,
K-Means and HPCG experience slowdowns of approximately
4x and 3.5x, respectively, while variations of WordCount
encounter less than a 1.5x slowdown. The plot indicates that
a piece-wise linear function is a suitable choice for modeling
the observed slowdowns. To validate this hypothesis, we fitted
piece-wise functions with one, two, and three segments to the

2023 19th International Conference on Network and Service Management (CNSM)

0 10 20 30 40 50 60 70
Assigned Remote Memory (%)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sl
ow

do
w

n

Kmeans
HPCG

Hadoop-WordCount
Spark-WordCount

Fig. 2: Workload slowdown as the assigned remote memory ratio
increases. The injected latency for remote memory is fixed at 5µs.

data points of each workload, which indicated that a three-
piece function yields accurate estimation. Table III showcases
the Mean Squared Errors (MSE) for the three-piece function,
including the average, minimum, and maximum values.

TABLE III: Mean Squared Error (MSE) of Linear Models.

Workload
Remote Memory CPU Frequency

Min Avg Max Min Avg Max
Kmeans 10´7 1.7 4.3 0.8 1.7 2.4

HPCG 10´8 0.9 3.3 1.0 1.6 2.0

Spark-WordCount 10´9 0.09 0.3 0.9 1.5 2.1

Hadoop-WordCount 10´8 0.2 0.6 0.8 1.6 2.0

Let Pm
w prq denote the piece-wise linear approximation

of the impact of remote memory on workload slowdown.
We enforce a minimum of 25% local memory allocation to
mitigate significant workload slowdown similar to [5], [20].
Utilizing three segments with breakpoints at 25%, 50%, and
75% for the ratio of remote memory, Pm

w prq is expressed as:

Pm
w prq “

$

’

&

’

%

a1 ¨ r ` c1 0 ď r ď 0.25

a2 ¨ r ` c2 0.25 ď r ď 0.5

a3 ¨ r ` c3 0.5 ď r ď 0.75,

(2)

where, r represents the percentage of total requested memory
allocated remotely for the workload, while ai and ci are
workload-specific coefficients obtained from profiling. When
no remote memory is assigned to a workload (r “ 0), we
anticipate zero slowdown, allowing us to to set c1 to zero.

Effect of CPU Frequency. To improve the slowdown of
workloads, it is possible to assign a CPU module with a
higher frequency rate than the workload originally requested.
To characterize the impact of CPU frequency on the slowdown
of workloads, we conducted experiments by measuring the
completion time of all workloads at different CPU frequencies.
We used the Linux Kernel module cpupower to adjust the core
frequencies, ranging from the base frequency of 1.6 GHz to the
maximum of 2.4 GHz. Fig. 3 illustrates that the normalized
slowdown of workloads decreases approximately linearly as
the normalized frequency increases from 1.0 to 1.5. For each
workload, we fitted a linear function to the data points and
calculated the MSE of the linear approximation, which is
presented in Table III. Based on the results, using a linear
function to model the effect of CPU capacity on workload

1.0 1.1 1.2 1.3 1.4 1.5
Normalized Core Frequency

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Sl
ow

do
w

n

Kmeans
HPCG
Hadoop-WordCount
Spark-WordCount

Fig. 3: Workload slowdown as the assigned CPU frequency increases.
Lower slowdown means faster execution.

slowdown provides a reasonable level of accuracy. Therefore,
we consider the function P f

wpxq defined as following to
measure the effect of frequency on workload w:

P f
wpxq “

ϕw
x
, (3)

where, ϕw represents the requested CPU frequency by work-
load w, while x denotes the received frequency.

III. WORKLOAD PLACEMENT PROBLEM

In this section, we formally define the problem of Dis-
aggregated Workload Placement (DWLP) and formulate it as
an optimization problem, presented in Problem 1. Table IV
provides the decision variables used in the formulation.

A. Workload Placement

Let W denote the set of workloads that are planned for
deployment. We introduce the binary decision variable yw,c to
indicate whether workload w is assigned to CPU module c.
Previous studies such as [12], [17], [21], [22] have demon-
strated that current networking technologies cannot fulfill
the network requirements for CPU-to-CPU communications.
Therefore, in DWLP, workloads are assigned to a single CPU
module with a sufficient number of cores. Constraint (4b)
ensures that each workload is assigned to exactly one CPU
module.

