
Scalable and Efficient Link Layer
Topology Discovery for Autonomic Networks

Paul Seehofer, Roland Bless, Hendrik Mahrt, Martina Zitterbart
Institute of Telematics, Karlsruhe Institute of Technology

firstname.lastname@kit.edu

Abstract—Increasingly flexible and dynamic network infras-
tructures, due to softwarization, virtualization and increasing
mobility (5G and 6G networks), challenge network management.
To cope with the increasing dynamics and complexity, recent
research focuses on autonomic network management solutions
that do not require human intervention. However, autonomic net-
work management solutions often require up-to-date topological
information during network bootstrapping or to quickly react to
dynamic events. Therefore, a fast, efficient, and scalable link-layer
topology discovery, providing autonomic network management
solutions with topological information in highly dynamic and
large-scale networks, is required. This paper introduces KeLLy
an efficient, scalable link layer topology discovery algorithm
for large-scale networks (evaluated with up to 100 000 nodes).
KeLLy is fast, discovering large topologies within a few seconds,
guarantees discovery of all nodes and all links while inducing
low, predictable overhead by querying only a subset (generally
below 4 percent) of nodes. It achieves these properties regardless
of the type of underlying topology.

Index Terms—topology discovery, network management, auto-
nomic networks

I. INTRODUCTION

The higher flexibility in emerging network infrastructures
leads to more dynamically changing networks. Software-based
nodes may be deployed or removed on demand leading, e.g.,
to frequent changes in the network topology. Moreover, in 5G
and future 6G networks the number of services and connected
devices is increasing as well as the number and types of mobile
devices. For instance, drones and satellites are considered to
be part of the core network, which will lead to increased
dynamics. Furthermore, nomadic network partitions may split
from the rest of the network and rejoin later at a different
location. Consequently, topologies change more frequently and
networks may behave (partly) more in an ad-hoc manner.

Such high flexibility and dynamics, however, make network
management increasingly challenging. Therefore, autonomic
management solutions that can operate without human inter-
vention (zero-config) during bootstrapping or after unexpected,
dynamic network events, are becoming increasingly attrac-
tive [1] [2]. These autonomic management solutions often
require topological information to perform orchestration or
management tasks, e.g., to make service placement decisions.
Therefore, a topology discovery algorithm is required that
provides this information by discovering the network’s current
link-layer topology. Such an algorithm needs to be fast and

The authors acknowledge the financial support by the German Federal
Ministry of Education and Research (BMBF) in the project “Open6GHub”
(grant number 16KISK010).

efficient to allow quick adaptations after dynamic events. It
also needs to be scalable to support large-scale scenarios
with hundreds of thousands of nodes as, e.g., envisioned in
future 6G network infrastructures. Furthermore, the topology
discovery algorithm itself should be autonomic, i.e., it should
not depend on any human intervention beforehand. This is
especially relevant when bootstrapping large-scale softwarized
networks. There are a variety of state-of-the-art topology dis-
covery solutions, for SDN, using link-state routing protocols
(e.g., OSPF), management protocols (e.g., SNMP) or packet
probes (e.g., ICMP, UDP). All fit different use-cases but none
fit the particular combination of requirements in large-scale
autonomic networks: scalability, efficiency and autonomy (see
section II for details).

Another key requirement for the manageability of future
network infrastructures is robust, zero-config control plane
connectivity, as identified in [3]. In this space IETF’s ANIMA
group has worked on autonomic control planes [4] [5], that
provide control plane connectivity in a zero-config manner.
With KIRA [6] we recently presented an alternative approach,
which employs a novel zero-config ID-based routing architec-
ture. We found that its overlay-like structure makes it straight-
forward to design a lightweight topology discovery algorithm,
that reuses its distributed routing state information.

We introduce the algorithm KeLLy (KIRA-enabled Link-
Layer Discovery), which is a scalable and efficient link-layer
topology discovery algorithm for autonomic networks using
KIRA. KeLLy is designed with large networks in mind: It
is highly scalable, discovering large network infrastructures
(evaluated with up to 100 000 nodes) while inducing low
communication overhead by querying only a small subset
(generally less than 4%) of nodes. KeLLy is also fast, dis-
covering large topologies in a matter of seconds. In its most
basic form, KeLLy guarantees to discover all nodes and a high
percentage of the links (over 80%) of a topology. Using the
zero-config KIRA also makes KeLLy itself work in zero-config
environments.

This contribution completes earlier preliminary work in [7]
by greatly improving the guarantees: It introduces and eval-
uates an additional link calculation scheme that allows to
discover 100% of links in addition to all nodes, therefore
completing the discovered topology. Furthermore, this work
includes additional extensive evaluations featuring different
topologies and additional metrics like the discovery time.
Moreover, a greatly extended related work section highlights
differences and improvements over related approaches.

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

Approach Scalability Efficiency Autonomy References

SDN [8]–[10]
Link-State Routing [11], [12]

Probing [13], [14]
SNMP [15]
BRSKI [16]

KeLLy

TABLE I: Comparison of Approaches in Related Work

II. RELATED WORK

This section gives an overview of related work and evaluates
along important requirements, for large-scale autonomic net-
works: scalability, efficiency, and autonomy (also see Table I).

Software-defined Networking (SDN) controllers [8] dis-
cover the topology, to maintain their global view, by injecting
LLDP (Link-Layer Discovery Protocol) packets into switches
which are then sent back to the controller by neighboring SDN
switches that receive them. This way the controller can detect
each link individually. Some improvements are presented in
[9], [10]. However, at least two messages need to be sent for
each link in the network and need to be handled by the con-
troller. Furthermore, in large SDN networks a single controller
is not enough due to resource limitations and latency between
controller and switch. Therefore, in large networks manual
division into SDN domains is necessary [17] posing a cyclic
dependency: the approach requires the network to be divided
into SDN domains, but the division itself requires topological
information already. The approach therefore is neither zero-
config nor autonomic, in addition to requiring pre-existing
control network connectivity, between the controller and its
switches, that also needs to be configured autonomically.
Furthermore, only the controller can discover the topology.

