
Log Analysis and Prediction for Anomaly Detection
in Network Switches

Sukhyun Nam, Euidong Jeong, Jibum Hong, Jae-Hyoung Yoo, and James Won-Ki Hong

Department of Computer Science and Engineering, POSTECH, Pohang, Korea
{obiwan96, justicedong, hosewq, jhyoo78, jwkhong}@postech.ac.kr

Abstract—In this study, we propose a three-step anomaly
detection system for network switches. The proposed system
consists of the following steps: 1) Log parsing, where log messages
from switches are analyzed to identify patterns and events, 2)
Analysis of the identified event flow to distinguish normal and
abnormal event sequences, and 3) Prediction of the next log
message, with detection of anomalies if the predicted log message
differs from the normal log messages. For event classification,
a log parser is proposed by modifying existing algorithms,
and experimental results confirm that similar log patterns are
correctly classified into the same event. To learn normal event
sequences, both FSM and LSTM models are trained. Lastly, we
proposed a BERT-LSTM model to predict the next log message
and detect unexpected log messages. The proposed system is
validated using data collected from a constructed testbed and
achieves a high-performance level with an F1 score of 83.72%.
Notably, our system achieved a recall of 94.74%. Our system
has an advantage in that if misclassified cases occur, network
administrators can retrain each model to improve precision
during system operation.

Index Terms—Anomaly Detection, Machine Learning, Log
Analysis

I. INTRODUCTION

Recently, as networks grow in size and complexity, various
types of network management problems (e.g. faults, failures,
packet loss, and delay increase) are increasing. In order to
solve or alleviate these problems, network managers analyze
the resource usage, status information, network traffic infor-
mation, and logs of the equipment and related systems that
make up the networks [1].

Anomaly detection refers to the identification of data or
patterns that do not conform to the expected behavior or
normal operation of a device. Such inappropriate data or
patterns are commonly referred to as anomalies or outliers.
Anomaly detection techniques are widely used in various
fields, including network management, cybersecurity, medical
diagnostics, and more. By developing anomaly detection tech-
nology for network devices, it is possible to detect and notify
any device or network-wide issues before or immediately
upon their occurrence during network operation. This enables
prompt actions to be taken without the need for network
administrators to manually inspect vast amounts of data.

Among various data, logs generated by devices represent the
device’s state most intuitively. Unlike simple numerical data,
log messages provide detailed information about the device’s
state, which is why network administrators commonly rely on

it the most. However, the log messages are not generated in a
standardized format. Additionally, logs are natural language,
unlike numerical data such as resource usage, making auto-
mated analysis challenging. As a result, conventional network
management systems often rely on statistical analysis of log
data. Such techniques detect anomalies based on rule-based
extraction of specific ”patterns” or words or by analyzing the
frequency of extraction of particular words or log messages.

In recent years, there has been a remarkable advancement
in the field of Natural Language Processing (NLP) due to
the development of Artificial Intelligence (AI). With machine
learning at its core, it has become possible to analyze the
meaning of sentences. Similarly, in log processing, machine
learning can be employed to analyze the meaning present
in log messages, enabling automatic detection of log mes-
sages that indicate abnormal states different from normal
ones. In fact, research has been conducted to enhance net-
work management performance by applying machine learning
techniques [2]–[4]. However, the machine learning approach
requires significant computational resources for training and
detection. Therefore, combining pattern-based methods with
machine learning-based approaches can increase the efficiency
of anomaly detection. In this study, we utilized a pattern-
based approach and machine learning-based approach, espe-
cially Bidirectional Encoder Represents from Transformers
(BERT) [5], a language model that has recently shown better
performance than existing technologies in the NLP area.