TABLE IV: Decision Variables.

Symbol Definition
zc Activation of module c

yw,c Assignment of workload w to module c

xw Fraction of local to total requested memory of workload w

fw Frequency of allocated CPU to workload w

uc CPU utilization of module c
ĂNc Number of allocated cores of module c
rLc Amount of allocated local memory of module c

Let the decision variable xw P r0, 1s represent the propor-
tion of the memory requirement of workload w that is allocated
locally. Constraints (4c)-(4f) ensure that the processing and
(local) memory loads of all assigned workloads to a CPU
module comply with its capacity. Here, zc is an indicator
variable that shows whether processing module c P C is
on or off. A workload can only be assigned to powered on
modules. Recall that νw and µw denote the number of CPU

2023 19th International Conference on Network and Service Management (CNSM)

Problem 1: DWLP: Disaggregated Workload Placement.

Min. p1 ´ ηq ¨
ÿ

wPW
θw ` η ¨

ÿ

cPC
Ecpzc, ucq (4a)

s.t.
ÿ

cPC
yw,c “ 1, @w P W (4b)

ÿ

wPW
yw,c ¨ νw ď rNc, @c P C (4c)

ÿ

wPW
yw,c ¨ xw ¨ µw ď rLc, @c P C (4d)

rNc ď Nc ¨ zc, @c P C (4e)
rLc ď Lc ¨ zc, @c P C (4f)
ÿ

wPW
p1 ´ xwq ¨ µw ď M, (4g)

0.25 ď xw, @w P W (4h)

θw “
ÿ

cPC
yw,c

`

Pm
w p1 ´ xwq ¨ P f

wpFcq
˘

,@w P W (4i)

θw ď ∆w, @w P W (4j)

uc “
rNc

Nc
, @c P C (4k)

zc P t0, 1u, yw,c P t0, 1u, xw ď 1 . (4l)

cores and the total amount of memory requested by workload
w, respectively. The constraint in (4e) ensures that the total
number of cores assigned to the workloads in processing
module c P C does not exceed its total number of cores.
Equation (4f) serves a similar purpose, but for the local
memory capacity of processing module c P C. Constraint (4g)
ensures that the total remote memory assigned to workloads
does not exceed the capacity of remote memory modules.

B. Workload Slowdown
Workload slowdown is impacted by remote memory access

latency and allocated CPU frequency. First, as discussed in
Subsection II-B, we ensure that each workload receives at least
25% of the requested memory locally with Constraint (4h). We
denote the total change in slowdown of workload w as θw,
which is computed in Constraint (4i). Functions Pm

w p¨q and
P f
wp¨q in Constraint (4i) are defined in (2) and (3), respectively.

Specifically, Pm
w p1´xwq represents the slowdown of workload

w P W if p1 ´ xwq fraction of its total requested memory is
allocated from the remote memory modules. Similarly, P f

wpFcq

is the slowdown (or speedup) caused by assigning a CPU
module with a processing capacity of Fc to a workload that
originally requested a processing capacity of ϕw. We assume
that each workload has a maximum acceptable slowdown,
denoted by ∆w. Constraint (4j) ensures that the final slowdown
of each workload is not worse than ∆w.

C. Energy Consumption
To model the dynamic energy consumption of CPU mod-

ules, we use the utilization of CPUs, which is defined as
the ratio of active cores in a module to the total number of
available cores in that module. The utilization of processing
module c P C is given by Constraint (4k). Following that, the
energy consumption of module c is computed by applying (1).

Problem 2: F-DWLP: DWLP with Fixed Memory Ratios.

Min. p1 ´ ηq ¨
ÿ

wPW
θw ` η ¨

ÿ

cPC
Ecpzc, ucq (5a)

s.t. (4b), (4c), (4e), (4f), (4k)
ÿ

wPW
yw,c ¨ xw,m ¨ µw ď rLc, @c P C (5b)

ÿ

wPW

ÿ

cPC
yw,c ¨ p1 ´ xw,cq ¨ µw ď M, (5c)

θw “
ÿ

cPC
yw,cpPm

w p1 ´ xw,cq ¨ P f
wpFcqq,@w P W (5d)