Another often applied approach is to reuse information
exchanged by link state routing protocols (e.g., OSPFv3, IS-
IS). Routers exchange link state advertisements (LSAs) that
include information about the neighbors they are connected
to. Each router discovers the complete network topology and
uses it to calculate shortest paths to all other routers. Several
topology discovery solutions have been proposed using the
information exchanged in LSAs to discover the same topology
as the router themselves [11], [12]. These solutions are very
efficient as they are passive actors and do not induce any
communication overhead. The limitations of this approach
are inherited by OSPF: in large-scale networks (more than
a few hundred routers) OSPF, like SDN, requires division into
routing areas which are generally defined by human operators
using their topological knowledge, which is not autonomic and
practically infeasible for the large-scale and dynamic nature of
future network infrastructures. Even though there are solutions
allowing link-state routing protocols to be zero-config they are
limited to small simple deployments [18]. There are similar
approaches using IS-IS suffering from the same limitations.

More general approaches to topology discovery use tools
like traceroute or information from control plane or man-
agement applications. For example, topology discovery ap-
proaches used for Internet measurements mainly build upon

the usage of ICMP through tools like ping and traceroute
or UDP probes [14] [13]. In general, these have high over-
head in relation to the network size w.r.t. probe count. For
instance, Diamond-Miner [13] sent more than 6 billion probes
to discover 1 million nodes and 3 million links. Furthermore,
because they require pre-existing connectivity their autonomy
is dependent on the autonomy of the routing protocol in use.
Furthermore, these approaches do not make any guarantees in
terms of what percentage of nodes or links in a network are
discovered. Another challenge to these approaches is that the
results also depend on the vantage point the probes are sent
from. Most such approaches therefore have to deploy multiple
nodes in the network, from which probes can be sent.

Furthermore, there are approaches using the network man-
agement protocol SNMP. The authors of [15] present an ap-
proach using SNMP to query information about each network
device and its interfaces from a central node. Same as the
probing-based approaches this also requires pre-existing con-
nectivity that needs to be established autonomically. In terms
of efficiency these approaches need to query the management
information in each node once.

To our knowledge [16] is the only related work also looking
into topology discovery specifically for autonomic networks. It
presents different solutions, based on employing a distributed
clustering approach, or using the secure bootstrapping protocol
BRSKI [19] to transport the list of neighbors of a newly
joined node towards a single central registrar which keeps an
up to date map. The authors evaluate their solutions in small
topologies (10 nodes). A scalability analysis and experiments
in larger topologies are not discussed. All presented solutions
send more messages than nodes in the network.

All aforementioned solutions only fulfill parts of the require-
ments (the requirements relevant to the respective use case)
while having limitations in others. KeLLy’s main contribution
is being strong on all of them, i.e., it is scalable, discovering
large-scale networks and efficient, contacting only 4% of
nodes, and autonomic, i.e., it does not depend on any prior
human intervention of the network. This set of characteristics
makes KeLLy the perfect fit for providing topological informa-
tion in future large-scale, autonomic networks. One potential
use case for KeLLy in such networks is to break up the cyclic
dependency mentioned above: an autonomic management so-
lution can use the discovered link-layer topology to calculate
and configure routing areas for link-state routing protocols to
enable efficient data plane routing.

III. KELLY: BASIC CONCEPT

KeLLy, and other link-layer topology discovery algorithms,
try to discover network devices and their interconnections: For
a given link-layer topology, represented by graph G := (V,E)
where V denotes the set of nodes and E is the set of links,
they try to find a graph G′ := (V ′, E′) with nodes V ′ ⊆ V
and edges E′ ⊆ E resembling G as closely as possible.

KeLLy is a topology discovery algorithm that uses dis-
tributed information stored in routing tables of network de-
vices. The information stored in a node v represents a partial

2023 19th International Conference on Network and Service Management (CNSM)

view of the physical topology, from which a sub-graph R(v)
of G can be derived. By querying the routing tables of a
set of nodes Q ⊆ V and merging their partial views a
graph approximating the topology of the real network can be
obtained: G′ :=

⋃
v∈Q R(v). To do so, KeLLy is based on the

routing architecture KIRA. The following briefly introduce its
key characteristics that allow for KeLLy’s efficient design.

A. KIRA
KIRA provides a zero-config routing architecture for au-

tonomous control plane connectivity. Its design features,
(1) topology-independent, randomly generated IDs (called
NodeIDs) in order to enable node mobility and multi-homing
with stable addresses, (2) a scalable, selective update propaga-
tion mechanism achieving fast recovery of connectivity even
during severe outages that affect many links simultaneously
and (3) it does not require any node-level configuration pre-
venting human-based network configuration errors impacting
control plane connectivity.

On startup each KIRA node randomly generates its own
NodeID from a large (112-bit) ID space. Nodes are then
organized in an ID-based overlay, which is inspired by Kadem-
lia [20], using their NodeID, in which they first discover their
ID-based neighbors. For routing, KIRA uses this ID-based
overlay to discover paths in the link-layer topology. Most
traditional overlay networks, such as Kademlia, are built on
top of IP and expect universal connectivity between all nodes
to be provided already. In contrast to that, KIRA, like other
network layer routing protocols (e.g., OSPF, IS-IS), provides
this universal connectivity between all nodes itself and does
not depend on a lower layer for that. To bridge the gap
between the expectation of universal connectivity in overlay
networks and the local point-to-point connectivity provided by
link-layer protocols, KIRA stores link-layer source routes for
each routing table entry. In order to achieve high scalability,
KIRA stores only a small amount of routing table entries
(also called contacts) in each node. The size of KIRA’s
routing tables scale only logarithmically in terms of number
of entries with network size, while keeping packet stretch
low. Small routing tables are especially important for resource
constrained devices. These characteristics allow KIRA to be
used as an autonomic control plane for large-scale networks
(100 000+ nodes), providing robust connectivity to control
plane applications. An autonomic control plane, such as KIRA,
providing robust zero-config control plane connectivity is a
necessary foundation for fully autonomic networks and higher-
level autonomic behavior. The connectivity KIRA provides
does not replace efficient data plane routing protocols like
OSPF, but may be used to configure it in a zero-config manner.