This paper proposes a three-step anomaly detection system
using machine learning. We have developed an log parser and
built a model to determine whether the event number flow is
normal based on the output of the log parser. Additionally,
we developed the machine learning model to train on log data
representing the normal state and predict the next log message.
The contributions of this paper are as follows:

• Developed log parser to analyze log patterns and classify
events

• Developed machine learning and Finite State Machine
(FSM) based model to detect abnormal events flow

• Developed a machine learning model based on BERT to
predict the next log message

• Designed anomaly detection system based on these mod-
els and evaluated the performance of the system with the
log dataset collected in the testbed

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

II. RELATED WORK

A. Log-based Anomaly Detection

Research on anomaly detection based on log analysis has
long been conducted using pattern extraction techniques. Pat-
tern extraction techniques are commonly used for log analysis
because they are simple, intuitive, and show high performance
[6]. These techniques typically involve extracting events from
the extracted patterns. Among the generated log patterns,
similar patterns are highly likely to represent the same event.
Therefore, many studies classify log patterns into events based
on the similarity between log patterns. The event classifier
is capable of substituting each log with an event. Anomaly
detection studies analyze the substituted event flows and detect
anomalies when the observed event flow deviates from normal
behavior.

P. He et al. [7] proposed a tree-based log pattern analysis
technique. They trained a log pattern tree by initially classi-
fying log messages based on the number of words and then
reclassifying them based on whether the first word matches.
The classified log messages were then measured for similarity
with existing log groups, and if a group with a similarity
above a certain threshold was found, the log message was
included in that group. Otherwise, a new group was created.
This approach has the advantage of analyzing and generating
patterns in real time. However, it has limitations since it relies
on the assumption that log messages representing the same
event have the same number of words.

Pattern analysis-based log analysis techniques have the
advantage of not requiring complex training processes and
demonstrating powerful performance with simple and intuitive
algorithms. However, as the volume of log messages increases
and the number of events becomes more diverse, the analysis
becomes complex, leading to potential performance limitations
in large systems with a significant amount of log messages.

Y. Liang et al. [8] proposed a technique to predict crit-
ical events based on logs by using machine learning. They
proposed a model for predicting whether critical events will
occur in the next interval based on a fixed observation period
of event logs collected from IBM supercomputers. The authors
did not apply complex techniques in log analysis; instead, they
simply transformed the log data into statistical data based on
rule-based approaches (e.g., counting the number of warning
events). The transformed data is then used as input for a
nearest neighbor search model, which predicts the occurrence
of critical log events for the next 12 hours with a performance
of F1 score of 0.7.

We also conducted research on failure prediction for virtual
machines (VMs) operating Virtualized Network Functions
(VNFs) based on log data [4]. To detect failure-related log
messages before the actual occurrence, we utilized both BERT
and Convolutional Neural Network (CNN) models. BERT
converts each word in the input log data into a numerical
vector, while CNN plays a role in capturing features related
to failures from a large volume of input data. When testing our
models with the collected data, we achieved an F1 score of

0.74. While the performance of this study may be somewhat
lower for practical application in real systems, it demonstrated
the potential of log analysis using BERT-based techniques.

Machine learning-based algorithms require significantly
higher computational resources compared to pattern-based al-
gorithms. However, they have the capability to detect abnormal
states that are difficult for pattern-based algorithms to identify.

B. BERT (Bidirectional Encoder Represents from Transform-
ers) [5]

To utilize log data in machine learning, it needs to be
transformed from natural language into numerical data. In
NLP, numerical vectors representing the meaning of the text
are referred to as ”embeddings”, and the models that generate
these embeddings are called language models. BERT is a
powerful language model developed by Google. It is a state-of-
the-art technique in NLP that has revolutionized various NLP
tasks. BERT is designed to capture the contextual relationships
between words in a sentence.

BERT consists of two main components: the BERT tok-
enizer and the BERT model. The tokenizer is responsible for
segmenting each word in the input sentence into sub-word
tokens. The BERT model takes the token IDs as input and
generates embedding vectors for each token.

The training process of BERT involves pre-training and fine-
tuning. In the pre-training phase, BERT is trained on large
amounts of unlabeled text from the internet to learn a general
language representation. In the fine-tuning phase, BERT is
further trained on specific downstream tasks. With this step,
BERT, despite being a pre-trained model publicly available,
can be fine-tuned to suit our specific task. We trained the
BERT model with other machine learning models via fine-
tuning, which allowed us to extract word embeddings suitable
for log analysis.

III. DESIGN AND IMPLEMENTATION

This section describes the design of the proposed anomaly
detection system. The proposed system consists of three steps:
1) a log parser that classifies log messages into event numbers,
2) an event number-based anomaly detection model, and 3)
a log predicting-based anomaly detection model. The second
step uses the results of the first step.

