
CML-IDS: Enhancing Intrusion Detection in SDN
through Collaborative Machine Learning

Pegah Golchin ∗ , Chengbo Zhou ∗ , Pratyush Agnihotri ∗ ,
Mehrdad Hajizadeh † , Ralf Kundel ∗ , Ralf Steinmetz ∗

∗Multimedia Communications Lab (KOM), Technical University of Darmstadt, Germany
†Communication Networks, Technical University of Chemnitz, Germany

Contact: pegah.golchin@kom.tu-darmstadt.de

Abstract—The centralized control plane in Software-Defined
Networking (SDN) offers significant advancements in network
management capabilities. However, SDN is also susceptible to
cybersecurity risks and vulnerabilities. Deploying the Machine
Learning (ML) approach in an Intrusion Detection System (IDS)
can facilitate early detection of potential vulnerabilities. However,
deploying an ML-based IDS solely in either the SDN control
plane or the data plane has its benefits and drawbacks. For
instance, a high-capacity ML model deployed in the control plane
can enhance the detection performance but may increase network
latency and the risk of overwhelming the control plane. In
contrast, lightweight ML models deployed in the data plane could
accelerate intrusion detection with lower detection performance.
However, a functional IDS should provide a good detection
performance at a line rate. To accomplish these objectives, we
introduce a novel method called Collaborative ML-based IDS
(CML-IDS), which involves deploying ML models in both the
control and data planes to detect network attacks collaboratively.
To facilitate this collaboration, we assess the confidence of
the classification model, which is flexibly deployed within the
programmable data plane. Our evaluation results demonstrate
that the CML-IDS enhances the average intrusion detection
performance to 93.46% and reduces the misclassification rate
by 54.66% when compared to an IDS that solely relies on the
ML model deployed in the data plane. Furthermore, CML-IDS
effectively reduces network latency caused by forwarding flows
to the control plane.

Index Terms—Intrusion Detection System, Machine Learning
Models, P4 Switches, Software Defined Networking

I. INTRODUCTION

Software-Defined Networking (SDN) provides automated
and flexible network control compared to the traditional legacy
network by decoupling the functionalities of the data plane
and the control plane. The centralized control plane offers a
comprehensive network view, resulting, e.g., in improved rout-
ing decisions and flexibility in general. This comprehensive
network view is achieved by providing flow rules to the data
plane switches, enabling them to process packets based on
these rules.

However, the centralized nature of the control plane in SDN
renders it vulnerable to various cyber-attacks, including Denial
of Service (DoS) or Distributed DoS (DDoS) attacks [1].
These malicious activities aim to disrupt the desired network
behavior. An attack can be directed toward either the data
plane or the control plane. In the case of the data plane,
the switch can be inundated with numerous flows, resulting

in the depletion of the limited flow table memory within the
data plane switch. Consequently, the switch becomes incapable
of receiving new flows. Additionally, attackers can flood the
switch with a multitude of new packet flows in a short time
frame, leading to the exhaustion of the switch’s buffer. In
this scenario, the switch forwards all buffered packets to
the control plane, potentially overwhelming it and impeding
the control plane’s bandwidth [2]. Network intrusions can
be detected by analyzing the traffic within each flow via
an Intrusion Detection System (IDS). In these approaches,
a flow represents all packets sharing the same source and
destination IP addresses, L4-ports, and protocols [3]. The
two primary approaches for implementing a network IDS are
signature-based and anomaly-based [4]. Leveraging signature-
based intrusion detection involves employing pattern-matching
techniques with a database of known attacks to detect attack
flows. On the other hand, anomaly-based intrusion detec-
tion involves leveraging statistical methods to classify the
malicious patterns of attack and benign (non-attack) flows,
allowing the detection of zero-day attacks in comparison to
the signature-based approach [5].

ML models are effective for anomaly-based IDS and can
be deployed in the SDN control plane with sufficient com-
putational resources [6]. Consequently, in order to classify
each flow using an ML-based IDS deployed in the control
plane, it is necessary to send flow features from the data
plane to the control plane, where the IDS resides. The control
plane can then determine the appropriate network policy (for-
warding/mitigation rules) based on each flow’s classification
result (attack/benign). These policies will be installed in the
data plane. However, sending flows to the control plane and
populating network policies increase network latency and may
cause the control plane to become overwhelmed when dealing
with a large number of flows at high speed. Therefore, alterna-
tive approaches need to be explored to enhance the efficiency
and effectiveness of ML-based IDS in identifying attack traffic
flows while reducing network latency and resource utilization.

Recently, SDN concepts have been extended by pro-
grammable switches [7] to program the data plane behavior
using domain-specific programming languages such as P4 [8].
Developing an IDS in the data plane using programmable
switches can reduce the latency caused by sending flows
to the control plane and decrease the attack detection time.

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP



Fig. 1: CML-IDS architecture. The DP-IDS and CP-IDS
collaboration is based on the DP-IDS Model Confidence (MC).

Currently, training an ML-based IDS in the programmable
data plane is challenging due to the resource and computation
limitations of the switch. Instead, a previously trained ML
model can be integrated into the Match-Action (MA) pipeline
of P4 switches for traffic classification. To this aim, the initial
phase involves extracting traffic features that are compatible
with the switch limitations. Furthermore, it is required to
utilize a lightweight ML model (with a reduced number of
learnable parameters) aligned to the switch structure. These
two constraints (utilizing only compatible flow features and
leveraging a lightweight ML model) can decrease the detection
performance and increase the possibility of misclassification,
potentially affecting network QoS and security requirements.
However, in the context of designing an effective IDS, it
is crucial to improve intrusion detection performance while
minimizing detection time and forwarding latency.