KIRA’s link-layer source routes and its overlay-like struc-
ture allow KeLLy to discover all nodes and the majority of
their links without having to discover every link individually,
thereby reducing overhead.

B. Applying KeLLy to KIRA
The structure and contents of KIRA’s routing tables enable a

straightforward derivation of the sub-graph R(v) of a node v:

Y
X

contacts intermediary hops

Fig. 1: Topology discovered by two nodes X and Y . Common
components R(X) ∩R(Y) are marked by red circles.

R(v) consists of the node v, contacts of v, as well as all links
and nodes along the link-layer source routing paths. Figure 1
shows two exemplary sub-graphs R(X) and R(Y) from nodes
X and Y . When querying multiple nodes, their resulting sub-
graphs often overlap, either because the nodes have shared
contacts or the source routing paths have intersections, i.e.,
common nodes and links. Querying routing tables of other
nodes is a key concept of KIRA as it is used to discover new
contacts. KIRA’s FindNodeRequest message allows searching
for nodes close to some destination ID by recursively routing
closer in the ID space with each overlay hop, until it reaches
the node closest to the queried ID. The same mechanism can
be used for the routing table queries required for KeLLy. This
enables queries targeting a section of the ID space instead of
existing individual nodes that need to be known beforehand.

Using this routing table querying concept of KIRA the
main remaining challenge is that a node using KeLLy must
determine when it has discovered all nodes in the network. The
trivial solution of querying every node in the network would
negate the advantage of the additional information gathered
from the source routes in the routing tables. Therefore, an
exit condition identifying when all nodes have been discovered
while maintaining low overhead is essential.

C. KIRA Routing Tables

The structure of KIRA’s routing tables is essential for
KeLLy’s design. KIRA inherits the basic structure of its routing
table from Kademlia [20]. This structure implies the important
invariant that each node knows how to reach its ID-wise closest
neighbors. These neighbors are determined using the XOR
metric d(X,Y) = X ⊕ Y as distance between two NodeIDs
X and Y . Like in Kademlia, a KIRA node stores routing table
entries for known nodes in a list of k-buckets each storing up to
k contacts at most. Each bucket covers a specific range in the
ID space. This bucket range is defined as follows: the bucket
with index i contains contacts with NodeIDs having a longest
common prefix of length i with the node’s own ID. The bucket
range of the first bucket therefore includes all NodeIDs with
a different leading bit than the node’s own ID. The respective
range in the ID space includes half of all possible IDs. With
each consecutive bucket (i.e., increasing i) the size of the
corresponding range in the ID space halves, as they are defined
by a longer longest common prefix, fixing more leading bits
to be equal to the node’s own ID. Consequently, each routing
table comprises O(log n) contacts at most.

2023 19th International Conference on Network and Service Management (CNSM)

0 112-bit ID space 2112 − 1
A

0 → [00... , 01...]
1 → [110... , 111...]

2 → [1010... , 1011...]3[10000... , 10011...]←
bucketscontacts

bucket range

i lcp |range|
0 0 2111

1 1 2110

2 2 2109

3 [3, 112) 2109

Fig. 2: A node A (with IDA = 10000...) with its location in the ID space and its routing table. The table on the right shows the bucket
index i, the longest common prefix (lcp) and the size of the range of each bucket. Common prefix with A in green; first different bit in red.

Figure 2 shows an example detailing the structure of the
routing table of a node A with four buckets. At the top it shows
the ID space as a line with nodes (including A) placed at the
location of their NodeID on that line. The bucket range, shown
next to each bucket, indicates the range of IDs of all potential
contacts in that range. The range of the first bucket (index 0)
spans half of the ID space. Because of the limited bucket space
(here k = 5) only a selection of the nodes in this range can be
stored as contacts. In the example, this is the case for the first
two buckets. The last bucket in the routing table is special: its
covered ID space range is defined by the length of the longest
common prefix being equal or larger (instead of a specific
length) than the bucket’s index. On the right of the figure a
table shows the properties of each bucket. The list of buckets
grows dynamically depending on the number of nodes in the
network: if the last bucket (storing ID-wise closest contacts)
is full and a new contact falls into the respective range, the
list is extended by a new k-bucket. This means that the prior
last bucket range is effectively split into two ranges (halving
its original range) and some of its contacts will move to the
new last bucket. This ensures that contacts in the direct ID-
based neighborhood are not replaced, upholding the invariant
that each node knows how to reach its ID-wise neighbors.

D. Bucket Completeness
If a bucket contains all nodes with IDs in its bucket range

that are actually present in the network it is complete. In a
converged network state, this is the case when there exist fewer
than k nodes with their NodeIDs in the respective ranges.
Due to each node generating a uniformly distributed random
NodeID at startup, all NodeIDs are spread evenly across the
whole ID space. Therefore, buckets with a large bucket range
(i.e., the first buckets) also have a large share of the nodes
to select k contacts from and are therefore rarely complete.
Because of the dynamically growing bucket list, the last bucket
is always complete: if a new contact should be entered into an
already full last bucket, the bucket list is extended by another
bucket having a smaller bucket range and therefore a lower
number of nodes as potential contacts. Besides the last bucket,
in a converged network state, other non-full buckets (fewer
than k contacts), are also complete [21]. In such a bucket no
contact was replaced, as there was enough space for all of
them. On average the second to last bucket will be non-full,
because its bucket range has the same size as the last bucket,
on average containing the same number of contacts.