A. Log Parser

In the first step, the log parser analyzes patterns of log data
to extract events from each log message and convert them
into event numbers. The second step model includes a model
that has learned the event number sequence of the normal

Fig. 1. Log parser structure

2023 19th International Conference on Network and Service Management (CNSM)

state, allowing it to detect anomalies when the input event
number sequence deviates from normal. To train the model
on the normal states event sequence, we utilized FSM and
LSTM (Long Short-Term Memory). Lastly, in the third step,
the BERT-based ML model is utilized to receive the previous
log messages as input and predict the next log message. If the
predicted log message differs from the actual log message, it
triggers an anomaly.

The following provides detailed explanations of each step.
Each model, including the log parser, needs to undergo a
training phase using a large number of normal log data
before it can be utilized for anomaly detection. The following
explanations assume that the models have undergone pre-
training. The results of pre-training will be described in the
next chapter.

Figure 1 illustrates the structure of the log parser we used.
The log parser involves identifying identical patterns in the
log messages through log pattern analysis and utilizing an
improved algorithm based on the Minimum Edit Distance
algorithm to classify the generated patterns as events.

Initially, log messages undergo a pre-processing stage where
rule-based techniques are applied to remove numbers, dates,
file paths, location names, and interface names and add corre-
sponding tokens. For example, the log ”UI NETCONF CMD:
User ’root’ used NETCONF client to run command ’close-
session’.” is changed to ”ui netconf cmd user root used netconf
client to run command close session.” and the log ” Line
protocol on Interface Giga0/49, changed state to down” is
changed to ”line protocol on interface [interface] changed state
to down” in the pre-processing step.

Pre-processed log messages go through pattern analysis
based on word dictionaries. The word dictionaries can be
created based on the collected log data, where words that
appear three or more times in the pre-processed log data
are included in the dictionaries. Unconverted words in the
pre-processed log data are transformed into the ’[UNK]’
token, representing unknown words not present in the word
dictionaries. This process removes irrelevant content such as
process IDs. Through this process, the log messages are trans-
formed into log patterns, enabling the grouping of different log
messages into the same format.

The generated log patterns undergo event classification to
transform them into event numbers. In the event classification
process, a pre-generated event dictionary is utilized. The event
dictionary is created during the pre-training of the log parser
phase, where log patterns generated from the pre-training
process are classified into events based on the similarity
between sentences.

event_list=[]
for single_pattern in log_patterns

for single_event in event_list
edit_distance_sum = 0
for log_pattern in single_event

edit_distance_sum +=
edit_distance(log_pattern,

single_pattern)

if edit_distance_sum /
len(single_event) /
len(single_pattern) < 0.5
put single_pattern to single_event

end for
return event_list

Table 1. pseudo code of pattern classification algorithm

Table 1 is a pseudo code of the minimum edit distance
algorithm-based pattern classification algorithm. We improved
the minimum edit distance algorithm to use as a similarity
measurement. The minimum edit distance algorithm calculates
the minimum number of edits (deletions, insertions, and substi-
tutions) required for two sentences to match. When a new log
pattern is inputted, it is compared to all previously classified
log messages within the same event. If when comparing the
newly entered log pattern to all existing patterns within the
event, the average edit distance is less than half of the sentence
length, the new log pattern is included in that event.

Additionally, to classify log patterns that are similar but
have opposite meanings into different events (e.g. ’interface
[interface] down’ and ’interface [interface] up’), we modified
the minimum edit distance algorithm. In the general minimum
edit distance algorithm, the edit distance increases by 1 when
a word is transformed. However, by incorporating a publicly
available antonym dictionary from WordNet [9], when two
words to be modified are in an antonym relationship, the
edit distance is increased by 6. This approach allows for the
classification of log patterns that are similar but have opposite
meanings into different events.

