
dot2net: A labeled graph approach for
template-based configuration of emulation networks

Satoru Kobayashi
Okayama University
sat@okayama-u.ac.jp

Ryusei Shiiba
Sokendai

siiba@nii.ac.jp

Ryosuke Miura
NICT

r-miura@nict.go.jp

Shinsuke Miwa
NICT

danna@nict.go.jp

Toshiyuki Miyachi
NICT

miyachi@nict.go.jp

Kensuke Fukuda
NII/Sokendai

kensuke@nii.ac.jp

Abstract—Network emulation is an effective approach to en-
sure sustainable and reliable network services by verifying the
correctness and fault tolerance of them. However, deploying
and modifying emulation networks with existing platforms is
time-consuming and prone to cause configuration errors because
existing emulation platforms do not provide a suitable method
for scalable network configuration. To overcome this problem, we
propose the design and implementation of dot2net, a template-
based platform for simple, scalable, and expressive configuration
of emulation networks. The key idea is to separate network
configuration into network topology as a labeled graph and label
definitions as config template blocks. We evaluate the performance
and efficiency of config file generation and show that dot2net
is particularly effective at scaling the network topologies. We
also demonstrate the expressiveness of dot2net for complicated
networks and advanced technologies with test emulation networks
of FRR, a widely used router software.

Index Terms—Configuration management, Emulation network,
Topology graph, Config template

I. INTRODUCTION

The digital twin is a valuable concept that is a digital
duplicate of a real-world object available for digital uses such
as analysis and verification [1]. In the context of network
management, network emulation is a suitable choice to achieve
this digital twin [2]. It is helpful for operators to deploy
emulation networks corresponding to the production networks
in virtual environments because they enable operators to verify
networks more dynamically, such as modifying configurations
and injecting failures [3], [4].

However, constructing an emulation network is a time-
consuming task [5]. Usually, we cannot use production network
configuration directly for the emulation network because we
often need to use different parameters (such as IP addresses) in
a virtual environment. Also, configuring emulation networks of-
ten takes time and effort, even for simple changes [6]. Suppose
we want to add one more network connection to an emulation
network. In that case, we need to add a bunch of config lines
similar to other devices or interfaces (we usually try “copy
and paste” to make it, which sometimes causes errors due to a
lack of consideration of parameter changes). The “copy-and-
pasted” configuration descriptions increase network changes
and debugging efforts. Especially on emulation networks, we
usually change configurations repeatedly for verification and
improvement. Therefore, it is essential to provide an intuitive

way to change the configurations of emulation networks in
some abstract way.

A generally available way to abstract network configura-
tion is to use config templates [7]. A config template is an
incomplete configuration description including some variable
specifiers. By specifying variables for templates, we can obtain
configuration files for multiple devices with similar roles. The
advantage of the config template is its generality: It simply
generates configuration strings with variables, so the method
is not dependent on network protocols or configuration for-
mats. However, existing config templating platforms are not
reasonable for network configuration. Templating platforms
are typically per-device, which is awkward for describing
network interfaces that span multiple functions or protocols.
The config templates for these platforms will be complicated
with control syntax macros like Figure 1(a). In response to this
issue, we need a more reasonable configuration platform for
emulation networks with finer-grained config template blocks
like Figure 1(b).

Our goal is to provide a simple, scalable, and expressive
way to configure emulation networks using a template-based
approach. To this end, we propose dot2net, a new configuration
platform for emulation networks. The key idea is to separate
network topology as a labeled graph and label definitions
as config template blocks. The labels describe what kind of
functions (i.e., config templates) the network objects correspond
to, as shown in Figure 2. With this design, we can make
simple changes to the network structure by modifying only the
topology graph, which is visible and intuitive enough to reduce
human error in the configuration. For an intuitive description
of complicated networks with this platform, we establish five
design principles on dot2net: (1) explicit separation of network
topology and configuration, (2) declarative style of definition
description, (3) no control syntax in config templates, (4)
minimum manual parameter assignment, and (5) robustness for
complicated networks (discussed in detail in § III-A). To satisfy
these design principles, we highlight two challenging issues
in the design: automated IP address assignment, and relative
parameter reference from config template blocks.

Based on these design principles, we implement dot2net, a
configuration platform for Docker-based emulation networks.
Dot2net is publicly available as open-source software in
GitHub [8]. In our evaluation with dot2net, we demonstrate that

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

ip forwarding
!
{% for interface in data.interfaces %}
interface {{ interface.id }}
 ip address {{ interface.ip }}/{{ interface.plen }}
!
{% endfor %}
{% if data.ospf.enabled %}
router ospf
 ospf router-id {{ data.loopback }}
{% for network in data.ospf.networks %}
 network {{ network }} area 0
{% endfor %}
{% endif %}
!

ip forwarding
!
router ospf
 ospf router-id {{ .ip_loopback }}
!

interface {{ .name }}
 ip address {{ .ip_addr }}/{{ .ip_plen }}
!
router ospf
 network {{ .ip_net }} area 0
!

dot2net NodeClass template block

dot2net InterfaceClass template block

Per-device template with control syntaxes

Node
Interface eth0
Interface eth1

Config blocks

Per-device
config

(a) Traditional templating approach (b) Proposed approach (dot2net)

Merging

Fig. 1. Difference of templating methods in traditional and proposed approaches.