IV. KELLY DESIGN

One of the main concepts in KeLLy’s design are discovery
ranges in the ID space, that are defined by the complete

buckets in each node’s routing table. Because the range of
a complete bucket contains only the nodes stored as contacts
in that bucket this ID-range is regarded as discovered by that
bucket. The discovery range DR(v) of a node v is defined by
the bucket ranges of all complete buckets in its routing table
combined. Because the discovery range is generally defined
by the last two buckets of a node’s routing table, with bucket
ranges containing the ID-based neighborhood of the node, it
encloses a range around the node’s own ID. Furthermore, the
size of the discovery range |DR(v)| depends on the depth of
the routing table: the larger the index of the last bucket the
smaller the bucket range. The number of buckets in the nodes’
routing tables, and therefore also the size of their discovery
range, is about the same for all nodes in a network, due to the
uniform distribution of NodeIDs. Figure 3 shows a section
of the ID space with nodes and their respective discovery
ranges. The discovery ranges of nodes ID-wise close to each
other are identical (e.g., A & B), because they all share the
same common prefix and therefore the same complete buckets
in their routing tables. Discovery ranges can theoretically
completely overlap other smaller discovery ranges (C − F),
but according to our experiments that occurs very rarely,
because it requires strongly unevenly distributed NodeIDs in
that range. Nodes ID-wise a bit further away (e.g., A & C) have
consecutive discovery ranges. This has two advantages, first,
it does not matter which node in each discovery range is used
and second no ID-range needs to be discovered redundantly.

A. Exit Condition

KeLLy uses discovery ranges to define an exit condition
when finding a spanning sub-graph of the network topology.
If all possible IDs (within the respective ID space) are covered
by the discovery range of one of the queried nodes then all
nodes are guaranteed to be discovered in one of them. To
achieve that, each distinct discovery range needs to be queried
at least once. So in order to determine whether all nodes have
been found, one simply keeps track of the discovery ranges in
the overlay ID space and keeps querying undiscovered ranges
of the ID space until the whole ID space has been covered.

B. Query Count Lower-bound

As the efficiency of the discovery algorithm is important
the number of queried nodes |Q| for discovering all nodes
should be kept to a minimum. A first estimation of the lower-
bound can be made as follows: All nodes are discovered if
each node appears at least once in the discovery range of a
queried node. The maximal number of nodes in a discovery
range depends on the bucket size k. Each complete bucket can

2023 19th International Conference on Network and Service Management (CNSM)

ID prefix

discovery ranges

1000
...

1001
...

1010
...

1011
...

1100
...

1101
...qi qi+1 qi+2

A B C D E F G H

Fig. 3: A section of the ID space with nodes placed according to their NodeID. For selected nodes (A-H) their respective discovery ranges
are shown. Queries qi in the ID space and the respective responding nodes with their discovery ranges are colored green.

0 112-bit ID space 2112 − 1

1 2 3 4

Fig. 4: Discovery ranges covering parts of the ID space of an in
progress KeLLy algorithm with four ID Space Walks (1–4) in parallel.

contain up to k− 1 nodes. With the two last buckets defining
the discovery range one can discover a maximum of 2k − 2
nodes per query. If all discovery ranges contain this number
of nodes the lower limit for the number queries |Q| in relation
to the overall number of nodes n = |V | in the network is:

query ratio =
|Q|
n

=
n

2k − 2
· 1
n
=

1

2k − 2
≈ Ω(

1

2k
) (1)

The query ratio depends on k only and not on n. An example:
to find all nodes in network with n = 10 000 nodes and a
bucket size of k = 20, at least 250 or 2.5% of nodes need to
be queried. Under the assumption that the last two buckets are
about half full directly after a bucket split (see section III-C)
a query ratio between 2.5% and 5% is a realistic estimation.

C. ID Space Walk

Now a sequential algorithm can be built using a structured
approach of walking across the ID space: starting from an
ID a, which is queried first, the approach waits for the query
response to return the routing table information of the node
closest to the queried ID and calculates its discovery range.
This is achieved by analyzing which buckets were not full at
the queried node and combining their respective bucket ranges
into a single discovery range [x, y]. Next, it queries the next
ID (y + 1) following the end of the discovery range. This is
repeated until the ID space walk reaches an ID b ≤ y. At
this point all nodes in the range [a, b] have been discovered.
This algorithm minimizes the number of required queries as
no discovery range is queried twice. This mechanism is also
depicted in fig. 3 for a section of the ID space. The first query
qi is routed to node A, the next node according to the XOR
metric, which returns its complete routing table (with O(log n)
entries). The next query (qi+1) is placed consecutively after
the corresponding discovery range and is routed to node C.
qi+2 queries the next consecutive ID, which is routed to node
G. Node G is closer, by the XOR metric than F , as it has
a longer common prefix with the query ID and therefore a
smaller distance based on the XOR metric.

This algorithm can be run in parallel over disjoint sections
of the ID space that can be determined by slicing it (see
Figure 4). For maximum parallelization each section should
require only as few as possible sequential queries. On the other
hand if the sections are too small, i.e. smaller than the discov-
ery ranges, multiple queries will return redundant information.

To prevent that, the discovering node can estimate the required
amount of sections by calculating the discovery range of its
own routing table and rounding down the number of sections
to the next power of two. This way each section only requires
an ID space walk with a few sequential queries. Using this
estimation the discovering node can run an independent ID
space walk for each section. When all of them reach the end of
their respective sections the whole ID space has been covered
by discovery ranges and therefore all nodes are discovered.

D. Completing the Link Set
With the previously presented ID Space Walk algorithm

KeLLy can guarantee to discover all nodes (i.e., V ′ = V), but it
cannot guarantee that all links are discovered. If the discovered
link set E′ is not yet complete, a complementary link cal-
culation algorithm can calculate undiscovered links by using
minor enhancements to KIRA. This link calculation algorithm
requires knowledge of two parameters for each node v: the
node degree DG(v) (number of directly connected nodes, the
physical neighbors – PNs) and a physical neighbor ID sum
Σ⊕PNG(v). The PN ID sum of a node v is calculated by using
the set of its physical neighbors PN (v) and calculating the
XOR sum over all of them: Σ⊕PNG(v) :=

⊕DG(v)
i=0 PN i(v).

Each node can calculate and provide both parameters on its
own. The second step is to make these parameters available
to KeLLy. This can be achieved with a minor enhancement
to a KIRA node’s join process. In KIRA a node repeatedly
checks for new nodes in its ID-wise neighborhood by sending
a FindNodeRequest that is routed to the ID-wise closest
neighbor. The parameters can be disseminated to all nodes in
an ID-wise neighborhood by enhancing the response to contain
a list of the closest contacts, with both their node’s degree and
the PN ID sum for each of them. This makes it easy for KeLLy
to employ them: Nodes receiving a KeLLy query include both
parameters for all contacts in their last two buckets in addition
to the source routing path. With these simple modifications,
after the initial KeLLy run the parameters are available to the
discovering node for each node in the network.