D. Optimization Objective

The objective is defined in (4a). The objective has two
components. The first component is the total slowdown of
workloads, and the second component defines the total energy
consumed by the active CPU modules. By increasing the total
energy consumption (i.e., due to allocating higher capacity
CPUs), it is possible to decrease the total workload slowdown,
and vice versa. Therefore, there is a trade-off between these
two components. We use coefficient 0 ď η ď 1 to adjust
the relative importance of these components. Notice that, as
per constraint (4j), the maximum slowdown of each workload
is guaranteed per SLA requirements. The reason we have in-
cluded total slowdown in the objective is to allow the workload
placement algorithm to provide even lower slowdown to the
workloads if doing so does not disproportionately affects the
energy costs of the DDC. This is feasible, for example, when
energy consumption is less important than slowdown.

IV. PROPOSED ALGORITHM

The problem DWLP involves a joint allocation of memory
and CPU frequency, which makes it hard to solve. Our
key idea to simplify the problem is based on the fact that
every workload’s slowdown requirement is satisfied when
its achieved slowdown is exactly ∆j . Using this idea, we
expect near-optimum results while we transform DWLP into
a simpler problem, called DWLP with Fixed Memory Ratios
(F-DWLP) and focus on solving this problem as a proxy for
the original DWLP problem. However, while F-DWLP is simpler
than DWLP, it is still an extension of the multi-dimensional bin-
packing problem [18], which is a well-known NP-complete
problem. Therefore, we design an approximation algorithm,
called Iterative Rounding-based Placement (IRoP), using the
deterministic rounding framework [23], to obtain a solution
for the placement problem in polynomial time.

A. Fixing Memory Ratios

To transform DWLP into F-DWLP, we compute the minimum
local memory ratio for each workload w and for each com-
puting module c that is sufficient to satisfy the slowdown
constraint of the workload under any CPU allocation strategy
determined by yw,c. This ratio is computed as follows:

xw,c Ð max

#

1 ´ pPm
w q´1

´ ∆w

P f
wpFcq

¯

, 0.25

+

, (6)

2023 19th International Conference on Network and Service Management (CNSM)

Algorithm 1: IRoP: Iterative Rounding-based Placement.
Input : M: Instance of F-DWLP
Output: tzc, yw,cu: Activation and Assignment Decisions

1 ĂM Ð relax(M)
2 trzc, ryw,cu Ð solve(ĂM)
3 for w P W do
4 Cw Ð tu

5 while Cw ‰ C do
6 c1

Ð argmaxcPC´Cw
ryw,c

7 yw,c1 Ð 1

8 trzc, ryw,cu Ð solve(ĂM)
9 if ĂM is feasible then

10 break
11 else
12 yw,c1 Ð 0
13 Cw.add(c1)
14 if |Cw| “ |C| then
15 return FAIL
16 return tzc, yw,cu

where, the computation of the inverse of the memory slow-
down function, i.e., pPm

w q´1p¨q, is straightforward as the
function is linear. Notice that we ensure the allocated local
memory ratio is not less than 25%, which was mandated in
Constraint (4h) in DWLP. Considering minimum local memory
assignment retains a subset of placement options where the
slowdown of workloads is better than ∆w. This particularly
occurs in powerful CPUs (i.e., modules with higher processing
capacity) that require small amount of local memory to satisfy
slowdown constraints. In these situations, it is possible to
place workload w on a powerful CPU to provide a slowdown
less than ∆w in exchange of consuming more energy. Con-
straints (5b), (5c) and (5d) in Problem 2 show the updated
versions of Constrains (4d), (4g) and (4i), respectively, where
variable xw is substituted with the computed value xw,c.
Constraint (5b) ensures that the sum of local memory usage
of workloads assigned to the same module respects the local
memory capacity of that module. Constraint (5c) enforces the
capacity constraint for the remote memory in the DDC. Since
xw,c is a constant value, variable yw,c is used in Constraint (5c)
to compute the remote memory of workloads based on their
assigned CPU modules. Constraint (5d) computes workload
slowdowns. Notice that xw,c is a constant in this constraint,
and the only variable is yw,c.