RouterBGP iBGP OSPF

Topology graph

Labels

Config blocks

Per-device config

Target node
Interface Interface

Fig. 2. Graph labels to describe config template block correspondence.

dot2net can generate a set of configuration files for large-scale
networks of CLOS topology with 1,000 nodes in less than 3.5
seconds with 2.65GB memory consumption at most. We also
confirm that dot2net reduces config file size by ≈ 10% on the
network topology extension. We evaluate the design principle
achievement of dot2net with case studies of network scenarios
derived from test emulation networks of FRR, a widely-used
router software [9].

The contribution of this paper is twofold. (1) We propose a
design of dot2net (§ III) that satisfies the five design principles
coming from the emulation network configuration nature (§ II).
(2) We implement dot2net (§ IV) and evaluate it in terms of
performance, configuration efficiency, and the expressiveness
for complicated networks (§ V, § VI).

II. BACKGROUND AND RELATED WORK

A. Templating network configuration

Config templates are widely used to describe configurations,
not only in networks. Recent configuration management tools
such as Terraform [10] and Ansible [11] provide templating
functionality. However, it is still difficult to describe network
configurations with these tools. The difficulty is mainly due to

the variable specification in the templates. In the IaC tools, we
usually specify a set of parameters corresponding to a device
and embed it into a template. Thus, it is not easy to embed
parameters of other devices (e.g., neighbor IP addresses). Even
if the input parameters have network structure information,
we need to use control syntax macros (e.g., “for” and “if”)
in the template to specify multiple parameters as shown in
Figure 1 (A). The macros will make the template description
more complicated for continuous maintenance. Furthermore,
the existing template functions are not suitable for describing
complicated network structures. If a network is under a simple
tree structure, its parameters can be easily described by a
parameter list. In contrast, for a more complicated structure
such as CLOS topology [12] , we need to handle combinations
of parameters (e.g., network interface pairs of connections). The
number of combinations is enormous on large-scale emulation
networks for manual specification.

One reason for these difficulties in config templating is that
the templates are basically prepared per device. This design is
suitable for microservices (the primary use case of IaC tools)
because a device corresponds to a smaller service and devices
are connected with a relatively simple network. In contrast,
in infrastructure networks (the primary use case of emulation
networks), devices (i.e., routers) have multiple components
(i.e., network interfaces) and functions (i.e., protocols). In
that situation, the appropriate granularity of the configuration
description should be components or functions, not devices. If
these granular template blocks were linked together based on
network topology, as in Figure 1 (B), the description of template
blocks would be more intuitive and sophisticated.

B. Configuration for network emulation

Configuration in emulation networks has two aspects: Struc-
tural configuration and functional configuration. Structural con-
figuration describes the information required for virtualization,
such as node devices and links. Emulation networks can
be deployed in a variety of virtual environments. Recently,
containers such as Docker have become a popular approach
that is lighter and easier to scale [13]. The virtual networks

2023 19th International Conference on Network and Service Management (CNSM)

for these environments are deployed using Linux bridges and
network namespaces on the host machines, which are not as
easy to configure as physical networks. For this reason, there
are multiple platforms for structural configuration of emulation
networks such as Netkit [14], Mininet [15], Kathará [16],
TiNET [17], and Containerlab [18].

Functional configuration provides software settings on the
virtual devices. The configuration format is usually similar to
that of physical networks because we use the same or similar
software on emulation networks. Functional configuration in-
cludes network device behavior such as IP address assignment
and routing control, which is more difficult in existing tools
because we need to care about parameter assignments [19].
However, the existing platforms described above do not support
operators to describe functional configuration.

In past literature, there are several approaches for efficient
functional configuration, such as PRESTO [7], AutoNetkit [5],
[20], Propane [21], and HolistIX [22]. We compare our pro-
posed method with these methods in § V-E.

III. SYSTEM DESIGN

A. Design principles and challenging issues
For easier configuration of emulation networks, we establish

the following design principles on dot2net.
Principle 1: Explicit separation of network topology and

configuration. Traditionally, network configuration is described
per device, which makes it difficult to recognize the potential
network topology in the network config files. This problem
can lead to failures due to gaps between the intended topology
and the described configuration. Separating network topology
and configuration will make it easier to intuitively configure
network devices.

Principle 2: Declarative style of definition description.
There are two definition description styles for IaC tools: declar-
ative style (e.g., Terraform [10]) and procedural style (e.g.,
Ansible [11]). Dot2net is declarative style that is more user-
friendly because it focuses on what is to be configured instead
of how it is to be configured [23]. In addition, procedural style
is not reasonable for verifying the description in other tools
because the description has no concrete structure.

Principle 3: No control syntax in config templates. Control
syntax in templates is a powerful tool for improving parameter
expressiveness. However, it makes the template description
more complicated and likely to cause failures. We hypothesize
that the control syntax can be hidden by subdividing config
templates into blocks of appropriate abstraction and combining
them according to the network topology.

Principle 4: Minimum manual parameter assignment.
Emulation networks are usually configured independently with
different parameters from existing production networks to avoid
the risk of negative impacts on the services. In other words, the
parameter assignment strategy is usually not the primary focus.
We design an automatic parameter assignment mechanism to
reduce parameter description errors in network configuration.