To achieve these goals, we propose CML-IDS, a collabo-
rative ML-based IDS approach for SDN. Through the collab-
orations of two proposed ML-based IDSs in both planes, we
can effectively leverage advantages of each, thereby enhancing
the overall detection performance. The general architecture
of CML-IDS is illustrated in Figure 1. Within the CML-
IDS framework, we investigate the flow features compatible
with the programmable switch structure. Furthermore, the ML
model deployed in the data plane (DP-IDS) is effectively
embedded within the programmable switch, offering more
flexibility for updates and changes.This flexibility ensures that
the DP-IDS model can be readily modified and improved.
Ultimately, considering the DP-IDS Model Confidence (MC),
further collaboration with the IDS deployed in the control
plane (CP-IDS) will be pursued to improve the detection
performance.

The paper is structured as follows: Background information
on the programmable switches is given in Section II. Section
III explains related works. The CML-IDS architecture is
presented in Section IV. In Section V, evaluation results are
presented and discussed. Finally, Section VI provides a short
summary.

II. BACKGROUND
This section provides a brief overview of the key concepts

related to the groundwork for the design and implementation
of the proposed CML-IDS.

A. Programmable Switches
Programmable switches enable network flexibility and in-

network control. P4 [8] is a programming language by which
the data plane can be tailored to customized packet processing.
The P4 language provides packet processing abstractions [9].
The packet processing in a programmable switch begins with
a parser that extracts information from the received packets
directly behind the ingress port. Match-Action (MA) tables
apply actions to the received packets that match to the stored
keys in the table. The control plane can configure and mod-
ify the entries of MA tables in the programmable switch.
Registers are utilized for storing metadata over an extended
period, allowing for the computation of stateful features. These
registers are readable and writable from both the data and
control planes. However, the limited resource capacity of a
switch means that a limited number of registers can be used
in a programmable switch. In addition, the P4 language lacks
support for iterative constructs and certain mathematical oper-
ations, such as division, logarithm, and exponentiation. That
limits the available ML models which can be implemented
within the programmable switch leveraging the P4 language.
B. Mapping Tree-based Models into MA Pipelines

A tree-based ML model classifies an input (e.g., features
of an arriving flow) by following a path from the root node
through intermediate nodes until it reaches the appropriate
leaf node, representing a decision (classify the arrival flow
as an attack or benign). Different selections of nodes result in
different classification paths. Two procedures are required to
construct the classification path. At the root and intermediate
nodes, the value of a certain feature is compared against a
specific threshold. The comparison result decides the next node
to be selected. At the leaf nodes, the prediction of the input
is performed, and the classification process is completed.

The MA pipeline in the programmable switch comprises
multiple MA tables that are applied sequentially. Each table
contains numerous table entries consisting of various key
values to be compared and a corresponding action to be
carried out. The sequential execution of MA tables is similar
to the classification process of a tree-based ML model, where
each level of the tree is reached exactly once in sequence
and only a single node at each level is selected to construct
the classification path. Therefore, each level of the tree can
be mapped to an MA table, whereas the table entries can
represent the nodes at each level. The two procedures can
be implemented by the actions carried out in the table entries,
while the keys are responsible for the selection of nodes.

III. RELATED WORK
This section presents an overview of ML-based IDS de-

ployed in either the SDN control plane or data plane, high-
lighting the distinctions from the proposed CML-IDS.

2023 19th International Conference on Network and Service Management (CNSM)



A. ML-based IDS in the Control Plane

In [10] and [11], different ensemble ML-based IDSs de-
ployed in the SDN control plane are presented. It is stated
that utilizing multiple ML models in an IDS can improve the
detection performance. However, their proposed flow-based
IDS poses a limitation in minimizing the detection time of
the attack flows since the IDS relies on predicting completed
flows, leaving the victim host or controller susceptible to
attacks prior to detection. The authors in [12] introduced an
ensemble feature selection method to boost the detection speed
and to reduce the required computational resources for an ML-
based IDS in the control plane by reducing the feature space
dimensions. Although their method improves detection per-
formance and reduces detection time, it does not operate at a
line rate, and it could not effectively reduce packet forwarding
latency as it necessitates sending flows to the control plane.
The approach presented in [13] addresses GPU-accelerated
network function acceleration, e.g., for IDS systems in the
control plane; however the achievable performance is still not
comparable to programmable data plane switches.

B. ML-based IDS in the Data Plane

To address the drawbacks of an ML-based IDS deployed in
the control plane, the idea of embedding a ML model directly
into programmable switches was proposed.

Embedding an ML model in a P4 switch is challenging
because the P4 language does not support floating values
and certain mathematical operations, and the switch usually
provides limited memory resources. The authors of [14]
investigated the deployment of an ML-based traffic classi-
fication scheme within the programmable data plane. They
implemented different ML models within a P4 switch, such
as Decision Tree, K-means, and Support Vector Machine.
However, their proposed system, IIsy, has limitations w.r.t.
accuracy and feature extraction due to the utilization of
look-up tables for estimating computational results. In [15],
RF and DT model structure alignment to a P4 switch was
considered. The authors also compared packet-based and flow-
based approaches in terms of attack detection performance,
observing a higher detection performance for the flow-based
approach. The authors in [16] proposed a flow-based IDS,
called SwitchTree, in which an RF algorithm was embedded
into the programmable switch by hard-coding. They trained the
RF model using pre-recorded flow data with twelve stateless
and stateful features. A total of 20 registers are used in
SwitchTree to store the features and metadata. However, using
too many registers can slow down detection because each one
needs to be updated with each new received packet. Moreover,
using many registers is incompatible with the switch hardware
due to the memory size limitation. In [17], a flow-based
IDS named pForest was proposed, in which multiple RFs are
embedded into the P4 switch to perform intrusion detection
for the flows with different number of packets. The predicted
outcome of each RF estimator is only accepted if the accuracy
exceeds a predefined minimum threshold. The final prediction
result of a flow is determined by the RF estimator that reaches

the threshold first. To overcome the limited memory resources,
pForest concatenates all flow features into a bit string and
stores it in a single register, significantly reducing the number
of used registers.