These parameters in combination with the previously dis-
covered topology allow the discovering node to easily calcu-
late some of the not yet discovered links. By checking whether
the node degree DG(v) discovered by KeLLy matches the
node degree DG′(v) in the incomplete discovered topology
graph, nodes with undiscovered links can easily be identified.
The simplest case (see fig. 5) for link calculation is a node
that has exactly one undiscovered link. For such a node an
expected PN ID sum (Σ⊕PNG′(v)) can be calculated using
the physical neighbors present in the discovered graph G′.
The difference between the expected PN ID sum and the
real PN ID sum (Σ⊕PNG(v)), calculated by the node itself,

2023 19th International Conference on Network and Service Management (CNSM)

L1vw
1101

r1010

s1001
t 1000

u
1100

real degree DG(v) 5
degree in G′ DG′ (v) 4
real PN ID sum Σ⊕PNG(v) 1010
expected PN ID sum Σ⊕PNG′ (v) 0110
PN ID sum difference ∆Σ⊕PN(v) 1100

L1L2
vw

1101

r1010

s1001
t 1000

u
1100

real degree DG(v) 5
degree in G′ DG′ (v) 3
real PN ID sum Σ⊕PNG(v) 1010
expected PN ID sum Σ⊕PNG′ (v) 1011
PN ID sum difference ∆Σ⊕PN(v) 0001
potential neighbor u ∆Σ⊕PN(v) ⊕ ID(u) 1101

Fig. 5: Two link calculation examples with 4-bit NodeIDs showing
an excerpt of a topology with a node v and one undiscovered Link
L (top) and two undiscovered links L1 and L2 (bottom) respectively.
Table with parameters of node v on the right of each example.

∆Σ⊕PN(v) = Σ⊕PNG(v)⊕Σ⊕PNG′(v) is the NodeID of the
missing physical neighbor. The undiscovered link is therefore
L = (v,∆Σ⊕PN(v)). The top of fig. 5 shows an example of
this case with a node v and an adjacent undiscovered Link
L = (u, v). For simplicity the example uses 4 bit NodeIDs
indicated next to each node. On the right side the figure details
the real and expected parameters of node v. The real PN sum
is calculated by v itself over the IDs of all physical neighbors
(r − u and w) while the expected PN sum is calculated only
over the physical neighbors present in G′ (r − t and w). An
XOR of both eliminates the IDs of nodes r− t and w as they
appear twice, leaving only the ID of u.

For a node v with two undiscovered links another approach
is necessary, because the PN sum difference consists not of a
single NodeID but of two missing neighbor NodeIDs XOR’ed
with each other ∆Σ⊕PN(v) = ID(u) ⊕ ID(w). Both u and w
are from the set of incomplete nodes U = {x ∈ V |∆D(x) >
0}. A naı̈ve solution to this problem is to simply iterate over
all NodeIDs of incomplete nodes ID(u)|u ∈ U and for each
of them check whether a matching node w with a NodeID
ID(w) = ∆Σ⊕PN(v) ⊕ ID(u) is also in U . If that is the
case u and w are the two missing neighbors. Collisions are
highly unlikely, due to KIRA’s large NodeIDs. This brute force
approach has to check |U | potential neighbors for each node
with two undiscovered links, i.e., its complexity is O(|U |)
per node or O(|U |2) for all nodes. This does not scale well
when the set of nodes with undiscovered links U is too large.
Instead of iterating over all incomplete nodes, this approach
can be used on a reduced set of nodes within 2-hop distance
(in G′) to v. Thus, if one of the two missing neighbors is
within 2-hop distance it can still be calculated. This works
well because of two reasons: First, real network topologies
often contain triangles (e.g., u, v and t in fig. 5) in clusters
of nodes and second, if the undiscovered link would provide
an efficient shortcut (for a large distance in G′) it should
have appeared in KIRA routing tables more often – KIRA
prefers shorter paths to its contacts – and would therefore
have been discovered by KeLLy already. The set of potential
neighbors gets significantly smaller by using this approach.
The second example in fig. 5 shows the same scenario with
two undiscovered links L1 and L2. The updated metrics table
on the right shows that when using u as a potential neighbor

the matching NodeID ∆Σ⊕PN(v) ⊕ ID(u) is equal to the
NodeID of the second missing neighbor u.

Algorithm 1 Link Set Completion
INPUT: G′ := (V ′, E′), DG, Σ⊕PNG

1: PriorityQueue pq ← {}
2: for v ∈ {V ′ |∆D(v) > 0} do
3: pq.add(priority=∆D(v), item=v)
4: while (∆D(v), v) in pq do
5: ∆Σ⊕PN(v)← Σ⊕PNG(v)⊕ Σ⊕PNG′(v)
6: switch ∆D(v) do
7: case 1 ▷ 1 undiscovered links
8: u← ∆Σ⊕PN(v)
9: E′ ← E′ ∪ {(v, u)}

10: pq.update(priority=∆D(u), item=u)
11: case 2 ▷ 2 undiscovered links

// Get potential missing neighbors in 2 hops
12: n← incompleteNodesWithinTwoHops(G′, v)
13: for u in n do
14: w ← ID(u)⊕∆Σ⊕PN(v)
15: if w in V and ∆D(w) > 0 then
16: E′ ← E′ ∪ {(v, u), (v, w)}
17: pq.update(priority=∆D(u), item=u)
18: pq.update(priority=∆D(w), item=w)
19: break
20: case > 2 ▷ No calculation possible
21: break
22: return G′ := (V ′, E′)

These two approaches for nodes with one or two undiscov-
ered links can be combined into an iterative algorithm (see al-
gorithm 1). The input for this algorithm is the graph G′ and the
node degree and PN ID sum parameters discovered by KeLLy
(DG and Σ⊕PNG). Using these the algorithm first traverses
the list of all nodes identifying the ones with undiscovered
links. Each such node is inserted in a priority queue (pq) using
the number of undiscovered links ∆D(v) = DG(v)−DG′(v)
as priority. Following that the algorithm keeps taking items
from this priority queue and applies the two approaches above
until either the queue is empty or it only contains items with
more than two undiscovered links ∆D(v) > 2. With each
successfully calculated link an update to the priority queue is
required. If a link (u, v) is calculated when working on node u
the number of missing links of node v also decreases by one.
This may result in node v now also having one or two missing
links only. The priority queue allows to first work on the easier
nodes with only one undiscovered link, before working on the
harder to calculate nodes with two undiscovered links.