B. Workload Placement

Algorithm 1 presents the pseudocode of IRoP that employs
the deterministic rounding framework to solve F-DWLP. The
algorithm IRoP gets an instance of the problem, denoted by
M and starts its procedure with relaxing it by removing the
integrality constraints in line 1. As a result, it obtains a linear
program (LP), denoted by ĂM, that can be efficiently solved
using interior point methods. After solving ĂM, IRoP obtains
fractional values for yw,c and zc that respect all constraints
except for the integrality constraints. We denote the fractional
value of these decision variables with ryw,c and rzc, respectively.
To obtain a feasible solution for M, IRoP rounds the fractional
values to either zero or one in a manner that maintains the

feasibility of constraints without increasing the objective value
by a significant amount. We focus on the decision variables
yw,c in the following discussions, since the value of zc is
directly computed from the value of decision variable yw,c.
Specifically, if the value of yw,c is rounded to one for workload
w and module c, then the value of zc for the corresponding
module must be rounded to one.

The algorithm performs the rounding of variables by con-
sidering the workloads in an iterative manner. In the iteration
for workload w, the algorithm examines modules one-by-one
in an order that is based on the value of decision variables
yw,c. Specifically, IRoP finds the module with the maximum
value of yw,c, denoted by c1, as follows:

c1 Ð argmax
cPC

ryw,c . (7)

Then, it fixes the value of decision variable yw,c1 to one and
solves the problem one more time, by starting from the current
values of other decision variables. Since the change in the
value of decision variables is small, the linear program solver
finds the next solution very quickly or reports that the problem
has become infeasible.

If ĂM remains feasible, the allocation of module c1 is kept
and the algorithm terminates the current iteration to handle
the next workload in the next iteration (see lines 9 and 10).
However, if the problem becomes infeasible, IRoP concludes
that it is impossible to allocate module c1 to workload w.
Consequently, IRoP reverts the change to variable yw,c and
solves ĂM again to select another module. To implement this
process and ensure a module is not selected repeatedly, IRoP
defines a set Cw that is empty in the beginning of the iteration.
Then, each time ĂM becomes infeasible, IRoP fixes the value
of decision variable yw,c1 to zero and adds c1 to set Cw. If the
size of Cw becomes equal to |C|, it is impossible to allocate
any CPU module to workload w and the algorithm fails. In
this situation, we can eliminate lower-priority workloads and
repeat the process with fewer workloads.

C. Algorithm Analysis

In this section, we compute the theoretical approximation
ratio and the algorithmic complexity of IRoP. Note that the
slowdown of each workload w is bounded by ∆w in F-DWLP.

Theorem 1. Algorithm IRoP attains the approximation ratio

ψ “ maxtC ¨ pN ¨ pS, pDu, (8)

where pN “ max cPC
wPW

tNc{νwu is the maximum ratio between

the number of cores and demands, pS “ maxc,c1PCtIsc {Isc1 u

is the maximum ratio between static energy coefficients, and
pD “ maxc,c1PCtIdc {Idc1 u is the maximum ratio between dy-
namic energy coefficients among any two modules in the DDC.

Proof. The energy consumption term in the objective is:
ÿ

cPC
Isc ¨ zc ` Idc ¨ uc . (9)

2023 19th International Conference on Network and Service Management (CNSM)

TABLE V: CPU Modules Used in Evaluations.

Model # Cores Processing Capacity TDP
AMD EPYC 9654 192 2 2.2
AMD EPYC 7763 128 1.5 1.7
Intel Xeon E7-8890 48 1 1

In the worst-case scenario, the value of each zc can increase
by a factor of CˆNc

ĂNw
, as the value of rNc can increase by a

factor of C and rzc can be as small as Nw{ rNc to be larger
than the left-hand side of the constraint, but it does not have
to increase the value of zc to exactly one. Therefore, the first
term in (9) (i.e., the static energy consumption of powered
on modules) can increase by a factor of CˆNc

ĂNw
compared to

its value in the solution of the LP. We should also note that
the value of static energy consumption is not identical for all
modules. Consequently, during rounding, a module with the
highest static energy consumption might be selected among
modules with positive value of zc. As a result, the static
energy consumption increases by at most a factor of pS. To
characterize the increase of the second term, we note that if
the load due to each workload in one of the modules (i.e.,
module c1 that was selected in (7)) increases by a factor of
α, its combined load in other modules (i.e., c ‰ c1) will
decrease by a factor of 1

α . Therefore, the overall dynamic load
characterized by the second term in (9) does not change. The
only difference stems from the variations between dynamic
energy consumption coefficients. Similar to the static energy
consumption case, the dynamic energy consumption increases
at most by a factor of pD. Let OM and O