IV. CML-IDS SYSTEM DESIGN

This section presents a comprehensive description of the
system design of CML-IDS along with relevant implementa-
tion details of each module. The source code of CML-IDS is
available on GitHub for public access1.

A. Flow & Sub-flow Scope

In CML-IDS, a traffic flow is identified by employing the
CRC32 hash function, which takes into account the 5-tuple
comprising the source and destination IP addresses, source and
destination port numbers, and protocol type. To prevent poten-
tial delays in attack detection caused by waiting for the entire
flow to complete, we introduce a sub-flow approach using the
initial N packets only for the attack detection decision. The
determination of N is based on its ability to extract informative
flow features. Consequently, in the evaluation section (V-A),
the performance of ML models is evaluated for different N
values. Based on our investigation and the findings reported
in [17], utilizing the first 8 packets yields optimal results in
terms of informativeness and classification performance.

To extract the statistical features of a network flow, we
employ NFStream, a Python framework renowned for its
ability to extract post-mortem and early statistical flow features
[18]. In this study, we extend NFStream through the use of
NFPlugin to enable the extraction of sub-flow information.
The extracted statistical features are categorized into three
directions: source to destination (src2dst), destination to source
(dst2src), and bidirectional (involving packets flowing in both
src2dst and dst2src directions).

B. Sub-flow Features in the DP-IDS

In the following, we will elucidate the process by which we
extract the compatible features to train the DP-IDS model.

1) Investigating Incompatible Sub-Flow Features: This
section provides the reasoning behind defining certain features
as incompatible ones. These features are removed for training
the ML models.

Architecture-based Features: To ensure the general appli-
cation of CML-IDS regarding any network traffic traversing a
switch, it is necessary to eliminate network architecture-based
features (e.g., IP addresses, port numbers, and protocols).

Time-related Features: These features can be
computed within DP-IDS by retrieving the values of
ingress global timestamp and egress global timestamp
of the P4 language, that reflect the ingress and egress
timestamps when a packet appears and leaves the switch.
These timestamps are measured in microseconds within the
programmable switch (BMv2), while NFStream measures
time-related features in milliseconds. To ensure consistency
of time units, the obtained results by NFStream are multiplied

1https://github.com/golchinpg/CML-IDS

2023 19th International Conference on Network and Service Management (CNSM)



TABLE I: Comparison of Packet Inter Arrival Time (PIAT)
measurements between BMv2 and NFStream.

Time-Related Features Measured in
BMv2 (µs)

Measured by
NFStream (µs)

Min. PIAT (dst2src) 3410.7 2000
Min. PIAT (bidirectional) 255.6 0
PIAT (between 1st and 2nd packet) 729.4 0

by 1000. Nonetheless, a significant bias persists due to
the lower precision of NFStream’s time measurement.
Specifically, NFStream assigns a value of 0 to time-related
features that are less than 1 millisecond. Table I illustrates
the difference between the measured values of time-related
features in BMv2 and NFStream. The values measured in
BMv2 represent the average of ten individual measurements.
Moreover, it shows that time-related features obtained by
NFStream are imprecise compared to BMv2. Consequently,
we eliminated the time-related features from the training
dataset.

Complexity-intensive Features: The limitations of the P4
language pose a challenge for calculating complex features
requiring loops or divisions (e.g., calculating the packet size
standard deviation) within DP-IDS. This limitation makes it
currently infeasible to compute most of these features within
the programmable switch. To calculate the mean value of a
feature, [17] proposed to estimate it utilizing the Exponential
Weighted Moving Average (EWMA) method instead of calcu-
lating the exact mean value. For example, the src2dst mean ps
(ps refers to the packet size) feature estimation is performed
according to equation 1, with a smoothing factor of 0.5.

P̄S
t
src2dst =

P̄S
t−1
src2dst + Payloadtsrc2dst

2
(1)

where P̄S
t
src2dst is the current mean packet size and

P̄S
t−1
src2dst is the previous mean packet size. As the division

operation in equation 1 is not supported in the P4 language,
the division by 2 is achieved by right-shifting the binary
value by one position. However, the accuracy of the estimated
mean value using EWMA may be low if the payloads of
the packets within a sub-flow vary significantly. Since in our
implementation, the maximum number of packets per sub-
flow is constant, i.e., 8, the value of the feature bidirec-
tional mean ps can be accurately calculated by right-shifting
the binary value of the feature bidirectional bytes (the sum
of packet sizes of the extracted packets within a sub-flow)
by three positions. Consequently, all features related to the
mean value, except bidirectional mean ps, are removed from
the training dataset. Additionally, the computation of features
related to the standard deviation is infeasible within the current
P4 switch pipeline architecture.

After removing incompatible features, a total of 59 features
will remain. To reduce the feature dimensionality, the 20 most
relevant features are selected leveraging an ensemble feature
importance algorithm, including Mutual Information, Impurity
score, RF feature selection, and Permutation score algorithms
[19]. This decreases the required computational resources

and the risk of overfitting, which arises when the model
is overtrained on a particular dataset, leading to inadequate
performance when evaluated on the unseen data [20]. The list
of 20 selected features is available in the CML-IDS GitHub
repository.

2) Flow Storage Mechanism: To calculate stateful features
(depending on the previous state) in BMv2, we optimize
storage efficiency by using a single register as a buffer to store
all sub-flow entries. This strategy is inspired by pForest [17].
The compatible sub-flow features and metadata are serialized
into a bit string using the bit concatenation operation supported
by the P4 language and stored in the buffer indexed by the sub-
flow ID. A sub-flow entry is expired after a certain timeout,
allowing the buffer to store the newly extracted sub-flows. The
sub-flow features are updated in the following steps: 1) The
bit string is retrieved from the buffer based on the sub-flow
ID computed from the incoming packet. This bit string is then
converted to the struct data structure, which enables to read
each sub-flow feature value. 2) These values are updated by
the extracted header of the incoming packet. 3) The updated
sub-flow features are converted to the bit string and written
into the buffer based on the sub-flow ID.