Through the minimum edit distance-based pattern classifica-
tion algorithm, a large number of log patterns can be classified
into events. In the anomaly detection process, during the event
classification stage of the log parser, if the input log pattern is
found to be part of a classified event, the corresponding event
number is outputted. However, if the input log pattern does not
match any existing patterns, it can be classified as an anomaly,
indicating the detection of a previously unseen log pattern.
When an anomaly is detected, the network administrator can
review it. If it is determined to be a normal log message
that was not previously identified, the pattern classification
algorithm is used to check if it can be included in any existing
events. If it cannot be included in any existing events, a new
event is created, and the pattern is added to it.

B. Event Number-based model

Once the Log Parser converts each log message in the log
data into an event number, the log data is transformed into an
event number sequence. We hypothesized that if the model
learns the event number sequence representing the normal
state, it can detect event number sequences corresponding
to abnormal states. To train the model on the event number
sequence representing the normal state, we experimented with
two models: FSM and LSTM.

FSM is an automaton with a finite number of states, and it
can have only one state at a time. Each state can transition
to another state based on specific events, and an FSM is

2023 19th International Conference on Network and Service Management (CNSM)

Fig. 2. Normal event flow example in FSM

composed of states, transition states, and the set of conditions
that trigger the transition states.

To learn the normal event flow FSM, each event number is
defined as a state. Corresponding states are defined for each
event number. For example, Figure 2 represents a partial FSM
learned in this study and Event 113 corresponds to state q113.
The FSM receives a log event flow in a steady state and learns
each event number flow as a transition. We can find the event
flow sequence of 113 → 93 → 114 → 115 indicates a normal
flow. By examining the log messages corresponding to these
event numbers in the event dictionary, we can analyze that the
log flow shown in Figure 2 is a normal log.

We decided to judge the newly entered event flow as normal
if it is an event flow that can move within two times in the
FSM, considering that logs are generated by multiple systems
even in the same normal state. That is if the input event flow
cannot move within two times in the FSM, the FSM model
detects an abnormal state. Similar to log parser-based anomaly
detection, if the network administrator responds to an anomaly
alert as normal, the FSM can be expanded by adding the
corresponding transition, thereby expanding the database for
normal states. Since there are 209 states, the complete FSM
diagram is too extensive to be included in this paper, but it
can be found in the README of our repository [10].

Figure 3 illustrates the structure of the machine learning
model to predict the next event number which consists of a
simple model combining an LSTM layer and a fully connected

Fig. 3. LSTM model structure

layer. LSTM is a well-known machine learning algorithm
that is particularly suitable for analyzing sequential data.
It performs well in tasks that involve predicting the next
sequence when data is inputted sequentially. The proposed
machine learning model in this study takes the last n event
numbers as input. In the output layer of the LSTM, a fully
connected layer is added, connecting all neurons to perform
event number classification. The output of this layer generates
a k-dimensional vector, where k represents the total number
of events. For each event number, the model calculates the
probability of the next log message belonging to that event.
To ensure that the probabilities sum up to 1, the output passes
through a softmax layer. Similar to FSM, log data does not
consistently generate the same log messages even in a normal
state, so instead of considering only the highest probability
event number predicted by the LSTM model, we conducted
anomaly detection based on a number of top predicted event
numbers. Anomaly detection occurs when consecutive incom-
ing event numbers differ from the predicted event numbers.

We utilized both FSM and LSTM models for event-based
anomaly detection.

C. BERT-LSTM based model

In addition to pattern analysis, we also conducted anomaly
detection using a non-pattern-based approach. BERT generates
a sentence vector by grasping the context of each word within
a sentence in both directions, and LSTM learns the flow of
the generated sentence vector. Since the transformed sentence
vectors represent sequential data, similar to event flows, we
trained an LSTM model using these vectors.

Figure 4 illustrates the flowchart of the BERT-LSTM-based
process for predicting the next log message and performing
anomaly detection. In this process, lines of consecutive log
sentences are used as the input to the model. Based on this
input, the model predicts the next log message and determines

Fig. 4. BERT-LSTM log prediction model structure

2023 19th International Conference on Network and Service Management (CNSM)

whether it is normal or anomalous by comparing its similarity
to the actual next log message.