ĂM denote the energy
consumption of the optimal solution of M and ĂM used in
IRoP. Also, define OIRoP to be the energy consumption of the
solution obtained by IRoP after rounding the decision variables
of ĂM. We have:

OIRoP ď
ÿ

cPC

"

C ˆNc

rNc

¨ pS ¨ Isc ¨ rzc ` pD ¨ Idc ¨ uc

*

(10)

ď max
␣

C ¨ pN ¨ pS, pD
(

ˆ
ÿ

cPC

␣

Isc ¨ rzc ` Idc ¨ uc
(

(11)

“ ψ ˆO
ĂM ď ψ ˆOM, (12)

which, establishes the theorem. ■

Theorem 2. IRoP runs in polynomial time.

Proof. The rounding procedure consists of calling the linear
program solver at most nˆm times, where n and m represent
the number of workloads and CPU modules, respectively. In
[24], authors prove that the complexity of solving a linear
program with nˆm variables using the interior point method
is Oppn ˆ mq3.5q. Therefore, in the worst-case scenario, the
complexity of IRoP is Oppnˆmq4.5q. ■

V. EVALUATIONS

A. Methodology

We conduct simulations on a large-scale DDC environment
based on Google’s Aquila, which supports up to 1152 hosts in
one cluster [3]. RAM and CPU requirements of workloads are

TABLE VI: Datacenter and Workload Parameters.

Datacenter Parameters Workload Parameters

Symbol Value/Range Symbol Value/Range
C 1200 W 150
Fc See Table V νw 1 - 48
Nc See Table V ϕw 1 - 2 (Normalized)
Lc 64 GB (Latency: 20ns) µw 4 - 64 GB
Idc 25% of TDP in Table V Pm

w p.q See Equation (2)
Isc 75% of TDP in Table V P f

wp.q See Equation (3)
M 20 TB (Latency: 5µs) ∆w 5% - 25%

set based on [25], which analyzed various popular workloads
used in datacenters. The simulated datacenter includes three
types of processors, as described in Table V. Our implemen-
tation of the IRoP and other baselines involves approximately
1500 lines of code in Python version 3.11. The parameters of
the datacenter and workload requirements are summarized in
Table VI. For each of the datacenter and workload configura-
tion, we run the simulations of different algorithms and collect
the current state of the DDC (i.e., available local memory and
utilization of each powered on CPU) as well as the completion
time of all workloads. Results are based on the average of
100 randomized configurations and we normalize the averaged
results by dividing all values by the maximum.

In addition to IRoP, we have also implemented the following
baseline algorithms for comparison:
‚ OPT: The optimal solution for DWLP, defined in Algorithm 1.

It is obtained using the Gurobi [26] optimizer.
‚ HEEP [2]: A greedy algorithm which aims to minimize total

energy consumption by sorting workloads and resources
based on their demand and energy efficiency, respectively.

‚ CFM [12]: This algorithm optimizes the workload slowdown
by controlling the local and remote memory ratios. It
minimizes the sum of local memory-time products for each
workload with the objective of optimizing the makespan.

‚ First-Fit: Assigns a workload to the first CPU module with
enough local memory and assigns remote memory if no local
memory is available.

B. Results and Discussion

Slowdown. To compare the slowdown under different algo-
rithms, we first note that IRoP has an extra degree of freedom,
namely ∆w, compared to other algorithms. Thus, we report
the normalized slowdown results of IRoP for different values
of ∆w from the set t0.5, 0.10, 0.15, 0.20, 0.25u. In Fig. 4, we
report the normalized slowdown while increasing the value of
η from zero to one. Note that η controls the trade-off between
energy consumption and slowdown. We can see that as η in-
creases, the normalized slowdown also increases, which is not
unexpected, as higher values of η give more weight to energy
consumption. These parameters allow IRoP to achieve different
results based on the priorities of the datacenter operator. Fig. 4
also includes the slowdown results of CFM for comparison. We
exclude reporting the slowdown of other algorithms since they
do not optimize it, and their results are noticeably inferior to
CFM and IRoP. While we can see IRoP outperforms CFM for

2023 19th International Conference on Network and Service Management (CNSM)

0.0 0.2 0.4 0.6 0.8 1.0
Importance Factor ()

0.78

0.80

0.82

0.84

0.86

0.88

0.90
N

or
m

al
iz

ed
 S

lo
w

do
w

n

IRoP-0.05
IRoP-0.10
IRoP-0.15

IRoP-0.20
IRoP-0.25
CFM

Fig. 4: Total slowdowns of IRoP for different
values of slowdown threshold compared to
CFM.