3) Incoming Packet Analysis & Packet Direction Recog-
nition: Updating the sub-flow features requires knowing the
direction of the incoming packet mentioned in section IV-A. In
this regard, the CML-IDS utilizes an efficient flow identifica-
tion procedure within the programmable switch to identify the
packet direction category, initialize new sub-flows, and detect
potential hash collisions which are caused by using the CRC32
hash function to compute the sub-flow IDs. Upon receiving
a packet p, a sub-flow entry Fi is retrieved from the buffer
based on the sub-flow ID computed from p. p is identified as
a src2dst packet of Fi when all the values of the 5-tuple in
p match the corresponding values in Fi. Otherwise, the other
sub-flow entry Fj is read from the buffer based on the sub-
flow ID computed in the swapped order of the IP addresses
and port numbers. The details of this procedure are presented
in the Algorithm 1.

C. ML Model Deployed in the DP-IDS

1) DP-IDS Model: As Section II-B discusses the similar-
ities between the tree-base ML model and the programmable
switch structure, a lightweight RF model with three individual
trees with a maximum depth of five is deployed in the DP-IDS.
The preprocessed dataset is split into training, validation, and
test sets, with proportions of 70%, 10%, and 20%, respectively.
The validation set is leveraged to optimize hyperparameters of
ML models utilizing the GridsearchCV function provided by
the scikit-learn library in Python [21]. After the training phase
of the DP-IDS, the subsequent task involves extracting the
RF model inference, which entails converting the model into
rules that align with the P4 program. This extracted RF model
is then deployed within the DP-IDS, ensuring compatibility
with the P4 switch’s format. This process is automated and
executed within the control plane, thereby granting the CML-
IDS the flexibility to integrate new RF models with distinct

2023 19th International Conference on Network and Service Management (CNSM)



Algorithm 1: Incoming packet processing
Input: An incoming packet p

1 (src2dst no match, src2dst empty)← False;
2 idi ← CRC32(ps ip, pd ip, ps port, pd port, pproto);
3 Fi ← Buffer.read(idi);
4 if Fi is not empty then
5 if p.5 tuple = Fi.5 tuple then
6 p is the src2dst packet of Fi;
7 else
8 src2dst no match← True;
9 end if

10 else
11 src2dst empty ← True;
12 end if
13 if src2dst no match or src2dst empty is True then
14 idj ← CRC32(pd ip, ps ip, pd port, ps port, pproto);
15 Fj ← Buffer.read(idj);
16 if Fj is not empty then
17 if p.swapped 5 tuple = Fj .5 tuple then
18 p is the dst2src packet of Fj ;
19 else
20 if src2dst no match is True then
21 Hash collision happens;
22 else if src2dst empty is True then
23 p results in a new sub-flow Fi;
24 end if
25 end if
26 else
27 if src2dst no match is True then
28 Hash collision happens;
29 else if src2dst empty is True then
30 p results in a new sub-flow Fi;
31 end if
32 end if
33 end if

hyperparameters into the switch. Consequently, it is no longer
necessary to hard code a single trained ML model into the
programmable switch. A detailed description of the procedure
for embedding the RF model in the programmable switch is
provided in Section IV-D.

2) Interpretability of the Model’s Inference: To better
comprehend the implementation of the RF model within a P4
switch in the CML-IDS architecture, we provide an example
of a two-level Decision Tree (DT) model (as RF consists of
multiple DTs) in Figure 2. An ID number uniquely identifies
each node of a DT. In each node, the sub-flow feature is
denoted as fi, the threshold is represented by ti, and the
Gini impurity value, displayed as gi, represents a measure
of the purity for each node in the DT model. The CML-
IDS initiates the classification process in the programmable
switch immediately after the completion of feature extraction
from a sub-flow. In Figure 2, the classification path (1-3-6) is
highlighted to explain the decision making process of a DT

Fig. 2: Example of embedding a DT into a P4 switch.

model. Depending on the comparison result between the fea-
ture value and the threshold value at each node, the decision-
making process proceeds to the next node or terminates at a
leaf node, resulting in the classification of the sub-flow as an
attack or benign. The same decision rules are embedded into
the MA pipeline of the programmable switch to classify each
incoming sub-flow.
D. Embedding DP-IDS in a Programmable Switch

This pipeline comprises three key modules which are ex-
plained in the following.

1) P4 Program Generator: The proposed CML-IDS ar-
chitecture utilizes this module to integrate the trained RF
model into the programmable switch. The module receives
the feature set chosen in Section IV-B1 and the inference of
the RF model described in Section IV-C1 as inputs. Utilizing
them, the compatible P4 code and MA table entries are
automatically generated. The generated P4 code contains four
blocks, including feature storage and update, MA table entries,
feature comparison logic, and classification logic of the RF
model.

To control the detection path, the MA table uses the previous
node ID and the previous feature comparison result as keys.
The action taken depends on the current node type, where root
and intermediate nodes compare feature values with thresholds
to select the next node, while leaf nodes use their prediction to
classify a sub-flow. Furthermore, the model confidence (MC)
is computed by averaging the Gini impurity of three DTs in
the embedded RF.

2) Data Plane Control Module: This module is designed
to facilitate interaction with the data plane. In our implemen-
tation, the P4Runtime API [22] serves as the interface for es-
tablishing a connection between the switch and the controller.
The P4Runtime API is utilized for controlling the behavior
of the BMv2 switch during runtime. The controlling process
includes installing the P4 program in the BMv2 switch,
transmitting the packet containing the sub-flow information
from the switch to the controller, sending the packet with the
final predicted label of the sub-flow from the controller to the
switch, and populating the MA table entries into the switch
for representing the RF model.