The BERT model converts each word to embeds, but also
generates sentence vectors. We have trained the machine
learning model to predict the next sentence vector by taking
this sentence vector as input, rather than predicting the next
sentence by taking the sentence as input. The LSTM calculates
the next sentence vector, and we can obtain the actual next
sentence vector by inputting the actual next sentence into
the BERT model. We measure the cosine similarity between
the two sentence vectors for similarity comparison. If the
calculated cosine similarity is below a predefined threshold,
it indicates that the predicted sentence deviates significantly
from the actual log message, suggesting an abnormal state.

The parts highlighted in blue in Figure 4 represent the
segments where back-propagation occurs, indicating the pa-
rameter modification during the training process. Although
the BERT model is pre-trained and publicly available, back-
propagation allows for parameter adjustments to generate
vectors suitable for log analysis.

IV. EXPERIMENTS AND EVALUATION

A. Data Collection and Log Parser

To validate the proposed technique, we collected log data
and conducted performance evaluation experiments. Figure 5
represents the testbed used for log collection in this study.
The testbed consisted of clients that requested HTTP traffic
to a web server, and the L2 switch from Ubiquitous and the
L3 switch from Juniper was configured to collect logs from
both switches. We considered the collection of anomaly state
data, so we connected Client 1 directly to the L3 switch to
further overload the L3 switch. And we collected logs from
all switches with rsyslog [11].

We used only normal logs to train our models. Later, we
collected abnormal logs as test data. As a result, a total of
741,387 lines of normal logs were collected. Based on this
data, we created a word dictionary containing 690 words.
Using the word dictionary, we generated 658 log patterns. The
following are the top log patterns along with their occurrence
frequencies.

Fig. 5. Log collection testbed

• adt set pwm ic id pwm [number] : 260,268
• fan set speed slot fanid speed pwm [number] : 260,268
• br leaf received packet on em with own address as source

address addr e d vlan : 24,200
• authentication from for admin success : 13,779
• started session of user root : 13,271
Among the log patterns, the ’adt ∼’ log pattern and ’fan

set ∼’ log pattern occurred most frequently and accounted for
more than half of the entire log dataset. However, these logs,
which indicate the fan running too fast, were excluded from the
training and experiments because they resulted in overly sim-
plistic event flows and excessively high performance. (Since
more than half are two types of log messages, performance
increases rapidly when the corresponding predictive model
predicts as that log messages.)

As a result, out of the 656 log patterns, they were classified
into 209 events during the event classification process. Table 2
is part of the classified patterns. As intended, it can be seen that
logs representing similar content are classified into the same
event. The log parser performs the function of converting each
input log message into an event number ranging from 1 to 209.

[11]
pvidb attribute ifinfo mru support not

present in db
pvidb attribute ifinfo interface [interface]

not present in db
pvidb attribute ifinfo ifinouterrors stats

not present in db

[12]
interface [interface] changed state to up
line protocol on interface [interface]

changed state to up
line protocol on interface [interface]

channel changed state to up

Table 2. sample pattern and logs

B. Log Event Prediction

We solely conducted individual performance evaluations for
the LSTM model since FSM is not designed for predicting
the next log event. However, we utilized the FSM in anomaly
detection performance evaluation.

Based on the generated log parser, the existing data of
741,387 lines of log messages can be transformed into event
flow data. Based on this data, we created input-output pairs
for machine learning, where the input consists of the recent n
event numbers and the output is the next event number. We
split the generated event flow data into training and test data
sets in an 8:2 ratio to train the machine learning models and
measure their performance based on how well they predict the
next event in a normal state.

We measured the performance and training time according
to the number of event numbers used as input. For accuracy
measurement, we considered the prediction to be correct if the
actual event number was among the top 5 event numbers with
the highest predicted probabilities. In the anomaly detection

2023 19th International Conference on Network and Service Management (CNSM)

Fig. 6. Event number prediction results

Fig. 7. Log prediction results

phase, we also compare the real event number to the top 5
event numbers.