With this simple algorithm over 99% of the links are
discovered in large networks, which should be enough for most
use cases. For use cases like traffic engineering where every
link may be interesting a second pass over nodes with two
undiscovered links using the brute force approach discovers
the remaining links in nearly all scenarios. Alternatively, a
simple re-query strategy can be employed: Sending additional
KeLLy queries, e.g., in tranches of 0.25% · n, targeting nodes

2023 19th International Conference on Network and Service Management (CNSM)

with a high number of undiscovered links, running link calcu-
lation in-between reaches 100% with lower compute overhead.

E. Incremental Updates
To integrate topological updates caused by dynamic events

in an incremental fashion another simple mechanism can be
employed. The main problem is to transfer the information
about a failed link (or node) from a physical neighbor detecting
the failure to the node discovering and subsequently monitor-
ing the topology. Since not every network node is queried
during the initial KeLLy discovery, most will not know which
node to send the update to. However, due to the structured way
of walking the ID space each node knows that the first node
q in its own discovery range was queried during the initial
discovery. This node then knows which node(s) are currently
monitoring for topological changes. Therefore, a topology
update can be sent to monitoring nodes using the node q as an
intermediary target. A single link failure (or new link) will thus
trigger two update messages (as both adjacent nodes detect it)
to each monitoring node. Preliminary evaluations show that
this concept works and achieves low overhead and updates
the topology graph in monitoring nodes quickly.

V. EVALUATION

The evaluation of KeLLy is based on a KIRA implemen-
tation using the OMNeT++ simulation framework. In each
configuration the simulation is repeated 10 times with different
seeds to show the deviation of the results. Figures in the
following sections show the mean result and the 2σ deviation
across the runs as error bars. Even though KeLLy’s contri-
bution is mostly qualitative, i.e., supporting autonomic net-
works, we also compare it to other similar active approaches
(SDN/SNMP) in terms of resource usage. The following key
metrics, among others, are investigated:
• Query Ratio: The main objective of KeLLy is to achieve

low overhead w.r.t. number of messages sent during the
discovery. Therefore, the fraction of nodes |Q|/n queried
during topology discovery is a key metric.

• Link Coverage: The percentage of links discovered |E′|/|E|
is important, as it identifies the accuracy of the discovered
graph G′ compared to the physical topology. KeLLy achieves
different link coverages in different stages and scenarios.

• Data Usage: This metric identifies the amount of data
transmitted during discovery. For each query the number of
transmitted NodeIDs (contacts and nodes on source routing
paths) is multiplied by the 14 Byte NodeIDs used in KIRA.
Summing over all queries gives KeLLy’s total data usage.

• Discovery Time: The duration of the discovery process
is another important metric. For KeLLy this is can be
measured in number of query round-trip times.

A. Scalability
Overall, the presented evaluations show that KeLLy works

well even for very large topologies while inducing acceptable
overhead. Networks such as the Internet follow a power
law node-degree distribution [22]. Therefore, to evaluate the
influence of the network size on the efficiency of KeLLy,

 100 %

 1 %
2 %

4 %

Qu
er

y
Ra

tio

SNMP/SDN k=20 k=40 k=80

500 1K 5K 10K 20K 50K 100K
of Nodes

0.1MB
1MB

10MB

Da
ta

 U
sa

ge

SDN k=20 k=40 k=80

Fig. 6: Query ratio and data usage in power law topologies

simulations in differently sized, randomly generated power
law topologies are compared. The topologies were generated
using the algorithm introduced by Holme and Kim [23] with
the parameters m = 3 and p = 0.5. The expectation is,
that in larger topologies the same query ratio is required to
find all nodes, because it only depends on the bucket size k.
Firstly, in all simulations KeLLy discovered all nodes of the
topology, confirming that the algorithm works as expected.
Figure 6 shows evaluations with up to 100 000 nodes. As
expected, the query ratio stays the same at roughly 4% of all
nodes for a bucket size of k = 20. Furthermore, the query
ratio decreases proportionally to k−1: To 2% and 1% for
k = 40 and k = 80, respectively. In comparison an SDN
or SNMP-based approach needs to contact 100% of nodes.
With 100 000 nodes an SDN-based approach would actually
send 700 000 messages, one from the controller to each
switch and two for each link back, while KeLLy induces only
8000 messages (4 000 queries and responses). Additionally,
the figure shows the transmitted data for each configuration.
As the routing tables grow larger and the absolute number
of queries increases, it is expected that the amount of data
transmitted also increases. It is important to note that, because
information about each node needs to be transmitted at least
once, sub-linear overhead is impossible. Still, for 100 000
nodes the overhead is approximately 52 MByte of data when
using NodeIDs of size 14 Byte. Interestingly, the overhead is
the same irrespective of k: the larger routing tables with higher
bucket size k balance out with the lower number of queries.
Practical implementations could limit the number of parallel
queries and use pacing to evenly distribute data arriving in the
respective responses over (a longer) time period depending on
connectivity of the discovering node. Because the messages
sent by SDN-based approaches are very small (267 Byte LLDP
packets [8]) the total data usage only comes down to around
three times that of KeLLy, but each message has to be sent
and/or processed individually in the SDN controller.