3) Programmable Switch: The programmable switch plays
a crucial role in the data plane, running a P4 program received
from the control plane. Upon receiving packets, their header
fields are extracted by the P4 parser, and the corresponding
sub-flows are retrieved from the buffer based on the com-
puted 5-tuple hash value that represents the sub-flow ID. To

2023 19th International Conference on Network and Service Management (CNSM)



TABLE II: CP-IDS hyperparameters.

Model Hyperparameter Values
XGB max depth: 25, tree method: ’approx’, scale pos weight: 40
RF n estimators: 500, min samples leaf: 5, max depth: 10

MLP number of hidden layers: 14, batch size:2048, epochs:200

avoid hash collisions and save memory, sub-flow entries are
removed after a specified timeout. If the sub-flow entry is
valid and the updated packet number reaches the length of
sub-flow, classification is performed by the DP-IDS, and only
the predicted labels with high MC are accepted. The data
plane control module monitors the performance of DP-IDS
by reading counter values related to detection performance.

E. Model Confidence Threshold (MCthr)

The CML-IDS aims to enhance the detection performance
and keep network latency low by utilizing a pre-defined
MCthr to control whether to send sub-flows to the control
plane. This threshold is compared against the MC value,
represented by the Gini impurity of the leaf node (last stage
nodes) in the output of the RF model in the DP-IDS. More
specifically, the prediction made by DP-IDS has a higher
MC when the Gini impurity is lower. Lower Gini impurity
indicates that the sub-flow is more confidently classified by
the DP-IDS. After extracting MC value, if all three DT
models (DTi, DTj , DTl) classify a sub-flow F into the same
class (benign/attack), the average Gini impurity (Ḡi, j, l(F ))
is compared to MCthr to determine whether to forward F
to the CP-IDS (Ḡi, j, l(F ) ≥MCthr) or accept the detection
result (Ḡi, j, l(F ) < MCthr). If only two DT models (e.g.,
DTi, DTj) classify sub-flow F into the same class, the mean
value of their Gini impurities (Ḡi, j(F )) is compared to the
Gini impurity value of the third DT model (Gl(F )) and
MCthr. If one of these two comparisons meets the condition
(Ḡi, j(F ) ≥ Gl(F ) or Ḡi, j(F ) ≥ MCthr), the sub-flow F
is forwarded to the CP-IDS for the further detection process.

F. ML-based IDS in the Control Plane (CP-IDS)

Suppose the MC value fails to meet the specified threshold.
In that case, the sub-flow features are subsequently forwarded
to the CP-IDS for classification utilizing an ensemble ML
classifier which is more complex than the DP-IDS.

1) Sub-flow Features in CP-IDS: All the 59 features
extracted within the programmable switch (without feature
selection) are encapsulated into a packet and delivered to
the CP-IDS. These features are used to train the ensemble
classifier employed in the CP-IDS. A list of these features is
available in the CML-IDS GitHub repository.

2) Ensemble Classifier in CP-IDS: In CP-IDS, an en-
semble classifier composed of multi-layer perceptron (MLP),
RF, and XGBoost (XGB) classifiers is employed. Ensembling
these models offers a method to combine multiple instances
of ML models using different learning algorithms, which can
complement each other and improve overall system perfor-
mance with greater accuracy [23].

The preprocessed dataset is divided into training, validation,
and test sets, with proportions of 70%, 10%, and 20%,

respectively. Through GridsearchCV, we optimize the hyperpa-
rameters to ensure the optimal performance on the validation
set. Table II provides the hyperparameters for each model of
CP-IDS. To optimize the overall performance of the CP-IDS,
the XGB model is specifically tailored to minimize the number
of false negatives; the RF model focuses on minimizing the
number of false positives, while the MLP is designed to strike
a balance between false positives and false negatives.

V. EVALUATION AND DISCUSSION

This section aims to present the evaluation results of
CML-IDS on various types of attacks, such as Brute Force,
DoS/DDoS, and Botnet attack flows, along with benign flows,
using the CIC-IDS2017 dataset [24]. To evaluate the frame-
work in real-time, we transmit the previously captured network
traffic of the CIC-IDS2017 through the system, using the open-
source tool tcpreplay. This tool is capable of reading network
packets from a Packet Capture (PCAP) file and replaying them
onto the desire network interface. To train the DP- and CP-
IDS as well as perform the ensemble feature selection, we
utilize an Ubuntu server equipped with 128GB RAM and 4
CPUs (Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz). The
implementation is in Python, using the Scikit-learn, Pandas,
XGBoost, and TensorFlow packages. To evaluate the detection
performance of the proposed CML-IDS, we utilized the macro-
average of the F1 Score metric. The F1 Score is a suitable
evaluation metric as it considers both false positives and false
negatives, leading to a more accurate assessment of the de-
tection performance. In this study, the positive class indicates
the attack, and the negative class represents the benign traffic.
Given that the majority of network traffic typically consists of
benign flows, we opted to calculate the macro-average of the
F1 Score to ensure equal treatment of each class, regardless
of its frequency or potential imbalance in the dataset.

A. Analysis of the Optimized Number of Packets in a Sub-flow

To ascertain the number of initial packets required to define
a sub-flow, we examine the effectiveness of different numbers
of initial packets in providing informative data to better
differentiate between attacks and benign flows. As shown in
Figure 3, the average misclassification of sub-flows decreased
as the number of packets increased from 4 to 8. Therefore, the
overall detection performance is increased. Thus, 8 packets in
a sub-flow provide more informative data. However, limited
improvement is observed when increasing the number of
packets from 8 to 15 and 30. To minimize the delay in
initiating the detection process and avoid waiting for additional
packets, we consider a sub-flow size of 8 packets.