Principle 5: Robustness for complicated networks. Em-
ulation networks are sometimes used for experimentation or

preliminary verification of advanced network technologies. It
is important for dot2net to accept these advanced technologies.
In this paper, we focus mainly on the technologies used in test
emulation networks (shown in § V-A) such as IPv4/IPv6 dual
stack and overlay networks.

The key idea of dot2net is separating network configuration
into network topology as a labeled graph and label definitions
as config template blocks. This idea comes from Principle 1 and
intends to satisfy Principles 2, 3, and 5: graphs and template
blocks can both be described in a declarative style, labels in
the topology graph will replace the control syntax of config
templates, and the labels will also represent devices/interfaces
in a variety of different roles.

Towards satisfying these design principles, we additionally
need to consider the following two challenging issues:

Issue 1: Automated IP address assignment. To achieve
both Principles 4 and 5, we need a way to assign param-
eters that accepts complicated networks. For assigning most
parameters (such as interface names and AS numbers), we
just need to generate integer numbers (sometimes with some
headers or footers) in a given rule. The most challenging
part is IP address assignment, which requires consideration of
network segments [24]. Automated IP address assignment can
be more complicated with advanced network technologies such
as IPv4/IPv6 dual stack and overlay networks.

Issue 2: Relative parameter reference from config tem-
plate blocks. By removing the control syntax in config template
blocks (Principle 3), we face two potential limitations of pa-
rameter specification in config templates. First, the parameters
can only be specified relatively. Without “for” and “if” control
syntax, it is difficult to find related parameters by iterating over
objects ad hoc. Second, the parameters must be mapped to the
objects on a one-to-one basis because the templates cannot
iterate parameter lists without “for” control syntax. These
limitations prevent us from describing complicated networks
(Principle 5) with dot2net.

B. System overview

Dot2net takes two input components, a labeled graph of
network topology and the label definitions of config template
blocks. The output is a set of generated configuration files. We
first explain the two input components and then describe the
process flow of the conversion.

One input data is a labeled graph that represents the network
topology. The graph is described in DOT language [25], a
declarative data description language for graphs. As shown
in Figure 2, the topology graph corresponds to the layer-
2 topology structure. The nodes in the graph correspond to
network node devices such as switches, routers, and servers.
Network interfaces in the devices are represented as edge ends
between nodes, which means the edge corresponds to a network
connection. These network objects (i.e., nodes, interfaces, and
connections) have labels (one object can have multiple labels)
in the attributes of nodes or edges.

The other input data is the label definitions that describe
the detailed roles or settings of the network objects. In the

2023 19th International Conference on Network and Service Management (CNSM)

Label definitions

Topology
as labeled graph

Per-device
config model

Emulation config

Emulation network

Merge
and format

Assign
parameters

Embed variables
in templates

Template blocks Docker

Config files

Deploy with tools
(e.g., containerlab)

Bind
mount

Network model
with object instances

Convert
(1)

(2)

(3)

(4)
Config blocks

Merge
and format

(4)

Dot2net

Fig. 3. Overview of dot2net processing flow.

TABLE I
DOT2NET OBJECT CLASSES

Name Parent Instance Labels Template
NodeClass - Node ✓ ✓

InterfaceClass - Interface ✓ ✓
ConnectionClass - Interface ✓ ✓

GroupClass - Group ✓
NeighborClass InterfaceClass Neighbor ✓
MemberClass any1 Member ✓

definitions, a label represents a class (i.e., the objects with
labels are class instances). A class definition includes config
template blocks and required flags for address assignments and
namespaces. There are six classes in dot2net currently, as shown
in Table I, and we focus on the three capital classes with orange
color due to page limitations. The definitions are described in
some declarative structured data formats, such as YAML.

Figure 3 shows the overview of dot2net. There are four steps
of the config generation:

1) Generate an internal network model consisting of network
objects from the input network topology graph.

2) Assign parameters in the namespace of each network
object.

3) Generate config blocks corresponding to the network ob-
jects from the input config template blocks and parameter
namespaces.

4) Generate per-device config files by merging (including
ordering and formatting) the config blocks.

Through the four steps of config file generation, dot2net
has three issues for complicated networks: Generating config
description, parameter assignment, and parameter reference
from templates. The first one is easily achieved with the
labeled graph approach. Most advanced network technologies
are closed to a protocol layer. The protocol layer in the
configuration description can be represented with labels in the
topology graph by assigning labels to all objects that belong to

1MemberClass depends on any of classes with template blocks.

Interfaces with layer flag

Connection to
start searching

addr

Detected network segment

addr

addr

Detected segment boundary

Switch

Server

Server

Router Router

(a) A network topology with L2 switch

Server

Server

RouterRouter

Server

Server
(b) A network topology with L2 tunneling

Connection to
start searching

Fig. 4. Example of network segment search.

the layer. In the remainder of this section, we discuss the other
two issues.

C. Automated parameter assignments

To support complicated networks, we can intuitively separate
the input topology graph into multiple layers. However, this
approach is likely to cause errors due to mismatched layers.
If we want to add a device to the layered topology graph, we
have to add it for all related layers, which sometimes causes
errors due to missing edits.