0.0 0.2 0.4 0.6 0.8 1.0
Importance Factor ()

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

N
or

m
al

iz
ed

 E
ne

rg
y IRoP-0.05

IRoP-0.10
IRoP-0.15

IRoP-0.20
IRoP-0.25
HEEP

Fig. 5: Energy consumption of IRoP for dif-
ferent values of slowdown threshold com-
pared to HEEP.

0.0 0.2 0.4 0.6 0.8 1.0
Importance Factor ()

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

N
or

m
al

iz
ed

 O
bj

ec
tiv

e

IRoP-0.05
IRoP-0.15
IRoP-0.25

CFM
HEEP
FirstFit

Fig. 6: Weighted sum of slowdown and en-
ergy of IRoP for different values of slowdown
threshold compared to baselines.

various values of ∆w, CFM exclusively prioritizes slowdown,
making the results comparable only for η“0. However, for
other values of η, the result of CFM is represented by a
dashed line. Fig. 4 shows that IRoP generally outperforms CFM,
except for ∆w “ 0.25 and η ą 0.3 where IRoP exhibits a
higher slowdown. This result is not unexpected as a loose
bound on the slowdown of each workload and non-negligible
importance of energy consumption lead IRoP to sacrifice the
slowdown to achieve better energy consumption. Overall, over
100 randomized experiments when η “ 0, the maximum,
average, and minimum slowdown reduction achieved by IRoP
compared to CFM are 12%, 5%, and 2%, respectively.

Energy Consumption. Fig. 5 presents the results obtained
for normalized energy consumption. We can see that as ∆w

increases from 0.05 to 0.25, the energy consumption of IRoP
decreases considerably, which is expected since the slowdown
requirement becomes more relaxed. We have also reported the
normalized energy consumption of HEEP, which is focused on
energy optimization. We omit other algorithms since they do
not consider energy consumption. The exclusive concentration
of HEEP on the energy consumption makes it equivalent to
the results of IRoP for η “ 1. Nevertheless, we extended the
HEEP’s data point with a dashed line for further comparison.
We can see that IRoP outperforms HEEP for values of ∆w

greater than 0.20. It is noteworthy that the overall slowdown of
each workload in HEEP is about 0.25. Thus, we can see that for
∆w “0.2 and ηě0.2, IRoP always provides better slowdown
and lower energy consumption. Specifically, the maximum,
average and minimum energy reduction achieved by IRoP over
HEEP are 8%, 2.5%, and 1%, respectively.

Objective. Fig. 6 presents the results obtained for the nor-
malized value of the objective in (4a). Recall that the goal
is to minimize the objective. Since other baselines can not
produce different solutions for different values of ∆w and
η, we run them once and then compute the objective value
based on these values and the actual slowdown and energy
consumption of those solutions. Therefore, the behavior of
baselines in the figure is linear. However, IRoP computes a new
solution for each value in an adaptive manner to better match
the need of the DDC operator. We can see that IRoP always
provides a lower objective value compared to FirstFit and CFM.

Furthermore, compared to HEEP, IRoP offers a lower objective
value in the majority of situations. However, when ηě0.7 and
∆w “0.05, which implies a very strict slowdown threshold for
IRoP, the objective value of HEEP becomes lower. Nevertheless,
as can be seen, IRoP offers a high degree of control and
flexibility, which is not possible with other algorithms.

Runtime. To test the scalability of IRoP, we plotted its runtime
as the number of workloads and CPU modules increase in
Figs 7(a) and 7(b), respectively. The figures also show the
runtime of the OPT. We observe that IRoP exhibits a mild
upward trend, while OPT grows very quickly (note that the
y-axis of Fig. 7(a) is logarithmically scaled). In Fig. 7(a),
the number of CPU modules is fixed at 30, as increasing
the number of CPU modules beyond this value results in a
significantly intolerable runtime of OPT. Similarly, the number
of workloads is fixed to 30 in Fig. 7(b). In these small-
scale tests, IRoP introduces about 5% more slowdown and
increases the energy consumption by about 7% compared
to OPT, which are significantly below the theoretical bound
computed in Seciton IV-C. Also, for large-scale tests, runtime
of IRoP maintains under 30 seconds which is satisfactory given
the testing environment.