The top of fig. 7 shows that the link coverage without any
link calculation increases with the size of the topology. This
has two reasons: first, the size of the routing tables increases
with growing topology size leading to more contact informa-
tion being gathered per query and secondly, the average path
length of the source routing path to each contact is longer
in larger topologies and thus contains more links that are
discovered per contact. Another characteristic impacting link
coverage is the number of queries sent during a discovery:
Each query discovers information from a different vantage

2023 19th International Conference on Network and Service Management (CNSM)

50 %
60 %
70 %
80 %

Without Link Calculation

k=20 k=40 k=80

500 1K 5K 10K 20K 50K 100K
of Nodes

100 %
95 %
90 %
85 %
80 %
75 %
70 %

With Link Calculation

SNMP/SDN
KeLLy (k=20)

KeLLy + Stage 1
KeLLy + Stage 2

KeLLy + Stage 3

Lin
k

Co
ve

ra
ge

Fig. 7: Link coverage with and without link calculation in power law
topologies

point, because all discovered source routing paths originate
from the queried node. Therefore, a lower query ratio (when
using larger k) leads to a lower link coverage. Furthermore,
with larger k each query discovers more nodes, but the source
routing paths overlap more often close to the queried node.

The link calculation algorithm that can be used by any
node using KeLLy, allows to invest compute power to increase
the link coverage of the discovered network topology. To
evaluate this, we run the algorithm on the graphs discovered
by KeLLy. In order to check different compute-performance
trade-offs we ran different versions of the algorithm. The first,
least compute intensive stage, only uses nodes with a single
undiscovered link. In the second stage we additionally use
the approach for nodes with two undiscovered links using the
reduced node set for potential neighbors. In the third stage the
”brute force” approach uses all node pairs of the remaining
incomplete nodes to discover the remaining links adjacent
to nodes with two undiscovered links. The bottom of fig. 7
shows the link coverage for KeLLy without link calculation
and k = 20 and each of the three stages. One can see that the
first stage brings significant improvements already reaching
97% link coverage for 100 000 nodes. With the second stage
there is another significant improvement leading to more than
99% of links being discovered. In smaller topologies similar
improvements are achieved, but because KeLLy itself reaches
lower link coverages the results are overall lower compared
to larger topologies. Using the third stage with the brute force
approach all topology sizes reach 100% link coverage. The
additionally transmitted parameters for link completion do not
significantly impact the total data usage of KeLLy. This is
because the parameters are only transmitted once per node
in the network, leading to an additional 1.6 MBs of data for
100 000 nodes (14 Byte neighbor sum + 2 Byte node degree).

To give an estimation of the compute overhead of the
final most compute intensive third stage using the brute force
approach fig. 8 shows the number of incomplete nodes, adja-
cent to undiscovered links, with increasing topology size after
stage one and two of the link calculation. This number grows
linearly with topology size. The third stage of complexity
O(|U |2) needs to check 350 potential neighbors for each of

500 1K 5K 10K 20K 50K 100K
of Nodes

10

100

1K

10K

In
co

m
pl

et
e

No
de

s KeLLy (k=20)
KeLLy + Stage 1
KeLLy + Stage 2

Fig. 8: Incomplete nodes after different stages of link calculation

500 1K 5K 10K 20K 50K 100K
of Nodes

1

2

3

4

of

 R
TT

s k=20 k=40 k=80

Fig. 9: Discovery time in RTTs (mean whiskers min/max)

the 350 incomplete nodes in the 100 000 node scenario (if all
of them have two missing links). Given that a node running
KeLLy in such a large network has to have the resources to
store a graph with that many nodes, it should also be able to
invest that amount of computing power. Otherwise, it always
has the option to send a few additional KeLLy queries to fill in
the remaining gaps. This would on average take 350 additional
queries for a total of ≈ 4300 or a 4.3% query ratio.

B. Discovery Time
Another important metric for a topology discovery algo-

rithm is how long the discovery process takes until it produces
a usable result. For KeLLy, this largely depends on the number
of iterations needed. When using multiple parallel ID space
walks the number of iterations is determined by the maximum
number of iterations over all ID space walks. As each iteration
corresponds to a query and response in the physical topology
and under the assumption that there is no bandwidth bottleneck
(which is likely due to KeLLy’s low data usage) the time
needed for single iteration is bounded by the maximum query
round-trip time (RTT). Figure 9 shows KeLLy’s discovery
time in RTTs. The results show the estimation of the optimal
parallelization factor, i.e., the number of parallel ID space
walks, is very accurate leading to very few purely sequential
queries even for very large networks. Even for a large RTT of
500 ms (worst-case Frankfurt–Auckland ping), KeLLy discov-
ers a topology within a few seconds (0.5 s · 4 = 2 s) requiring
only four or less iterations irrespective of the network size.

C. Topological Versatility
One of KIRA’s advantages is that it works well across a

wide range of topologies, due to its topology-independent
NodeIDs and overlay-based routing concepts. It is to be
expected, that KeLLy therefore works equally well independent
of the network’s topology. In order to confirm that, KeLLy
was run on various synthetic topologies of the same size with
different characteristics. The topologies include a Holme-Kim
power law graph [23], small world graphs (Watts–Strogatz
graphs [24] with different values for p), a random and a
random geometric graph (each with average node degree 8), a
100×100 grid and a fat tree topology [25] used in data center

2023 19th International Conference on Network and Service Management (CNSM)

networks. The evaluations across these topologies, cf. fig. 10,
confirm the aforementioned expectations: the query ratio is the
same (4% of nodes) for all evaluated topologies. The discovery
overhead on the other hand varies, being higher in topologies
with large diameters (Watts–Strogatz graphs with small p,
random geometric graphs, and the grid) as this causes the
average length of the source routing paths to be larger. KeLLy’s
overhead is lower than when using SDN-based approaches,
except for the sparse grid topology with a much fewer of links.