To avoid this problem, we introduce layer flags, which spec-
ify the layers to which network objects (especially interfaces)
belong. These flags are included in the label definitions, so
they are indirectly assigned to network interfaces with labels on
topology graphs. Each layer has an IP address pool, and dot2net
assigns IP addresses in the pool to the flagged interfaces.

The main part of the IP address assignment algorithm is
searching network segments in each layer. Figure 4(a) shows
an example of network segmenting procedure. The search starts
from one of the connections. Dot2net then checks its two

2023 19th International Conference on Network and Service Management (CNSM)

Network model

Link

IPaddress SubnetName Interface

Neighbor
interface

Parent
node

Relational
namespace

Relations
in topology

Node

Parameters

Top-down data model Bottom-up namespace

Requires
iteration

Fig. 5. Bottom-up structure of dot2net namespace.

end interfaces. If the checked interface is aware of the layer
(i.e., with layer flag, red boxes in Figure 4), dot2net adds
the interface to the network segment boundary interfaces (blue
boxes). Otherwise, dot2net will check connections from all the
other unchecked interfaces of the same device in the same way.
If there are no adjacent unchecked interfaces after repeating
this check, the network segment boundary interfaces form a
network segment. After that, dot2net restarts the search from
other unchecked connections to find other network segments
until all connections are checked. We can determine all the
network segments in the layer with this procedure.

With the detected network segments, we can easily assign IP
addresses with the following two steps. First, dot2net cuts out IP
subnets of the specified prefix length from the IP address pool
(specified as IP policies for each layer) and assigns them to the
network segments. For example, if an IP policy has an address
pool of “10.0.0.0/16” and the specified prefix length is 24,
dot2net will assign IP subnets of “10.0.0.0/24”, “10.0.1.0/24”,
and so on. Next, dot2net assigns IP addresses from the IP
subnets to the segment boundary interfaces.

In this algorithm, IP addresses are assigned independently
in each layer. The layer flags enable us to automate address
assignments of network topologies with advanced network
technologies. Figure 4(b) shows an example network topology
with L2 tunneling technology (such as L2TP or VXLAN).
This figure shows a customer layer where interfaces belong to
customer network (bridged with L2 tunneling) with red boxes.
In this example, we assume that there are two logically-different
connections between two routers: one is of the provider network
(no flags in the figure, but addressed in another layer), and
the other is of the customer network. On the customer layer,
dot2net considers all the interfaces belong to the same network
segment because the provider network connection can bridge
the L2 connectivity without any segment boundary. In this way,
the algorithm can handle remote network segments that are
relayed with other networks.

D. Parameter namespaces

Due to the limitations explained in § III-A Issue 2, it
is difficult to specify parameters without control syntax in
the existing top-down data structures used in Figure 1(a). To
address this issue, we introduce a namespace with a bottom-
up structure (shown in Figure 5). The bottom-up approach
enables parameter specifications by names of relationships in
the topology instead of object iterations with control syntax.

1 r1 {{ .name }} = r1
2 r1.net0 {{ .ip_addr }} = 10.0.0.1 # Param A
3 r1.net0 {{ .ip_net }} = 10.0.0.0/24
4 r1.net0 {{ .ip_plen }} = 24
5 r1.net0 {{ .name }} = net0
6 r1.net0 {{ .node_name }} = r1
7 r1.net0 {{ .opp_ip_addr }} = 10.0.0.2
8 r1.net0 {{ .opp_ip_net }} = 10.0.0.0/24
9 r1.net0 {{ .opp_ip_plen }} = 24

10 r1.net0 {{ .opp_name }} = net0
11 r1.net0 {{ .opp_node_name }} = r2
12 r2 {{ .name }} = r2
13 r2.net0 {{ .ip_addr }} = 10.0.0.2
14 r2.net0 {{ .ip_net }} = 10.0.0.0/24
15 r2.net0 {{ .ip_plen }} = 24
16 r2.net0 {{ .name }} = net0
17 r2.net0 {{ .node_name }} = r2
18 r2.net0 {{ .opp_ip_addr }} = 10.0.0.1 # Param B
19 r2.net0 {{ .opp_ip_net }} = 10.0.0.0/24
20 r2.net0 {{ .opp_ip_plen }} = 24
21 r2.net0 {{ .opp_name }} = net0
22 r2.net0 {{ .opp_node_name }} = r1
23 ...

Fig. 6. Example of parameters in the namespaces.

A namespace in dot2net is an associative array. An object
instance, such as a node or an interface, has one namespace.
It contains automatically generated parameters with names for
specification. The config template blocks embed parameters
into the namespace.

In network configuration using templates, we usually need
to specify the parameters of the device and its neighbors. In
Layer 2, the interface neighbor means an opposite interface of
its connection (i.e., there is at most one Layer 2 neighbor for
each interface). Since the network topology basically represents
the Layer 2 topology structure, the Layer 2 neighbor interface
is intuitively available on dot2net.

In Layer 3 or overlays, an interface can have multiple
neighbor interfaces. To handle these neighbor parameters on a
one-to-one basis, we introduce a subclass named NeighborClass
of the interface classes (listed in Table I). A NeighborClass
describes configuration template blocks for the parent interface
(not the neighbor interface) that requires parameters of one
of the neighbor interfaces (i.e., an interface has the same
number of NeighborClass instances as the neighbor interfaces).
A NeighborClass instance has the same namespace as the parent
interface and has the parameters of the corresponding neighbor
interface (whose name additionally has a header for neighbors).