B. Reducing Potential Hash Collisions

CML-IDS utilizes one single register as the buffer to store
all sub-flow entries indexed by their IDs computed using the
CRC32 hash function. A hash collision could occur when a
new extracted sub-flow has the same ID as a sub-flow that
exists in the buffer. Hash collisions can impact both the feature
update and inference procedures. When a hash collision takes

2023 19th International Conference on Network and Service Management (CNSM)



Fig. 3: Comparison of the number of FP and FN across varying
numbers of initial packets.

place during the feature updating process for a flow (consisting
of less than 8 packets), it results in an inaccurate feature
update. Similarly, if a hash collision occurs for a sub-flow that
has already been classified, the subsequent packets belonging
to the collided sub-flow are processed based on the predicted
class of the existing sub-flow. This can lead to potentially
incorrect packet inference. Hence, a greater number of hash
collisions indicates a higher level of instability in the system.

To reduce the hash collisions and store the sub-flows as
much as possible, a flow expiration mechanism is applied. A
sub-flow entry is removed from the buffer after 30 minutes.
This choice of a 30-minute expiration timeout was made
to align with the NFStream timeout for generating flows.
As discussed in Section IV-A, NFStream converted network
traffic into sub-flow statistical features. We conducted three
independent experiments to measure the occurrence of hash
collisions, utilizing the flow expiration mechanism. The re-
sults revealed that the proposed flow expiration mechanism
effectively reduced hash collisions for each attack dataset. In
particular, the observed percentages of flows impacted by hash
collisions were 0.13%, 0.13%, and 0.30% for BruteForce,
DoS/DDoS, and Botnet attacks, respectively, indicating a
minimal impact of hash collisions on the overall performance
of the system. Additionally, 20.08%, 23.68%, and 15.83%
of the flows for BruteForce, DoS/DDoS, and Botnet attacks,
respectively, expired after the expiration timeout.

C. Analysing the Impact of MCthr on Detection Performance

In this study, the primary objective of CML-IDS is to
improve detection performance while minimizing potential
increases in network latency. As explained in Section IV-E, a
predefined MCthr is required to decide whether to forward the
sub-flow to the CP-IDS or not. This section aims to evaluate
the impact of different MCthr values on the overall detection
performance achieved through the collaboration of DP- and
CP-IDS compared to solely relying on the DP-IDS (baseline)
detection. To highlight the distinctions clearly, we also mea-
sure the misclassification rate of CML-IDS using the formula
(FP + FN)/(FP + FN + TP + TN). Figure 4 displays

Fig. 4: The number of sub-flows forwarded to the CP-IDS uti-
lizing different MCthr values. The percentage values represent
the proportion of the sub-flows forwarded to the CP-IDS.

the average number of sub-flows and their percentages that
are forwarded to the CP-IDS for the BruteForce, DoS/DDoS,
and Botnet attacks, with the experiment being repeated three
times. As expected, when MCthr is set to a very small value,
the majority of sub-flows are forwarded to the CP-IDS since
these sub-flows are unlikely to have higher MC (i.e., lower
Gini impurity values). As MCthr increases, the number of
forwarded sub-flows decreases, reducing the overall network
latency. According to Figure 4, for the BruteForce, DoS/DDoS,
and Botnet datasets, the percentages of 93.5%, 90.1%, and
70.1% sub-flows are forwarded to the CP-IDS when the value
of MCthr is set to 0.1. These are very high percentages
compared to the other MCthr values. Therefore, selecting a
very low MCthr does not align with our objectives. Table III
presents the impact of different MCthr values on the detec-
tion performance and the misclassification rate. According to
the results, the macro-average F1 Score has improved when
utilizing CML-IDS (for all MCthr values) compared to the
baseline approach, which only utilizes DP-IDS. Moreover, the
results of the misclassification rate demonstrate that CML-IDS
effectively reduces the percentage of misclassifications. The
maximum difference is for MCthr = 0.3, displayed in bold
in Table III. At this threshold, the detection performances for
BruteForce, DoS/DDoS, and Botnet attacks are improved by
12.2%, 5.8%, 3.6%, and the misclassification rates are reduced
by 84.0% ((4.4 − 0.7)/4.4), 29.2%, 54.3%, compared to the
baseline.

D. Selecting MCthr Value

In order to achieve a balance between high detection perfor-
mance and low network latency, various metrics are explored
to select an appropriate MCthr value. Despite a high detection
performance at MCthr values of 0.1, 0.2, and 0.3 (as shown

TABLE III: Relative detection performance (DP) and misclas-
sification rate (MR) of different attacks for different MCthr.

MCthr
BruteForce DoS/DDoS BotNet

DP(%) MR(%) DP(%) MR(%) DP(%) MR(%)
0.1 96.8 0.7 83.0 7.1 95.5 3.7
0.2 96.7 0.7 83.7 7.2 96.6 2.9
0.3 96.7 0.7 87.0 6.3 96.7 2.6
0.4 88.1 3.1 82.0 7.9 94.7 4.4

Baseline 84.5 4.4 81.2 8.9 93.1 5.7

2023 19th International Conference on Network and Service Management (CNSM)



Fig. 5: Percentages of FP, FN, TP, and TN in the DP-IDS
which are forwarded to the CP-IDS for different MCthr.

in Table III), Figure 4 indicates that a higher number of sub-
flows are forwarded to the CP-IDS for MCthr = 0.1 and
MCthr = 0.2 compared to MCthr = 0.3, leading to increased
network latency. Thus, selecting MCthr = 0.3 is more aligned
with the primary goals of CML-IDS.

