
Adaptive Model Aggregation for Decentralized
Federated Learning in Vehicular Networks

Mahtab Movahedian∗, Mahdi Dolati†, and Majid Ghaderi∗
∗Department of Computer Science, University of Calgary, Calgary, Canada.

†School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Emails: {mahtab.movahedianatt, mghaderi}@ucalgary.ca, m.dolati@ipm.ir

Abstract—Decentralized federated learning (DFL) enables col-
laborative training of machine learning models without sharing
sensitive data. As such, its application in vehicular networks has
gained significant attention. At the core of DFL is the so-called
model aggregation, in which each vehicle combines its locally
trained model with those received from its neighboring vehicles
to generate an updated model that, over time, converges to a
global model shared by all vehicles. However, due to high mobility
and wireless communication, vehicle-to-vehicle communication
is lossy. As a result, a vehicle may receive its neighboring
vehicle models only partially. A technical challenge in DFL is
how to efficiently utilize such partial models to speed up model
training without increasing the training overhead. In this paper,
we present an Adaptive Model Aggregation (AMA) algorithm to
address this challenge. Our algorithm runs asynchronously on
each vehicle and uses a threshold to decide whether to use a
partially received model for aggregation. We show that due to
the mobility of vehicles, a static threshold is not sufficient and
subsequently develop an algorithm based on the contextual multi-
arm bandit theory to adaptively compute an optimal threshold
for each vehicle based on the dynamics of the network. We
evaluate the performance of AMA in realistic environments that
include different mobility patterns. Our results show that AMA
can decrease DFL aggregation overhead by 83% without reducing
the training accuracy compared to non-adaptive aggregation.

I. INTRODUCTION

Modern vehicles are equipped with sensors, cameras, and

communication systems that generate a variety of data, in-

cluding information about traffic conditions. As vehicles be-

come more connected and autonomous, the opportunity arises

to leverage this data for improved road safety and driving

performance through communication and data sharing among

vehicles. However, ensuring privacy and security is crucial

when sharing data to protect the drivers and passengers [1].

In this context, federated learning [2] is a promising solution

for privacy-preserving machine learning (ML) in vehicular

networks [3]. In traditional federated learning, a central en-

tity, such as a parameter server, coordinates model training

across distributed vehicles. Decentralized federated learning

(DFL) [4] extends this approach by enabling vehicles to au-

tonomously coordinate model training without a central entity.

In DFL, each vehicle acts as a local learning agent, training

its local model based on its own data and then periodically

sharing model parameters, such as the weights and biases of a

deep neural network, with other vehicles in the network. Upon

receiving model parameters from others, a vehicle aggregates
the parameters of those models with its own model parameters

(e.g., by taking their average [2]) to generate an improved

model. Over time, each vehicle’s local model converges to a

global model shared by all vehicles without the need to share

raw data among vehicles [5]. Fig. 1 illustrates the three stages

of DFL in a vehicular network, namely 1) local model training,

2) model exchange, and 3) model aggregation.

However, deploying DFL in a vehicular network presents

technical challenges. In a vehicular network, vehicles use

wireless communication (e.g., onboard WiFi) to exchange

model parameters with each other. The wireless communica-

tion environment is prone to signal degradation due to propa-

gation impairments and interference, resulting in transmission

losses at the receivers. Vehicle mobility further exacerbates

the unstability of the environment. Not only mobility increases

transmission errors, but also results in frequent changes in the

network topology and neighborhood structure. Consequently,

maintaining stable connections for exchanging model param-

eters between vehicles is challenging in vehicular networks,

especially when considering the short range of vehicle-to-

vehicle communication and the brief duration of time that

vehicles come into contact with each other. When exchanging

model parameters over an unstable wireless link, some data

packets carrying model parameters may be lost (due to trans-

mission errors, for example). This results in vehicles receiving

only partial model parameters from neighboring vehicles.

Discarding these partial model parameters would significantly

slow down model training [6], particularly in networks with

frequent packet losses.