Figure 6 lists available parameters in an example namespace.
This table means, for instance, that if there is an InterfaceClass
label for r1.net0 (i.e., the net0 interface of router r1), the
InterfaceClass config template block will replace a parame-
ter specifier “{{.ip addr}}” with “10.0.0.1” for the interface
(Param A). The same parameter can also be used with the
specifier “{{.opp ip addr}}” by r2.net0 which is the opposite
of r1.net0 in the network topology (Param B). This way, we
can specify parameters in related devices with relative names.

Dot2net implementation has some other modules to extend
the namespaces for more complicated parameter specifications
(omitted due to page constraints in this paper).

2023 19th International Conference on Network and Service Management (CNSM)

1 digraph {
2 r1[class="router"];
3 r2[class="router"];
4 r3[class="router"];
5

6 r1->r2[dir=none];
7 r2->r3[dir=none];
8 }

r1

r2

r3

Fig. 7. Example topology graph (a DOT file and its visualization).

IV. IMPLEMENTATION

Dot2net is implemented in Go language and published as
an open-source software [8]. Dot2net is designed mainly for
Docker-based emulation networks.

A. Topology graph

The network topology graph is described as a multigraph
because node pairs have multiple connections for redundancy
techniques such as link aggregation. Figure 7 demonstrates
an example topology graph description for the scenario in
DOT format. There are three defined nodes, r1, r2, and r3,
with class attributes “router”, which means these nodes belong
to the NodeClass named “router”. If required, we can also
specify multiple labels by separating them with “;” in the class
attribute strings. Also, the two connections do not have any
class label specification. If defined, the interfaces belong to
“default” classes.

B. Label definitions

The label definitions are described in YAML format. Figure 8
demonstrates a part of an example YAML file of label defini-
tions. It defines two object classes: NodeClass “router” and
InterfaceClass “default”. The “default” InterfaceClass will be
applied to all the interfaces without labels (e.g., two connections
in Figure 7). These class definitions include both structural con-
figuation (e.g., container images) and functional configuration
(i.e., config template blocks).

Dot2net currently has six object classes listed in Table I.
In addition to the three classes (NodeClass, InterfaceClass,
and NeighborClass) described in § III, there are three classes
designed for flexible description of config templates. Connec-
tionClass is a label definition corresponding to edge labels (not
head or tail labels) on network topology graphs. Connection-
Class basically means that the described config templates are
added to both end interfaces of the connection. ConnectionClass
also has a flag for describing connectivity in overlay layers.
GroupClass is a label definition corresponding to subgraphs on
network topology graphs. GroupClass can be used to describe
groups of nodes that share the same parameters, such as AS
numbers and OSPF areas. MemberClass is a subclass similar
to NeighborClass; it is used to refer to parameters of member
objects of some object class.

For practical purposes, some classes can be defined as virtual
classes. The virtual classes do not have config template blocks

18 nodeclass:
19 - name: router
20 primary: true
21 tinet:
22 image: quay.io/frrouting/frr:8.5.0
23 clab:
24 kind: linux
25 image: quay.io/frrouting/frr:8.5.0
26 config:
27 - file: daemons
28 sourcefile: ./daemons
29 - file: vtysh.conf
30 sourcefile: ./vtysh.conf
31 - file: frr.conf
32 template:
33 - "ip forwarding"
34 - "!"
35 - "router ospf"
36 - " ospf router-id {{.ip_loopback}}"
37 - "!"
38

39 interfaceclass:
40 - name: default
41 primary: true
42 ipaware: [ip]
43 config:
44 - file: frr.conf
45 template:
46 - "interface {{.name}}"
47 - " ip address {{.ip_addr}}/{{.ip_plen}}"
48 - "!"
49 - "router ospf"
50 - " network {{.ip_net}} area 0"
51 - "!"

Fig. 8. An excerpt of example label definitions (YAML).

but they have parameter namespaces and will obtain assigned
parameters. The parameters can be referred to as relative
parameters from other non-virtual objects, so they will help
describe configurations related to out-of-emulation parameters
(an example is provided in § V-D2).

Dot2net is designed with automated parameter assignment,
but it also supports manual parameter assignment. The manual
parameters are specified in graph attributes similar to class
labels. If some IP addresses are specified manually, they are
reserved and not used in automated address assignment. This
means that we can manually assign IP addresses for important
objects and let others be assigned automatically.

C. Output

As the main target of dot2net is emulation networks, the
standard output of dot2net is configuration files for emula-
tion network platforms (including both structural configuration
and functional configuration). Dot2net currently supports two
Docker-based emulation network platforms: Containerlab [18]
and TiNET [17]. With these tools, we can automate emulation
network deployment and configuration from dot2net input.