Furthermore, we conducted a detailed analysis of the
number of correctly and incorrectly detected sub-flows in
the DP-IDS that are forwarded to the CP-IDS for different
MCthr values. Figure 5 provides insight into the percentage
of incorrectly detected sub-flows (FP or FN) by the DP-
IDS (which are different from FP and FN values in Section
V-C) that was subsequently forwarded to the CP-IDS for
different MCthr values. The results presented in Figure 5
demonstrate that for all attacks, the percentage of FP and FN
sub-flows that are sent to the controller when MCthr = 0.3
is higher compared to when MCthr = 0.2, with an increase
of 28.8%, 20.8%, and 33.6% observed for the BruteForce,
DoS/DDoS, and Botnet attacks, respectively. In summary,
Table IV presents all the relevant metrics and their values that
led to the selection of MCthr = 0.3. The table comprises
individual cells, each containing three values representing the
corresponding metrics for BruteForce, DoS/DDoS, and Botnet
attacks. The MCthr = 0.3 values are highlighted in bold to
ease comparison. The findings indicate that at MCthr = 0.4,
the percentage of forwarded sub-flows to the controller is
lower than at MCthr = 0.3. However, at MCthr = 0.3, there
is a higher number of incorrectly detected sub-flows (FP and
FN) forwarded to the CP-IDS compared to MCthr = 0.4. As
a consequence, the overall detection performance is improved
at MCthr = 0.3 (Table III). Therefore, MCthr = 0.3 is
considered an appropriate choice for the CML-IDS to balance
achieving high detection performance and maintaining low
network latency.

TABLE IV: Comparison of important metrics to select the best
MCthr. Each cell represents the corresponding value for the
BruteForce, DoS/DDoS, and Botnet attacks, respectively.

MCthr
Forwarded

Sub-flows (%)
Macro-Average
F1 Score (%)

Misclassified For-
warded Flows (%)

0.1 93.5, 90.1, 70.1 96.8, 83, 95.5 4.5, 6.7, 5.8
0.2 10.1, 13.4, 8 96.7, 83.7, 96.6 40.1, 33.6, 43.2
0.3 5.7, 7.4, 4.3 96.7, 87.0, 96.7 68.9, 54.4, 76.8
0.4 2.8, 4.9, 2.1 88.1, 82.0, 94.7 53.8, 47.1, 72.5

TABLE V: Comparison of detection time between the DP-IDS
and the CML-IDS for different MCthr values.

MCthr
Detection Time in

the DP-IDS (second)
Detection Time in

the CP-IDS (second)
0.1 0.067 (± 0.000) 137.066 (± 61.417)
0.2 0.075 (± 0.023) 0.546 (± 0.050)
0.3 0.057 (± 0.001) 0.361(± 0.040)
0.4 0.057(± 0.001) 0.354 (± 0.044)

E. Detection Time

In network security, the timely detection of malicious ac-
tivities is crucial to mitigate potential damage and ensure
the integrity of the network. In this section, we investigate
the detection time for different MCthr values. Moreover,
we compare the detection time of the DP-IDS and the CP-
IDS. Table V shows the impact of forwarding sub-flows to
the CP-IDS on the overall detection time. Regardingly, the
detection time increases when MCthr = 0.1 is used, as
higher percentages (93.5%, 90.1%, and 70.1% for different
attacks illustrated in Figure 4) of the sub-flows are forwarded
to the CP-IDS. Therefore, it takes more time to classify sub-
flows within the CP-IDS for MCthr = 0.1. The significant
detection delay observed in the CP-IDS for MCthr = 0.1
emphasizes the limitations of relying solely on ML models
deployed in the control plane for effective intrusion detection.
The detection time for the other MCthr values is less than 1
second, indicating a rapid detection time.

F. Comparison between CML-IDS and SwitchTree

In this section, we present a comparison between the
CML-IDS and the SwitchTree [16] (in Table VI). We chose
to compare with SwitchTree primarily because their open-
source code is readily available, and their approach shares the
closest similarity to our DP-IDS (not the entire CML-IDS).
To enable a fair comparison, it was necessary to evaluate their
model using the dataset utilized for this work and convert
the network traffic to the feature set using our proposed
preprocessing pipeline. Table VI presents a comparison of
these two approaches in terms of various metrics. The CML-
IDS involves the collaboration of two ML models, DP- and
CP-IDS, while SwitchTree uses only an RF model as a DP-
IDS. Hence, CML-IDS utilizes a more complex approach
in comparison to SwitchTree. However, the proposed DP-
IDS in SwitchTree employs a more complex design of an
RF model with a maximum depth of 11, which makes it
challenging to embed it in a programmable switch, while
CML-IDS utilizes a lightweight RF model with a maxi-
mum depth of 5. Moreover, regarding hardware resources,
the SwitchTree approach requires 20 registers, whereas the
CML-IDS employs an efficient register usage technique by

TABLE VI: Comparison between CML-IDS and SwitchTree.

Metric CML-IDS SwitchTree [16]
Deployed ML model CP & DP DP
DP-IDS complexity Max. Depth: 5 Max. Depth: 11
Number of Registers 1 20
Macro-Average F1 Score 93.4% 87.7%

2023 19th International Conference on Network and Service Management (CNSM)



applying bit concatenation operation (as explained in Section
IV-B2). Additionally, the average detection performance on
all attack datasets demonstrates that the CML-IDS model
(with MCthr = 0.3) outperforms SwitchTree. Furthermore,
in CML-IDS, the RF model is deployed in DP-IDS with the
flexibility to facilitate model updates (explained in Section
IV-C1). However, SwitchTree rigidly hardcoded the RF model
in the software switch.