Thus, to ensure efficient model training, it is essential to

consider the impact of mobility and wireless communica-

tions in vehicular networks. While there is extensive research

on DFL in vehicular networks (e.g., see the comprehensive

survey [7] and references therein), most existing studies ei-

ther do not take these aspects into account, as they focus

solely on the decentralized learning process itself [8], [9],

or they only address one aspect of the problem, such as

wireless communication or mobility. For example, in [10],

communication is limited to one-hop neighbors, while [11]

assumes an ideal communication environment with no packet

losses. Similarly, works like [6], [12], [13] assume a static

network topology, which fails to capture the dynamic nature

of vehicular networks caused by mobility.

In this paper, our objective is to design an aggregation

algorithm for decentralized federated learning in vehicular

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

(a) Vehicles train their models with local data.

Local model update
Local model transmission
Model aggregation

(b) Vehicles share their models with neighbors. (c) Vehicles aggregate their models with the received models.

Fig. 1: Decentralized federated learning in a vehicular network. The vehicles participate in the training process by exchanging their model
parameters with neighboring vehicles. Each vehicle then updates its local model by aggregating the received models with its own.

networks that effectively handles packet losses due to unreli-

able wireless communication, while minimizing computational

overhead. Specifically, we focus on the critical problem of how

to utilize partially received models in the aggregation process

to allow a recipient vehicle to accelerate its model training.

As mentioned earlier, simply discarding partial models is

not efficient, as it fails to take advantage of the information

that is received correctly. Alternatively, blindly incorporating

every partially received model during aggregation (e.g., by

aggregating only the correctly received parameters [6]) could

also negatively impact the model training process. First, when

the received partial model is very small, i.e., only a small

number of model parameters are received correctly, a bias

towards the parameters of the aggregating vehicle may be

introduced, leading to an imbalanced final trained model.

Second, aggregating and retraining the local model for each

received partial model not only results in significant computa-

tional overhead, but also creates a lot of traffic in the network

to exchange updated model parameters after each aggregation,

further exacerbating the packet loss problem.

Our key insight is that if only a small fraction of the

parameters of a model are received correctly, it is likely that

including the model would not significantly improve the train-

ing process. Conversely, if a large fraction of the parameters is

received correctly, incorporating the model could potentially

enhance model training and convergence. This leads to the

question: how to decide which models should be discarded and
which models should be aggregated? To address this question,

we design an algorithm, called Adaptive Model Aggregation

(AMA), that uses a threshold on the fraction of the model

parameters that are received correctly to determine which

partially received models should be included or excluded

from the aggregation process. The AMA algorithm is designed

to be general and can be combined with existing model

aggregation methods, such as FedAvg [2], to improve model

training performance in vehicular networks. We show that the

optimal threshold value depends on communication reliability

and vehicle mobility. To automate threshold selection for

different network environments, we design an algorithm based

on the contextual multi-arm bandit (CMAB) theory [14].

This algorithm continuously updates the local threshold on

each vehicle by considering the communication reliability and

mobility patterns of the vehicles in the network.

Our main contributions in this work can be summarized as

follows:

• We present a decentralized federated learning approach

tailored to vehicular networks, considering both wireless

communication and vehicle mobility.

• To handle transmission losses and effectively use par-

tially received models, we design AMA, a threshold-based

algorithm to control which models are used in model

aggregation, discarding those that would have little to no

impact on model accuracy.

• We propose an algorithm to automatically compute the

threshold used in AMA by considering dynamic link

reliability and mobility patterns, which reduces the al-

gorithm’s computational complexity while ensuring high

model accuracy.

• We evaluate AMA in different mobility and communication

scenarios where vehicles may have different classes of

data, demonstrating the effectiveness of our approach in

such situations.

Paper Organization. This paper is organized as followed.

Section II describes the related works. In Section III we present

our aggregation algorithm. Section IV describes the contextual

multi-armed bandit formulation and our adaptive threshold

selection method. In Section V we provide performance eval-

uation and analysis. Section VI concludes the paper.

II. RELATED WORKS

In this section, we review the existing works that are most

relevant to ours. A summary of the related works is presented

in Table I.