V. EVALUATION AND CASE STUDIES

A. Network topology scenarios

We use six network topology scenarios in dot2net for evalua-
tion. Table II lists the scenarios and their scale. Five of them are
from FRR topotests 2, a suite of topology tests on mininet. The
tests are described in Python scripts, so we generate equivalent

2023 19th International Conference on Network and Service Management (CNSM)

TABLE II
NETWORK TOPOLOGY SCENARIOS

Network scenario Base topology
Source Name Nodes Links

FRR topotests rip topo1 9 (+1) 8 (+1)
FRR topotests ospf topo1 10 9
FRR topotests ospf6 topo1 10 (+3) 9 (+4)
FRR topotests bgp features 15 15
FRR topotests bgp evpn vxlan topo1 5 9

TiNET examples basic clos 14 16

TABLE III
LARGE-SCALE NETWORK TOPOLOGIES BASED ON BASIC CLOS

Name Nodes Links
Tier 1 Tier 2 Tier 3 Total

Clos100 64 32 4 100 2,176
Clos200 128 64 8 200 8,704
Clos300 192 96 12 300 19,584
Clos400 256 128 16 400 34,816
Clos500 320 160 20 500 54,400
Clos600 384 192 24 600 78,336
Clos700 448 224 28 700 106,624
Clos800 512 256 32 800 139,264
Clos900 576 288 36 900 176,256

Clos1000 640 320 40 1,000 217,600

configuration files for Containerlab and TiNET using dot2net.
There is another scenario “basic clos” from TiNET examples 3.
This scenario is based on scalable CLOS topology, so we use
this scenario mainly for scalability evaluation.

We use dot2net version v0.2.5 for the following evaluation.

B. Performance

We first evaluate the performance (processing time) of
dot2net for large-scale network topologies. As the large-scale
network topologies, we extend the “basic clos” scenario with
ten topologies (listed in Table III). The “basic clos” is a 3-tier
CLOS network , and we change the number of nodes in each
tier of the topologies. For the experiments, we use a computer
with an Ubuntu 18.04 server (x86 64) equipped with Intel(R)
Xeon(R) Gold 6258R CPU 2.70GHz and 128GB memory.

Figure 9 shows the processing time to generate configuration
files for these topologies. The processing time depends on
the number of links in the network topology because the
internal model generation and the address assignments are the
major part of the processing. The processing time is at most
3.5 seconds for Clos1000 which is acceptable because the
deployment of the emulation network will take much longer.
In addition, the maximum memory consumption is 2.65GB for
Clos1000, so we can use dot2net with general-performance
computers on this scale.

C. Configuration efficiency

We next evaluate how dot2net reduces config file size by
decreasing the “copy-and-pasted” description of configuration
with dot2net config template blocks. Table IV lists the com-
parison of file size. In this table, we generate config files for

2https://github.com/FRRouting/frr/tree/master/tests/topotests
3https://github.com/tinynetwork/tinet/tree/master/examples

 0.01

 0.1

 1

 10

10
3

10
4

10
5

10
6

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

Number of links

100

200

300

400

500
600

700
800

900
1000

Fig. 9. Processing time of dot2net for large-scale CLOS topologies in log-log-
scale plot. Each plot is labeled with the total number of nodes.

Containerlab and TiNET with dot2net and compare their file
size (bytes) with the dot2net input. Dot2net reduces the file
size by one-half to one-third in each scenario.

In addition, we extend the network topologies (shown in
Table II) by adding one router and one connection (“+1” in
Table IV) to emphasize the efficiency of dot2net in extending
network topologies. In dot2net, expanding the topology only
increases the size of the topology (DOT). The difference in
config file size is less than 10% in each scenario. Therefore,
dot2net effectively shrinks the input for configuring emulation
networks with config template blocks.

D. Case study

In this section, we discuss the robustness of dot2net for
complicated networks along with the two challenging issues
introduced in § III-A.

1) IP addressing issue: The first issue is automated IP
address assignment for complicated networks. We demonstrate
two network scenarios: an IP dual stack and a VXLAN network.

IP dual stack: The “ospf topo1” scenario describes a
network routed with OSPFv2 for IPv4 and OSPFv3 for IPv6
in parallel. Figure 10 shows the assigned IP addresses. We can
see both IPv4 and IPv6 addresses and subnets in the graph.

VXLAN: The “bgp evpn vxlan topo1” scenario depends
on VXLAN, one of the overlay network techniques. We can
describe this scenario with the idea of layer flags explained
in § III-C and Figure 4(b). With two layer flags, one for
the provider network and the other for the customer network
(bridged with VXLAN), the automated assignment algorithm
successfully determines IP addresses with appropriate subnets.

2) Namespace issue: The second issue is relative parameter
reference from config template blocks. This feature allows us
to describe some complicated scenarios.

BGP neighbor: The “bgp features” scenario is a BGP-
based network that includes non-BGP routers (routed with
OSPF) and L2 switches. In this network, a BGP router requires
parameters from neighboring BGP routers. Since there are

2023 19th International Conference on Network and Service Management (CNSM)