Furthermore, fig. 11 shows the achieved link coverage over
the different topologies with and without link calculation.
Interestingly, the link coverage is different for all topologies.
The link coverage ranges from 74% in power law topologies
all the way up to almost 100% for the grid topology. This
can be explained by the number of shortest paths between any
two nodes in these topologies: in power law topologies there
is often only a low number of shortest paths between any
two nodes leading over hub nodes with many connections,
while in the grid there are numerous paths with the same
length because of the Manhattan distance. This lets KeLLy
discover the same paths repeatedly in the power law topologies
while many different paths are discovered in the routing tables
in the grid topology. With link calculation all topologies see
significant improvements in link coverage. In most topologies
the link coverage reaches 100% or very close to it without
the compute-intensive third stage. An outlier is the random
geometric topology, which reaches only slightly over 90%
with the second stage. In this case, not even the brute force
approach improves on this. The remaining undiscovered links
are in clusters of nodes having three or more undiscovered
links each. When employing the re-query strategy described
in section IV-D the link coverage reaches 100% in the random
geometric topology as shown in the figure. During this re-
query period an additional 3.5% – for a total of 7.3% – of
nodes were queried. In all other topologies the link calculation
was enough on its own and no re-querying was necessary.

100 %

4 %Qu
er

y
Ra

tio SNMP/SDN KeLLy (k=20)

PowerLaw WS 0.01 WS 0.1 WS 0.3 Random Grid Fat-Tree
n=9,472

Random
Geometric

0
10 MB
20 MB

Da
ta

 U
sa

ge SDN KeLLy (k=20)

Fig. 10: Query ratio and data usage in different topologies with 10 000
nodes. WS=Watts–Strogatz graph

PowerLaw WS 0.01 WS 0.1 WS 0.3 Random Grid Fat-Tree
n=9,472

Random
Geometric

100 %
95 %
90 %
85 %
80 %
75 %
70 %

Lin
k

Co
ve

ra
ge

SNMP/SDN
KeLLy
KeLLy + Stage 1

KeLLy + Stage 2
KeLLy + Stage 3
KeLLy + Stage 3
 with re-query

Fig. 11: Link coverage with link calculation in different topologies

VI. CONCLUSION & FUTURE WORK

Emerging autonomic network management solutions deal-
ing with the increasing dynamics and complexity of network
infrastructures may highly profit from actual topological in-
formation. Providing this information should also be done in
an autonomic manner. With KeLLy we introduced the first
topology discovery algorithm combining efficiency, scalability
and autonomy. It achieves low message overhead (querying
only 4% of nodes) by re-using distributed routing information.
Furthermore, KeLLy guarantees to discover all nodes and
when investing minimal amounts computing power also all
links. In additon to this work’s evaluations based on network
simulation, future work may include evaluations of a real im-
plementation using network emulation or testbed deployment.

REFERENCES

[1] E. Coronado et al., “Zero touch management: A survey of network
automation solutions for 5G and 6G networks,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 4, 2022.

[2] K. Dzeparoska et al., “Towards a self-driving management system for
the automated realization of intents,” IEEE Access, vol. 9, 2021.

[3] R. L. Aguiar, D. Bourse et al., “NetworldEurope Strategic Research and
Innovation Agenda 2022,” Dec. 2022.

[4] M. H. Behringer et al., “A Reference Model for Autonomic Network-
ing,” RFC 8993, May 2021.

[5] T. Eckert (Ed.), M. Behringer (Ed.), and S. Bjarnason, “An Autonomic
Control Plane (ACP),” RFC 8994, May 2021.

[6] R. Bless et al., “KIRA: Distributed Scalable ID-based Routing with Fast
Forwarding,” in IFIP Networking, 2022, pp. 1–9.

[7] P. Seehofer, R. Bless, and M. Zitterbart, “KeLLy: Scalable, Efficient
Link-Layer Topology Discovery,” in IEEE/IFIP NOMS, 2023.

[8] F. Pakzad et al., “Efficient topology discovery in OpenFlow-based
Software Defined Networks,” Computer Communications, vol. 77, 2016.

[9] S. Khan et al., “Topology discovery in software defined networks:
Threats, taxonomy, and state-of-the-art,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 1, pp. 303–324, 2017.

[10] E. Rojas et al., “Tedp: An enhanced topology discovery service for
software-defined networking,” IEEE Comm. Letters, vol. 22, no. 8, 2018.

[11] M. F. Rabbi Ur Rashid et al., “Combining SPF and source routing for
an efficient probing solution in IPv6 topology discovery,” in GIIS, 2014.

[12] M. Li et al., “IPv6 network topology discovery method based on novel
graph mapping algorithms,” in IEEE ISCC, 2013.

[13] K. Vermeulen et al., “Diamond-Miner: Comprehensive Discovery of the
Internet’s Topology Diamonds,” in 17th USENIX NSDI, 2020.

[14] J.-F. Grailet and B. Donnet, “Travelling Without Moving: Discovering
Neighborhood Adjacencies,” in Network Traffic Measurement and Anal-
ysis Conference, 2021.

[15] Y. Breitbart et al., “Topology discovery in heterogeneous ip networks,”
in Proceedings IEEE INFOCOM 2000, vol. 1, 2000.

[16] P. Ghaderi, J. W. Atwood, and L. Narayanan, “Topology Discovery in
Autonomic Networks,” in IEEE/IFIP NOMS, 2023.

[17] A. D. Ferguson, S. Gribble et al., “Orion: Google’s software-defined
networking control plane,” in 18th USENIX NSDI 21, 2021.

[18] A. Lindem et al., “OSPFv3 Autoconfiguration,” RFC 7503, 2015.
[19] M. Pritikin et al., “Bootstrapping Remote Secure Key Infrastructure

(BRSKI),” RFC 8995, 2021.
[20] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer Informa-

tion System based on the XOR Metric,” in IPTPS, 2002.
[21] S. Roos, H. Salah, and T. Strufe, “Comprehending Kademlia Routing

– A Theoretical Framework for the Hop Count Distribution,” 2013.
[Online]. Available: https://arxiv.org/abs/1307.7000

[22] D. Krioukov et al., “On compact routing for the internet,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 3, p. 41–52, jul 2007.

[23] P. Holme and B. J. Kim, “Growing scale-free networks with tunable
clustering,” Phys. Rev. E, vol. 65, p. 026107, Jan 2002.

[24] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun 1998.

[25] M. Al-Fares et al., “A scalable, commodity data center network archi-
tecture,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, aug 2008.

2023 19th International Conference on Network and Service Management (CNSM)