Figure 6 represents the experimental results. We conducted
performance comparison experiments by varying the number
of input events in LSTM. We performed 6 experiments for
each input size, and for accuracy, we indicated the error
bars based on the maximum and minimum values, shown in
blue, and the average training time is displayed in orange.
The experimental results show that as the number of inputs
increases, the overall performance generally improves, but the
training time also increases rapidly. For example, when using
40 inputs, the average training time is 1,197 minutes, which
is approximately 20 hours. Additionally, in the case of using
40 inputs, there are instances where the accuracy is less than
the result from 20 inputs. This can be attributed to overfitting,
where using too many inputs leads to a decrease in accuracy.
Therefore, we used 20 as the input pattern number in our
anomaly detection system.

C. Log Prediction

In measuring the performance of the model, how similar the
predicted sentence vector and the actual sentence vector were
measured as cosine similarity, and when the cosine similarity
was 0.9995 or higher, we judged as correctly predicted. Since
cosine similarity was used as the criterion, there was a problem
that the BERT model tended to generate similar vectors for
all log messages when trained repeatedly, requiring a higher
threshold.

Figure 7 represents the experimental results. Despite setting
a high threshold, it can be observed that the model achieves

100% accuracy on test data from around 60 epochs onwards.
However, beyond this threshold, it can be concluded that
the model is not making accurate predictions, but rather the
BERT model is generating similar vectors for all sentences.
Recognizing this issue, we decided to use the model around 45
epochs, as it was deemed to have already undergone sufficient
training based on the analysis of the loss graph. This model
achieves an accuracy of 97.5%.

D. Anomaly Detection System

Based on the models we have built, we constructed a 3-step
anomaly detection system. Figure 8 illustrates the anomaly
detection process in this system. 3 Steps proceed concurrently,
and if an anomaly is detected at any stage, it can be terminated
early. This allows the three models to be complementary and
to create a system with high efficiency and performance. In
addition, each model can also easily learn new forms of log
messages, which means our models are not vendor-specific.
In the first step, when a log message is input, the log parser
extracts patterns from the log message. In this step, if an input
log message does not exist in the pattern dictionary, it can be
detected as an anomaly. If the log message exists in the pattern
dictionary, the log parser can convert the log message into an
event number.

In the second step, the converted event number is then
passed to the event-based anomaly detection model. This
model consists FSM-based model and an LSTM-based model.
If either of the models determines that the input event num-
ber sequence is not normal, it is flagged as an anomaly.
In the FSM-based model, if the following event number is
unreachable from the previous event number in FSM, it is
considered an anomaly. In the LSTM model, if the predicted
event numbers are consistently incorrect in sequence, it is
detected as an anomaly. The reason for requiring ”consecutive”
incorrect predictions is that although our developed models
demonstrate a high average accuracy of 93.5%, this still
indicates that out of 100 log messages, approximately 6.5 log
messages are predicted inaccurately. Since the actual number
of log messages generated in a day exceeds 10,000 lines,

Fig. 8. 3-step Anomaly detection system structure

2023 19th International Conference on Network and Service Management (CNSM)

there is a possibility of more than 650 false anomaly alarms
occurring in a day even in the normal state. Therefore, we set
the criterion for detecting an anomaly as the LSTM model
detecting consecutive anomalies at least 7 times, based on
multiple experimental results.

Finally, in the third step, the BERT-LSTM model predicts
the next log message. The BERT-LSTM model predicts the
next sentence vector, and if the cosine similarity between the
predicted vector and the actual input is low, an anomaly alarm
will occur.

In all three steps, if the network administrator confirms
that a log message identified as abnormal by the anomaly
detection system is actually a normal log message, it can be
incorporated into the model. Through this process, our system
has the advantage of being able to increase precision in real-
time.

To validate the performance of our proposed anomaly
detection system, we conducted experiments using a dataset
that includes both normal and abnormal data. The normal logs
used in the experiments were collected from our testbed (Fig.
5), and each log data represents a day’s worth of log mes-
sages. To collect abnormal logs, we overloaded the network
switches with DoS [12] and Portscan attacks generated from
clients to web servers in the testbed. After maintaining the
overload for approximately one week, we collected switch
logs in the overloaded state from each network switch for two
weeks. Additionally, real abnormal log data from the Samsung
testbed, which occurred when switches terminated abnormally
during production, was also included. A total of 18 normal
log datasets and 19 abnormal log datasets were used in the
experiments. In the experiments, when a day’s worth of log
data was inputted into the anomaly detection system and any
step detected an anomaly in any part of the data, we considered
our system to have detected an anomaly in the corresponding
data.