TABLE IV
COMPARISON OF CONFIGURATION FILE SIZE (BYTES)

dot2net Containerlab TiNET
Scenario (Expansion) Topology (diff) Config (diff) Total (diff) (diff) (diff)

rip topo1 536 3,128 3,664 7,140 7,509
rip topo1 (+1) 591 (+55) 3,128 (±0) 3,719 (+55) 8,929 (+1,789) 9,323 (+1,814)

ospf topo1 539 2,962 3,501 11,547 11,906
ospf topo1 (+1) 582 (+43) 2,962 (±0) 3,544 (+43) 13,708 (+2,161) 14,085 (+2,179)

ospf6 topo1 982 2,813 3,795 9,872 10,265
ospf6 topo1 (+1) 1,026 (+44) 2,813 (±0) 3,839 (+44) 11,762 (+1,890) 12,180 (+1,915)
bgp features 1,037 6,234 7,271 19,119 19,815
bgp features (+1) 1,122 (+85) 6,234 (±0) 7,356 (+85) 21,999 (+2,880) 22,713 (+2,898)

bgp evpn vxlan topo1 777 4,171 4,948 13,787 14,088
bgp evpn vxlan topo1 (+1) 862 (+85) 4,171 (±0) 5,033 (+85) 15,024 (+1,237) 15,345 (+1,257)

basic clos 858 1,275 2,133 9,300 10,275
basic clos (+1) 909 (+51) 1,275 (±0) 2,184 (+51) 9,932 (+632) 10,970 (+695)

r1

10.0.0.0/24
2001:db8::/64

10.0.0.1
2001:db8::1

10.0.1.0/24
2001:db8:0:1::/64

10.0.1.1
2001:db8:0:1::1

r2

10.0.1.0/24
2001:db8:0:1::/64

10.0.1.3
2001:db8:0:1::3

10.0.2.0/24
2001:db8:0:2::/64

10.0.2.1
2001:db8:0:2::1 r3

10.0.1.0/24
2001:db8:0:1::/64

10.0.1.2
2001:db8:0:1::2

10.0.3.0/24
2001:db8:0:3::/64

10.0.3.1
2001:db8:0:3::1

10.0.4.0/24
2001:db8:0:4::/64

10.0.4.1
2001:db8:0:4::1 r4

10.0.4.0/24
2001:db8:0:4::/64

10.0.4.2
2001:db8:0:4::2

10.0.5.0/24
2001:db8:0:5::/64

10.0.5.1
2001:db8:0:5::1

Fig. 10. Address assignments for an IPv4/IPv6 dual stack network. Nodes without labels in the graph are L2 switches.

L2 switches between BGP routers, the neighbor parameters
cannot be referred to as L2 opposite parameters. By defining
NeighborClasses of the BGP routers in a BGP layer, we
can specify neighbor parameters for the config blocks in the
Neighbor Classes.

Stub network: The “rip topo1” and “ospf6 topo1” scenar-
ios involve mixed routing policies: dynamic routing and static
routing. In addition, the static routing policy includes routes
for out-of-emulation (stub) nodes and subnets. To describe
these network scenarios, we use virtual objects (explained in
§ IV) in their topology graphs. If there are virtual nodes and
connections, dot2net can assign IP addresses to their interfaces
and IP subnets to the virtual connections, which can be referred
from other objects. Therefore, we can describe config blocks
with stub parameters by virtual objects and relative references
in namespaces.

E. Comparison with existing methods

Finally, we qualitatively compare dot2net to similar existing
approaches for functional configuration. Table V describes the
comparison in three aspects: Simplicity, scalability (ease of
expansion), and expressiveness of the configuration description.
We can confirm that dot2net is the only method that satisfy all
of the requirements.

Especially on simplicity, Figure 1 compares config templates
of (A) AutoNetkit and (B) dot2net. It is clear that the config
template blocks can be simpler if not using control syntax
macros.

VI. DISCUSSION

A. Application

Although dot2net is specifically designed for Docker-based
emulation networks, it is also applicable to networks in other
environments because dot2net essentially just generates config
files from template blocks and the topology graph. For example,
we can distribute generated config files to physical network
devices using existing tools.

Dot2net can even generate files other than config files such
as test scripts and specification documents. Dot2net is versatile
because of its template-based approach, so the applicability is
worth discussing further.

B. Limitation

As the dot2net implementation provides a way to specify pa-
rameters manually, there are no non-descriptive configurations
on dot2net in theory (if inefficient ways are allowed). However,
there are several limitations to efficient configuration.

Since dot2net depends on the network topology to specify
parameters, it is difficult to list parameters that is not related to
the topology. This limitation is problematic, for example, when
describing Access Control Lists (ACLs). It requires service-
oriented information to describe ACLs, so we need different
approaches for them.

It is also difficult to describe topology information that does
not fit graph description languages. For example, we cannot
intuitively describe source routing policies (such as segment
routing) in dot2net.

The one-to-one basis of parameter specification, which
comes from the principle of not using control syntax in config

2023 19th International Conference on Network and Service Management (CNSM)

TABLE V
QUALITATIVE COMPARISON TO EXISTING CONFIGURATION AUTOMATION METHODS

Method Approach Description simplicity Scalability Expressiveness

PRESTO [7] Extended
template blocks

Complicated due to
extended control syntax Scalable VPN, VoIP, etc.

AutoNetkit [5], [20] Scripted model +
templates

Complicated due to procedural
style and control syntax

Limited support of
parameter assignment

Limited to
BGP and OSPF

Propane [21] Product graph +
domain specific language

Sophisticated
but not intuitive Scalable Limited to BGP

HolistIX [22] Topology diagram Simple and intuitive Requires
manual parameters Only for IX network

dot2net Labeled graph +
template blocks Simple and intuitive Easily scalable

as § V-B, § V-C Expressive as § V-D

template, can cause another limitation. Essentially, dot2net
creates a NeighborClass instance for each neighbor interface
as explained in § III-D. If there is a config block that require
parameters from multiple instances, we cannot describe it in a
straightforward way with dot2net. Fortunately, network config-
uration is usually object-oriented, so the dispersing parameter
reference is a rare case in emulation network configuration.