Decentralized Federated Learning. Federated learning [2]

utilizes the Federated Averaging (FedAvg) algorithm, enabling

local computation of model updates by multiple devices. A

central server aggregates these updates into a global model

through weighted averaging. This iterative process continues

until convergence is achieved. Numerous extensions of the

basic technique are proposed in the literature to, for exam-

ple, accommodate partial work across devices [15], reduce

communication overhead with non-IID data sets [16] or a

segmented gossip approach [8], adjust local updates based

2023 19th International Conference on Network and Service Management (CNSM)

TABLE I: Related work overview.

Works DFL Communication Mobility Description
[2] � Ideal � Aggregation by averaging

[15] � Ideal �
Accommodates partial work across
devices

[16] � Ideal � Reduces communication overhead

[17] � Ideal �
Adjusting local updates based on local
loss

[18] � Ideal �
Minimize performance variance
across devices

[19] � Ideal � Peer-to-peer network

[20] � Ideal �
Model exchange and aggregation with
one-hop neighbors

[8] � Ideal �
Reducing communication overhead
using a segmented gossip approach

[9] � Ideal �
Introduces an n-out-of-n secret shar-
ing schema

[21] � Ideal �
Privacy-preserving protocol, model
exchange with one-hop neighbors

[6] � Unreliable �
Loss handling and aggregation opti-
mization

[10] Hybrid Ideal Gaussian
Clusterheads collect data and commu-
nicate with MEC servers

[13] � Ideal � Improvement in privacy preservation

[12] � Ideal �
Improving model stability and han-
dle imbalanced data distribution prob-
lems

[11] � Ideal RWP, CSE Improving aggregation process

Our
Work

� Unreliable RWP, CSE Dynamic threshold selection

on local loss [17], and minimize performance variance across

devices [18]. Decentralized federated learning eliminates the

need for a central server by offloading model aggregation to

individual devices. This is achieved by forming a peer-to-peer

network among the devices that participate in collaboratively

training a model [19]. Similar to federated learning, numerous

papers have studied extending the basic model aggregation

algorithm, for example, a Bayesian-like approach [20], a

random selection approach [9], and a hierarchical aggregation

technique [21]. The most relevant work to ours is [6], which

proposes to replace missing parameters in partially received

models with the corresponding parameters from the local

model on the recipient device so that every partial model can

be used for aggregation. However, as discussed in Section I,

blindly incorporating every partial model in the aggregation

process leads to learning bias as well as increased computation

and communication overhead.

Decentralized Federated Learning in Vehicular Networks.
Decentralized federated learning in vehicular networks allows

learning with limited neighbors despite communication disrup-

tions. The work [10] proposes a cluster-based approach with

a designated cluster head responsible for data aggregation. In

[13], a Byzantine fault-tolerant algorithm is introduced for au-

tonomous vehicles. FADNet [12] addresses model convergence

and imbalanced data distribution in autonomous driving, but its

evaluation is limited to an indoor environment using a mobile

robot. Blockchain technology offers a secure and decentralized

platform for facilitating the exchange of updates among vehi-

cles, ensuring trust through its consensus mechanism [22]–

[25]. However, these approaches still leverage the use of a

global model. It is important to note that in the context of fully

decentralized federated learning, the notion of a global model

is not applicable. The authors in [11] study model aggregation

and propose an algorithm that is better suited to non-IID data

TABLE II: Table of Notations.

Notation Description
N Number of vehicles
Di Local dataset for vehicle i
Θt

i Model parameters of vehicle i
B Local minibatch size
η Learning rate

Θ
t
i

Model parameters of vehicle i after local update

γt
i,j Model parameters of vehicle j received by neighbor i

Mt
i,j Loss characterization matrix from vehicle i to vehicle j

pti,j Link reliability between vehicles i and j

PPP t Link reliability vector
δt Model aggregation threshold
γ̂t
i,j Repaired model of vehicle j received by neighbor i

Ci Set of neighbors for vehicle i
M Number of arms
H(·) Accuracy given the input model parameters
Rt

i Difference in vehicle i’s model accuracy
Φ(·) Oracle function
Qt

m Estimated value for arm am at time t
Rm

1 , Rm
0 Number of 1 and 0 value rewards for arm am

sets in vehicular networks. However, communication between

vehicles is assumed to be ideal, with no loss occurring during

transmission.