The experimental results showed an accuracy of 81.08%,
an F1 score of 83.72%, a precision of 75%, and a recall
of 94.74%. As tagging abnormal states as normal is more
critical than tagging normal states as abnormal in the anomaly
detection system, recall is more important than precision and
our system shows a high recall.

V. CONCLUSION AND FUTURE WORK

In this work, we investigated a technique for detecting
abnormal states in network switch equipment using log pattern
analysis and log prediction. Experimental results using col-
lected switch log data demonstrated that the proposed anomaly
detection system achieved an F1 score of 83.72%. The system
exhibited a high recall of 94.74%, and any misclassified cases
can be promptly addressed through additional model training,
so it has potential for practical application. In addition, our
model learns and uses logs in a normal state, so it can be
used through learning on switches other than those we used.

However, the machine learning models proposed in this
study require significant training time, necessitating high-
performance equipment for practical deployment. Thus, future

research is planned to explore more efficient algorithms to re-
place the existing models. Additionally, we identified the issue
of BERT generating similar vectors for all log messages during
the experiments, so algorithmic improvements to mitigate this
problem are necessitated.

All the code used in this study is publicly available on
GitHub [10], providing insights into the implementation pro-
cess of these models. Additionally, although not included
in this paper, the diagrams of FSM constructed using the
collected data can be found in the README file of the
corresponding GitHub repository.

ACKNOWLEDGMENT

This work was supported by Korea Evaluation Institute
Of Industrial Technology (KEIT) grant funded by the Korea
Government (MOTIE) [(No.2009633) Development of AI
network traffic controlling system based on SDN for ultra-
low latency network service], Samsung Electronics Co., Ltd
and Smart HealthCare Program funded by the Korean National
Police Agency(KNPA, Korea) [Project Name: Development of
an Intelligent Big Data Integrated Platform for Police Officers’
Personalized Healthcare / Project Number: 220222M01].

REFERENCES

[1] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi,
Nashid Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. A
comprehensive survey on machine learning for networking: evolution,
applications and research opportunities. Journal of Internet Services and
Applications, 9(1):1–99, 2018.

[2] Doyoung Lee, Jae-Hyoung Yoo, and James Won-Ki Hong. Deep q-
networks based auto-scaling for service function chaining. In 2020 16th
International Conference on Network and Service Management (CNSM),
pages 1–9. IEEE, 2020.

[3] Seyeon Jeong, Nguyen Van Tu, Jae-Hyoung Yoo, and James Won-Ki
Hong. Proactive live migration for virtual network functions using
machine learning. In 2021 17th International Conference on Network
and Service Management (CNSM), pages 335–339. IEEE, 2021.

[4] Sukhyun Nam, Jae-Hyoung Yoo, and James Won-Ki Hong. Vm failure
prediction with log analysis using bert-cnn model. In 2022 18th
International Conference on Network and Service Management (CNSM),
pages 331–337. IEEE, 2022.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience
report: System log analysis for anomaly detection. In 2016 IEEE 27th
international symposium on software reliability engineering (ISSRE),
pages 207–218. IEEE, 2016.

[7] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain:
An online log parsing approach with fixed depth tree. In 2017 IEEE
international conference on web services (ICWS), pages 33–40. IEEE,
2017.

[8] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo.
Failure prediction in ibm bluegene/l event logs. In Seventh IEEE
International Conference on Data Mining (ICDM 2007), pages 583–
588. IEEE, 2007.

[9] Princeton University. WordNet. https://wordnet.princeton.edu/, 2005.
[Online; accessed 9-July-2023].

[10] Sukhyun Nam. LogEventParsing. https://github.com/obiwan96/
LogEventParsing, 2023. [Online; accessed 9-July-2023].

[11] Adiscon GmbH. The rocket-fast Syslog Server. https://www.rsyslog.
com/. [Online; accessed 09-July-2023].

[12] Salvatore Sanfilippo. hping3. https://linux.die.net/man/8/hping3, 2006.
[Online; accessed 09-July-2023].

2023 19th International Conference on Network and Service Management (CNSM)