VII. CONCLUSION

In this paper, we proposed the design and implementation
of a template-based configuration platform named dot2net for
simple, scalable, and expressive configuration description. The
key idea is to separate network topology as a labeled graph and
label definitions as config template blocks. Dot2net supports
automated assignment of IP parameters and relative parame-
ter specification with namespace, which accepts complicated
networks such as IPv4/IPv6 dual-stack networks and overlay
networks. We confirmed that dot2net is scalable enough to gen-
erate a 1,000 node CLOS network in less than 3.5 seconds. We
also showed that dot2net reduces the increase in config file size
to less than 10% as the network topology expands. Finally, we
demonstrated that dot2net can represent complicated networks
with case studies of test/example network scenarios.

In future work, we will perform a demonstration experiment
of dot2net on testbed networks to improve the applicability
to more practical use cases. In particular, the expressiveness of
dot2net can be improved with additional classes and namespace
extensions. We also consider the way to generate dot2net input
from config files of existing networks to support environment
migration and expansion of existing networks.

ACKNOWLEDGEMENTS

This work is supported by JSPS KAKENHI Grant Number
JP22K17886.

REFERENCES

[1] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” IEEE Access, vol. 8, pp.
108 952–108 971, 2020.

[2] H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, “Digital twin for
5G and beyond,” IEEE Communications Magazine, vol. 59, no. 2, pp.
10–15, 2021.

[3] R. Alimi, Y. Wang, and Y. R. Yang, “Shadow configuration as a network
management primitive,” in Proceedings of SIGCOMM ’08. ACM, 2008,
p. 111–122.

[4] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “CrystalNet: Faithfully Emulating
Large Production Networks,” in Proceedings of SOSP ’17, 2017, pp. 599–
613.

[5] S. Knight, H. Nguyen, O. Maennel, I. Phillips, N. Falkner, R. Bush, and
M. Roughan, “An automated system for emulated network experimenta-
tion,” in Proceedings of CoNEXT ’13. ACM, 2013, pp. 235–246.

[6] R. Emiliano and M. Antunes, “Automatic network configuration in
virtualized environment using gns3,” in Proceedings of ICCSE ’15, 2015,
pp. 25–30.

[7] W. Enck, T. Moyer, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Green-
berg, Y.-W. E. Sung, S. Rao, and W. Aiello, “Configuration management
at massive scale: system design and experience,” IEEE Journal on
Selected Areas in Communications, vol. 27, no. 3, pp. 323–335, 2009.

[8] S. Kobayashi, “dot2net,” https://github.com/cpflat/dot2net/, 2023.
[9] FRRouting Project, “Frrouting,” https://frrouting.org/, 2017.

[10] HashiCorp, “Terraform,” https://www.terraform.io/, 2014.
[11] Ansible Inc., “Ansible,” https://www.ansible.com/, 2012.
[12] P. Lapukhov, A. Premji, and J. Mitchell, “Use of BGP for Routing in

Large-Scale Data Centers,” https://datatracker.ietf.org/doc/html/rfc7938,
2016.

[13] S. Peach, B. Irwin, and R. van Heerden, “An overview of linux container
based network emulation,” in Proceedings of ECCWS ’16, 2016, pp. 253–
259.

[14] M. Pizzonia and M. Rimondini, “Netkit: network emulation for educa-
tion,” Software: Practice and Experience, vol. 46, no. 2, pp. 133–165,
2016.

[15] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of HotNets
’10. ACM, 2010, pp. 1–6.

[16] G. Bonofiglio, V. Iovinella, G. Lospoto, and G. Di Battista, “Kathará:
A container-based framework for implementing network function virtu-
alization and software defined networks,” in Proceedings of NOMS ’18.
IEEE, 2018, pp. 1–9.

[17] tinynetwork, “tinet,” https://github.com/tinynetwork/tinet/, 2019.
[18] Nokia, “Containerlab,” https://containerlab.dev/, 2021.
[19] S. M. Bellovin and R. Bush, “Configuration management and security,”

IEEE Journal on Selected Areas in Communications, vol. 27, no. 3, p.
268–274, 2009.

[20] H. Nguyen, M. Roughan, S. Knight, N. Falkner, O. Maennel, and
R. Bush, “How to Build Complex, Large-Scale Emulated Networks,” in
Proceedings of TridentCom ’11, vol. 46. Springer, 2011, pp. 1–16.

[21] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t
mind the gap: Bridging network-wide objectives and device-level config-
urations,” in Proceedings of SIGCOMM ’16. ACM, 2016, pp. 328–341.

[22] C. Visser, S. Yamamoto, T. Tomine, Y. Sekiya, and M. Bruyere, “Holis-
tIX: A zero-touch approach for IXPs,” in Proceedings of NetPA ’21. IFIP,
2021, pp. 1–7.

[23] T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Computing Surveys, vol. 47, no. 4, 2015.

[24] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “The cutting edge of ip router configuration,” ACM
SIGCOMM Computer Communication Review, vol. 34, no. 1, p. 21–26,
2004.

[25] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs with dot,”
Technical report, AT&T Research, 2006.

2023 19th International Conference on Network and Service Management (CNSM)