VI. RELATED WORKS

In this section, we review the existing literature on minimiz-
ing energy consumption and workload slowdown in DDCs.

Energy Consumption. Authors in [13] propose an MILP
model to optimize energy consumption, considering three
types of workloads: memory-intensive, IO-intensive, and
processor-intensive. EERPVMM-DS [14] is a scalable heuristic
solution that follows a greedy approach to minimize energy
consumption while assumes a time-slotted model for the
arrival of workloads submitted as virtual machines. EERP-
DSCF [15] extends the work in [14] and drops the time-
slotted assumption. In [2], a complete MILP model for energy
consumption of DDC resources is presented to minimize
the energy consumption in disaggregated architectures. Then,
authors propose a heuristic, called HEEP, that uses a greedy
approach based on sorting workloads and CPUs by their
resource demands and energy efficiency, respectively. Au-
thors in [17] propose a similar energy consumption model

2023 19th International Conference on Network and Service Management (CNSM)

20 30 40 50 60 70
Number of Workloads

100

101

102

103

104
R

un
tim

e
(s

ec
on

ds
)

OPT IRoP

(a) Impact of the number of workloads on
the runtime of IRoP and OPT. The number
of CPU modules is fixed at 30.

20 40 60 80 100 120 140
Number of CPU Modules

0
5

10
15
20
25
30
35
40

R
un

tim
e

(s
ec

on
ds

)

OPT IRoP

(b) Impact of number of CPU modules on
the runtime of IRoP and OPT. The number
of workloads is fixed at 30.

Fig. 7: Runtime evaluation of IRoP compared to OPT.

for CPUs while an optical and electrical interconnects are
utilized as backplanes in the DDC architecture. The model
involves an iterative process of filtering and prioritizing CPUs
using predefined weights for energy efficiency, utilization, and
communication delay. Authors in [16] propose an architectural
model where the CPU and memory modules share the same
board and disaggregation occurs at the level of power sup-
ply, enabling the system to save energy by suspending unuti-
lized CPUs while providing remote access to their memory.
However, the mentioned works do not consider the workload
slowdown, which could result in SLA violations.

Workload Slowdown. In the context of slowdown in DDCs,
several approaches have been investigated. In [11], Nvidia
proposes an integrated system into the operating system (OS)
which efficiently optimize page migrations between different
memory levels, minimizing workload slowdown. Authors in
[12], focuse on examining the impact of the remote memory to
local memory ratio in such environments. The authors develop
a polynomial model and utilize a latency-based workload
placement, called CFM, to allocate an appropriate amount of
local memory, aiming to meet the slowdown requirements.
Architectural proposals like Aquila [3] propose an experimen-
tal datacenter network fabric prioritizing ultra-low latency. It
incorporates the GNet protocol and custom ASIC with low-
latency Remote Memory Access (RMA), achieving a sub-
10 µs execution time. Additionally, HoPP [20], similar to
Fastswap [12] and LegoOs [27], suggests a revised OS that
decouples address capture from page faults by recording all
memory access logs in the memory controller. The mentioned
works explore different approaches to use in DDCs, ultimately
minimizing workload slowdown while they ignore the energy
consumption, which has financial and environmental impacts.

VII. CONCLUSION

We proposed IRoP, a workload placement algorithm mini-
mizing DDC energy consumption while respecting a bounded
slowdown for each workload. IRoP incorporates processing
capacity, memory disaggregation (i.e., local and remote mem-
ory), and energy efficiency models to strike a balance between
energy consumption and the total slowdown of workloads.
Through extensive experiments, we validated the usage of
piece-wise linear functions for modeling the relationship be-
tween remote memory allocation and workload slowdown in
an emulated environment. The results highlight the superior

performance and flexibility of IRoP in terms of slowdown
and energy consumption, effectively balancing the mentioned
dual objectives based on the configurations set by datacenter
owner and contributing to the workload placement problem in
DDC environments (i.e., DWLP). Adding an agent to monitor
the slowdown of workloads and perform re-allocation is an
interesting extension of our work for volatile environments.