In summary, the existing works in this area either assume

ideal communication between vehicles (e.g., [10], [11]) or

ignore neighborhood changes due to mobility (e.g., [6]). In our

work, we propose a model aggregation algorithm that jointly

considers both of these aspects, which are inherent features of

vehicular networks.

III. ADAPTIVE DECENTRALIZED FEDERATED LEARNING

IN VEHICULAR NETWORKS

In this section, we present our Adaptive Model Aggrega-

tion (AMA) algorithm. The notation used in the rest of the

paper is summarized in Table II.

A. Vehicular Network Model

We consider a vehicular network composed of N vehi-

cles equipped with communication and computing capabili-

ties [26]. Each vehicle collects relevant data from its onboard

systems and its environment. The collected data by the vehi-

cles in the network is used to collaboratively train a machine

learning model on each vehicle following the decentralized

federated learning framework. Without loss of generality, we

assume that vehicles use the Federated Averaging (FedAvg)

algorithm [2] to aggregate their local model parameters with

those received from other vehicles. Each vehicle manages

its operations in a step-by-step fashion, where each step is

indexed by t ∈ {1, 2, 3, . . . }. Let Dt
i denote the set of collected

data by vehicle i in step t. We use Θt
i to represent the machine

learning model (i.e., parameters of the neural network) on

vehicle i at the end of step t. Typically, Θt
i is represented

as a matrix.

Vehicles use UDP broadcasts over the wireless vehicular

network to communicate with each other. Using UDP alle-

viates the need for a connection setup phase (as required in

TCP), resulting in faster and more efficient data transmission.

Recall that due to mobility, vehicles may be within each

2023 19th International Conference on Network and Service Management (CNSM)

Threshold
Selector

Loss Handling

Model Aggregation

Fig. 2: High-level depiction of the Adaptive Model Aggregation
(AMA) algorithm. AMA dynamically selects and aggregates model
parameters based on δt, adapting to the communication environment
and local model accuracy.

others transmission range for only a brief amount of time,

making connection-oriented transports such as TCP inefficient.

UDP efficiency, however, comes at the cost of loosing some

packets during transmission. Each packet carries a portion of

the model parameters in its payload. The receiving vehicle

then reconstructs the model using the payloads of the received

packets. Due to vehicle mobility and the unreliable nature

of wireless communication, packets can be corrupted during

transmission, resulting in the receiver obtaining only a subset

of the model parameters from another vehicle.

B. Local Model Training

Training in DFL is performed locally on each vehicle,

and the model parameters are updated using an optimization

algorithm such as the Stochastic Gradient Descent (SGD)

algorithm. The local training algorithm is presented in lines 1

to 4 of Algorithm 1. In the algorithm, Θt−1
i represents the

model of vehicle i at step (t − 1). The vehicle begins step t
by collecting relevant local data. Once the size of the collected

data reaches a certain threshold or after a certain amount of

time, the vehicle initiates the procedure to improve its current

model. First, the vehicle splits the local data into batches of

size B. It then uses these batches to train the local model using

SGD, as follows:

gti = ∇Fi(Θ
t−1
i , b), (1)

Θ
t

i = Θt−1
i − η · gti , (2)

where, η is the learning rate, and gti represents the average

gradient on vehicle i’s local data at the current model Θt−1
i .

We used Θ
t

i to denote the resulting model after training on the

local data in step t. To control the complexity and overhead of

the training phase, the vehicle only considers each batch once

and completes the training after one pass over all the batches.

C. Adaptive Model Aggregation

After obtaining the improved local model by conducting the

local training phase, the vehicle initiates a round of federated

Algorithm 1: AMA: Adaptive Model Aggregation.

Require: Current model Θt−1
i , Local data Dt

i

Ensure : Update of Model Θt
i

1 B ← split(Dt
i)

2 for b ∈ B do
3 gti ← ∇Fi(Θ

t−1
i , b)

4 Θ
t

i ← Θt−1
i − η · gti

5 broadcast(Θ
t

i)

6 Γt
i ← receive()

7 G ← |Γt
i|

8 for γt
i,j ∈ Γt

i do
9 pti,j =

|γt
i,j |

|Θt
i|

10 PPP t
i ←

[
pti,1, . . . , p

t
i,G

]
11 δti ← Adaptive-ATS(PPP t

i) /* see Alg. 2 */

12 Ct
i ← {}

13 for γt
i,j ∈ Γt

i do
14 if pti,j ≥ δti then
15 M t

i,j ← fill-matrix(γt
j,i)