VI. CONCLUSION & FUTURE WORK

This paper introduces a novel ML-based IDS approach in
SDN, leveraging collaboration between distinct ML models
in the data (DP-IDS) and control plane (CP-IDS). The col-
laboration will occur by assessing the confidence of the DP-
IDS model in classifying a sub-flow and comparing it to a
predefined threshold. Accordingly, if the model confidence is
low the sub-flow features will be forwarded to the control
plane.The evaluation highlights the importance of choosing
the correct predefined threshold (MCthr) value. In this work,
a value of 0.3 is chosen for MCthr based on different criteria.
The results indicate that utilizing CML-IDS leads to an average
reduction of 54.66% in the misclassification rate compared
to the baseline, which solely relies on DP-IDS. Moreover,
CML-IDS effectively improves detection performance and
reduces the latency caused by forwarding flows to the control
plane. Furthermore, we compare CML-IDS with SwitchTree,
a state-of-the-art DP-IDS, to highlight CML-IDS advantages,
including improvement in detection performance and reducing
resource usage by decreasing the number of registers and DP-
IDS complexity.

In this study, the CML-IDS is deployed on the BMv2, a
software-based P4 switch, considering hardware limitations.
Our future work aims to expand this approach to a Tofino-
based switch, considering the challenges of the Tofino platform
and conducting a comparative analysis.

ACKNOWLEDGMENT

This work is funded by the Federal Ministry of Education
and Research of Germany (BMBF) through Software Campus
Grant 01IS17050 (ML-based NIDS), the CELTIC-NEXT Flag-
ship Project AI-NET-PROTECT and in parts by the German
Research Foundation (DFG) within the Collaborative Research
Center (CRC) 1053 MAKI.

REFERENCES

[1] K.-y. Chen, A. R. Junuthula, I. K. Siddhrau, Y. Xu, and H. J. Chao,
“Sdnshield: Towards more comprehensive defense against ddos attacks
on sdn control plane,” in 2016 IEEE conference on communications and
network security (CNS). IEEE, 2016, pp. 28–36.

[2] L. F. Eliyan and R. Di Pietro, “Dos and ddos attacks in software defined
networks: A survey of existing solutions and research challenges,”
Future Generation Computer Systems, vol. 122, pp. 149–171, 2021.

[3] R. V. Steiner and E. Lupu, “Towards more practical software-based
attestation,” Computer networks, vol. 149, pp. 43–55, 2019.

[4] S. Einy, C. Oz, and Y. D. Navaei, “The anomaly-and signature-based
ids for network security using hybrid inference systems,” Mathematical
Problems in Engineering, vol. 2021, pp. 1–10, 2021.

[5] M. Hajizadeh, S. Barua, and P. Golchin, “Fsa-ids: A flow-based self-
active intrusion detection system,” in NOMS 2023-2023 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2023, pp.
1–9.

[6] Z. K. Maseer, R. Yusof, N. Bahaman, S. A. Mostafa, and C. F. M.
Foozy, “Benchmarking of machine learning for anomaly based intrusion
detection systems in the cicids2017 dataset,” IEEE access, vol. 9, pp.
22 351–22 370, 2021.

[7] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 99–
110, 2013.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[9] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, and N. Foster, “P4v: Practical
verification for programmable data planes,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on data communication,
2018, pp. 490–503.

[10] T.-H. Lee, L.-H. Chang, and C.-W. Syu, “Deep learning enabled in-
trusion detection and prevention system over sdn networks,” in 2020
IEEE International Conference on Communications Workshops (ICC
Workshops), 2020, pp. 1–6.

[11] A. O. Alzahrani and M. J. Alenazi, “Designing a network intrusion
detection system based on machine learning for software defined net-
works,” Future Internet, vol. 13, no. 5, p. 111, 2021.

[12] P. Golchin, R. Kundel, T. Steuer, R. Hark, and R. Steinmetz, “Improv-
ing ddos attack detection leveraging a multi-aspect ensemble feature
selection,” in NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2022, pp. 1–5.

[13] R. Kundel, L. Anderweit, J. Markussen, C. Griwodz, O. Abboud,
B. Becker, and T. Meuser, “Host bypassing: Let your gpu speak
ethernet,” in 2022 IEEE 8th International Conference on Network
Softwarization (NetSoft). IEEE, 2022, pp. 85–90.

[14] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in Proceedings of the 18th ACM
workshop on hot topics in networks, 2019, pp. 25–33.

[15] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in IEEE IN-
FOCOM 2021-IEEE Conference on Computer Communications. IEEE,
2021, pp. 1–10.

[16] J.-H. Lee and K. Singh, “Switchtree: in-network computing and traffic
analyses with random forests,” Neural Computing and Applications, pp.
1–12, 2020.

[17] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pforest: In-network inference with random forests,” arXiv preprint
arXiv:1909.05680, 2019.

[18] Z. Aouini and A. Pekar, “Nfstream: A flexible network data analysis
framework,” Computer Networks, vol. 204, p. 108719, 2022.

[19] A. Hashemi, M. B. Dowlatshahi, and H. Nezamabadi-pour, “Ensemble of
feature selection algorithms: a multi-criteria decision-making approach,”
International Journal of Machine Learning and Cybernetics, vol. 13,
no. 1, pp. 49–69, 2022.

[20] M.-J. Jun, “A comparison of a gradient boosting decision tree, random
forests, and artificial neural networks to model urban land use changes:
The case of the seoul metropolitan area,” International Journal of
Geographical Information Science, vol. 35, no. 11, pp. 2149–2167, 2021.

[21] “GridSearchCV. An exhaustive search over specified param-
eters values for an estimator.” (Accessed on 14.03.2023).
[Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.model selection.GridSearchCV.html

[22] “P4 Language Consortium. (2021). P4Runtime Specification, Version
1.3.0.” (Accessed on 04.02.2023). [Online]. Available: https://p4.org/
p4-spec/p4runtime/main/P4Runtime-Spec.html

[23] N. Martindale, M. Ismail, and D. A. Talbert, “Ensemble-based online
machine learning algorithms for network intrusion detection systems
using streaming data,” Information, vol. 11, no. 6, p. 315, 2020.

[24] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018.

2023 19th International Conference on Network and Service Management (CNSM)