REFERENCES

[1] R. Lin, Y. Cheng et al., “Disaggregated data centers: Challenges and
trade-offs,” IEEE Communications Magazine, vol. 58, no. 2, 2020.

[2] O. O. Ajibola, T. El-Gorashi et al., “Energy efficient placement of
workloads in composable data center networks,” Journal of Lightwave
Technology, vol. 39, no. 10, 2021.

[3] D. Gibson, H. Hariharan et al., “Aquila: A unified, low-latency fabric
for datacenter networks,” in Proc. USENIX NSDI, 2022.

[4] S. Ibanez, A. Mallery et al., “The nanopu: A nanosecond network stack
for datacenters,” in Proc. USENIX OSDI, 2021.

[5] P. X. Gao, A. Narayan et al., “Network requirements for resource
disaggregation,” in Proc. USENIX OSDI, 2016.

[6] Tensorflow, “Tensorflow benchmarks: A benchmark framework for ten-
sorflow.” [Online]. Available: https://github.com/tensorflow/benchmarks/

[7] Nico, “Mini-cluster part iv : Word count benchmark,” 2015. [Online].
Available: https://tinyurl.com/2t6zftx5/

[8] J. Kim, W. Choe et al., “Exploring the design space of page management
for Multi-Tiered memory systems,” in Proc. USENIX ATC, 2021.

[9] H. A. Maruf and M. Chowdhury, “Effectively prefetching remote mem-
ory with leap,” in Proc. USENIX ATC, 2020.

[10] D. Masouros, C. Pinto et al., “Adrias: Interference-aware memory
orchestration for disaggregated cloud infrastructures,” in Proc. IEEE
HPCA, 2023.

[11] Z. Yan, D. Lustig et al., “Nimble page management for tiered memory
systems,” in Proc. ACM ASPLOS, 2019.

[12] E. Amaro, C. Branner-Augmon et al., “Can far memory improve job
throughput?” in Proc. EuroSys, 2020.

[13] H. M. Mohammad Ali, A. Q. Lawey et al., “Energy efficient disaggre-
gated servers for future data centers,” in Proc. EuroSys NOC, 2015.

[14] H. M. Mohammad Ali, A. M. Al-Salim et al., “Energy efficient resource
provisioning with vm migration heuristic for disaggregated server de-
sign,” in Proc. ICTON, 2016.

[15] H. M. Mohammad Ali, T. E. H. El-Gorashi et al., “Future energy
efficient data centers with disaggregated servers,” Journal of Lightwave
Technology, vol. 35, no. 24, 2017.

[16] V. Nitu, B. Teabe et al., “Welcome to zombieland: Practical and energy-
efficient memory disaggregation in a datacenter,” in Proc. EuroSys, 2018.

[17] A. D. Papaioannou, R. Nejabati et al., “The benefits of a disaggregated
data centre: A resource allocation approach,” in Proc. IEEE GLOBE-
COM, 2016.

[18] H. Cambazard, D. Mehta et al., “Bin packing with linear usage costs –
an application to energy management in data centres,” in Proc. PPCP,
2013.

[19] “Hpcg benchmark.” [Online]. Available: https://hpcg-benchmark.org/
[20] H. Li, K. Liu et al., “Hopp: Hardware-software co-designed page

prefetching for disaggregated memory,” in Proc. IEEE HPCA, 2023.
[21] Q. Wang, Y. Lu et al., “Sherman: A write-optimized distributed b+tree

index on disaggregated memory,” 2021.
[22] H. M. Mohammad Ali, A. Q. Lawey et al., “Energy efficient disaggre-

gated servers for future data centers,” in Proc. EuroSys NOC, 2015.
[23] D. P. Williamson and D. B. Shmoys, The design of approximation

algorithms. Cambridge university press, 2011.
[24] N. Karmarkar, “A new polynomial-time algorithm for linear program-

ming,” Combinatorica, vol. 4, 1984.
[25] A. Glawion, “How much ram do you need? different workloads

explored.” 2022. [Online]. Available: https://www.cgdirector.com/
how-much-ram-do-you-need/

[26] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[27] Y. Shan, Y. Huang et al., “Legoos: A disseminated, distributed OS for
hardware resource disaggregation,” in Proc. USENIX OSDI, 2018.

2023 19th International Conference on Network and Service Management (CNSM)