16 γ̂t
i,j ← γt

i,j + (1−M t
i,j)�Θ

t

i

17 Ct
i .append(j)

18 Θt
i ← 1

|Ct
i |+1

(
Θ

t

i +
∑

j∈Ct
i
γ̂t
j,i

)
19 Rt

i ← H(Θt
i)−H(Θt−1

i)
20 Oracle-Train(δti , PPP

t
i, R

t
i) /* see Alg. 3 */

learning-based model improvement by broadcasting Θ
t

i. Upon

receiving this new model, neighboring vehicles that possess a

new model also broadcast their local models. Each vehicle i
collects the models it receives from its neighbors and stores

them in a set called Γt
i (lines 5 to 6).

Due to collisions and wireless transmission errors, some

models received at vehicle i may miss a subset of their

parameters. Let γt
i,j denote the parameter matrix of vehicle

j’s model that is received at vehicle i in step t. We model the

lossy reception of γt
i,j as follows:

γt
i,j = M t

i,j �Θ
t

j , (3)

where, Θ
t

j represents the local model of vehicle j after local

training at time t, M t
i,j is a binary matrix indicating the

presence or absence of the corresponding parameters with

0 and 1 respectively, and � denotes element-wise matrix

multiplication. Since all vehicles have the same type of model,

each vehicle can easily construct the binary matrix M t
i,j

by setting the elements to 1 or 0 based on whether the

corresponding parameters are received or lost.

If the fraction of lost model parameters is high, using the

remainder of the received parameters of the corresponding

model can incur a computational overhead without a sig-

nificant improvement to the local model. To eliminate such

cases and lower the computation overhead, vehicle i uses an

aggregation threshold on the size of the received parameters

2023 19th International Conference on Network and Service Management (CNSM)

to eliminate the received models that would not contribute

significantly to the accuracy of its local model.

To compute the aggregation threshold, denoted by δti , the

algorithm calls a subroutine called Adaptive-ATS in line 11.

The threshold must be computed dynamically to take into

account the environment’s communication conditions (i.e.,
how lossy the environment is). The detailed explanation of

the algorithm for computing δti is provided in Section IV. To

provide the information about the loss, vehicle i computes the

ratio between the number of received parameters (denoted by

|γt
i,j |) and the total number of parameters (denoted by |Θt

j |)
for each neighbor j and stores it in the variable pti,j , which

we refer to as the link reliability parameter:

pti,j =
|γt

i,j |
|Θt

i|
. (4)

Then, the vehicle also creates a vector called the reliability
vector by bundling variables pti,j . The reliability vector of

vehicle i in step t is represented by PPP t
i. The reliability vector is

passed to the threshold computation algorithm, as indicated in

line 11 where the model aggregation threshold δti is acquired.

After obtaining the aggregation threshold δti , the vehicle

compares the value of pti,j and δti for all received models. If

the fraction of present parameters is greater than or equal to

the threshold, the vehicle repairs the model to be aggregated

with the local model. The repair process fills the missing

parameters with local parameters at the start of the current

step. To this end, vehicle i constructs the matrix M t
i,j and

applies the following formula:

γ̂t
i,j = γt

i,j + (1−M t
i,j)�Θ

t

i . (5)

Here, γ̂t
i,j represents the repaired model obtained from re-

ceived model γt
i,j of neighbor j. The vehicle stores the index

of selected and repaired models in a set called Ct
i in line 17.

As the result of algorithm’s work in lines 12 to 17, the content

of set Ct
i is equal to the following:

Ct
i = {j|j �= i, pti,j ≥ δti} . (6)

Then, the vehicle aggregates the models that meet the require-

ment specified by the threshold with the local model to obtain

an improved model, as follows:

Θt
i =

1

|Ct
i |+ 1

(Θ
t

i +
∑
j∈Ct

i

γ̂t
i,j) . (7)

Finally, the algorithm sends the selected aggregation threshold,

the reliability vector, and the change in the model’s accuracy

after the aggregation to sub-routine Oracle-Train. This sub-

routine, which is explained in Section IV, is responsible for

improving the underlying parameters used to compute the

threshold in Adaptive-ATS algorithm. Let H(.) be the function

that computes the accuracy of a given model. Vehicle i uses

the following formula to compute the change in the model’s

accuracy in step t in line 19:

Rt
i = H(Θt

i)−H(Θt−1
i) . (8)

Then, the vehicle invokes Oracle-Train in line 20. Fig. 2 presents

a high-level overview of the AMA algorithm.

IV. AGGREGATION THRESHOLD SELECTION

In this section, we first formulate the aggregation threshold

selection problem as a contextual multi-armed bandit (CMAB)

problem. We then present the Adaptive Aggregation Thresh-

old Selection (Adaptive-ATS) algorithm to solve the problem

efficiently.

A. Problem Formulation

In CMAB, we encounter a sequential decision-making prob-

lem where, at each step (referred to as a decision epoch), we

must select an arm from a given set of arms based on the

available context information. Upon selecting an arm, a reward

is obtained, and the objective is to find a strategy for arm

selection that maximizes the cumulative reward over time [14].

To this end, we define the set of arms, specify the context, and

design a suitable reward function to the aggregation threshold

that maximizes model accuracy in each given context.

Arms. We discretize the interval [0, 1] into M sub-intervals,

each representing an arm. We denote the m-th sub-interval as

am, where m ∈ 1, . . . ,M . Once vehicle i selects am in step

t, the value of aggregation threshold δti is set to the midpoint

of sub-interval am, as follows:

δti =
2m− 1

2M
. (9)

Reward. We use a binary reward function for arms. In each

step t, vehicle i compares Rt
i (see (8)) with a parameter ρt

that specifies the minimum acceptable accuracy increase. If

Rt
i ≥ ρt, a reward of one unit is assigned to the selected arm

in step t. Otherwise, the reward is assumed to be zero.

Context. The value of each arm represents its impact on the

accuracy of the local model after aggregation. As discussed

before, the increase of accuracy in our system depends on the

fraction of parameters that have been received successfully by

the vehicle. Therefore, we consider the reliability vector PPP t
i

as the context. As a result, the value of each arm is assumed

to be a function of the reliability vector PPP t
i.

B. Threshold Selection Algorithm

To select an aggregation threshold, each vehicle estimates

the value of arms given the reliability vector PPP t
i using histori-

cal rewards collected from interactions with the environment.

The value of an arm represents the expected reward that can

be obtained by playing it, and it is not known a priori. In

this regard, we assume the existence of an oracle function

Φm(PPP t
i) associated with each arm am. This oracle function

takes the reliability vector as input and provides a relative

value for arm am compared to other arms, ranging from zero

to one. A common approach in CMAB is to learn the oracle

Φm(·) using a supervised learning algorithm. In our case, we

utilize linear regression-based binary classifiers to implement

the oracle functions and learn their parameters using data

collected during interactions with the environment.

2023 19th International Conference on Network and Service Management (CNSM)

To facilitate learning from interactions with the environment

and avoid getting stuck in local optima, vehicles utilize an

adaptive ε-greedy algorithm [27], [28]. In this algorithm, a

vehicle chooses to use oracles with a probability of (1 − ε)
and selects a random arm with a probability of ε. The value of

ε is adjusted based on the maximum value among the arms.

Specifically, if the value of the selected arm increases, ε is

decreased, promoting exploitation. Conversely, if the value

of the selected arm decreases, ε is increased, encouraging

exploration to potentially find a better arm. The adaptive ε-
greedy algorithm employed in our system is presented in

Algorithm 2.

The algorithm begins by estimating the value of each arm

in lines 1 to 5. In this process, Qt
m represents the estimate

for the reward obtained by using the aggregation threshold

computed from arm am at step t, with the context PPP t
i. During

the initial steps of the algorithm, the accuracy of the estimates

returned by Φ(·) may not be highly precise due to insufficient

training data for the oracles. To handle this, we initially

adopt a Bayesian multi-armed bandit policy for each threshold,

utilizing a Beta prior [28] without incorporating the context

covariates. Once a minimum number of observations from

each reward value have been collected for a specific arm,

we transition to a contextual bandit policy based on Φ(·).
Specifically, each vehicle utilizes the Beta prior to collect

K ones and K zeros for each arm before utilizing its corre-

sponding oracle function. Once K zeros and ones have been

accumulated, the vehicle trains the parameters of the oracle

and employs it to estimate the value of that arm. To employ

the Beta prior, the vehicle keeps track of the current counts of

ones and zeros for arm m using two counters, denoted as Rm
1

and Rm
0 , respectively. Consequently, the general expression for

estimating the value of each arm is as follows:

Qt
m =

{
Beta(Rm

1 + 1, Rm
0 + 1), min{Rm

1 , Rm
0 } < K

Φm(PPP t), otherwise

(10)

where, Beta(., .) denotes the beta distribution.

After obtaining an estimate for the value of arms, the algo-

rithm applies the ε-greedy technique. In line 6, the algorithm

generates a random number between zero and one. If this

random number is greater than ε, the algorithm selects the arm

with the highest estimated value in line 18. On the other hand,

if the random number is smaller than ε, the algorithm selects a

random arm in line 16. In this case, the algorithm also utilizes

the estimated values to dynamically update the value of ε. To

update ε, the algorithm maintains a global variable named R̂
that stores the maximum estimated value encountered so far.

The algorithm compares the current maximum estimated value

with R̂. If the current maximum is smaller, the value of ε is

decreased using a decay factor d1. However, if the current

maximum is larger, the value of ε is reset to 0.5. If the two

values are equal, ε remains unchanged.

It is important to note that the update of ε is not performed

in every call of the algorithm. To increase the stability of the

Algorithm 2: Adaptive-ATS:

Adaptive Aggregation Threshold Selection.

Global : R̂ = 0, c1 = 0, d1 = 0.8, ε, Rm
1 , Rm

0 ,

Exploration Limit L1

Require: Reliability Vector PPP t

Output : Aggregation Threshold

1 for m ∈ {1, . . . ,M} do
2 if Rm

1 < K or Rm
0 < K then

3 Qt
m ← Beta(Rm

1 + 1, Rm
0 + 1)

4 else
5 Qt

m ← Φm(PPP t)

6 if uniform(0, 1) ≤ ε then
7 c1 ← c1 + 1
8 if c1 = L1 then
9 R ← max

m∈{1,...,M}
{Qt

m}
10 if R− R̂ > 0 then
11 ε ← ε× d1 /* scale down ε */

12 if R− R̂ < 0 then
13 ε ← 0.5 /* reset ε */

14 c1 ← 0

15 R̂ ← R

16 m ← random-choice({1, . . . ,M})

17 else
18 m ← argmax

m∈{1,...,M}
{Qt

m}

19 return 2m−1
2M

algorithm, the update happens every L1 calls. The algorithm

keeps track of the variable c1, which counts how many times

the exploration mode has been executed since the last change

in the value of ε. In lines 8 to 15, the algorithm determines

whether to change the value of ε once c1 reaches the limit L1.

After setting the new value of ε, the variable c1 is reset, and

R̂ is updated to R.

C. Training Reward Oracles

When a vehicle performs an aggregation based on a thresh-

old, it sends the change in the model’s accuracy before and

after aggregation, along with the reliability vector and the se-

lected threshold, to Oracle-Train, outlined in Algorithm 3. Oracle-
Train adjusts the oracle responsible for selecting that threshold.

In line 2, Oracle-Train determines the selected arm based on

the value of the aggregation threshold. Then, it compares the

increase in accuracy with an improvement threshold ρt. If

the increase in accuracy is greater than ρt, it considers the

choice of the arm that led to the threshold value as beneficial.

Consequently, the oracle corresponding to arm am is trained

to produce a higher value in the given context. To achieve

this, the context PPP t is labeled as 1 and the context-label pair

is saved for arm am in Jm. Additionally, the value of the

counter Rm
1 used in the Beta prior is incremented. Otherwise,

2023 19th International Conference on Network and Service Management (CNSM)

Algorithm 3: Oracle-Train: Oracle Model Training.

Global : d2 = 0.9, Rm
1 , Rm

0 , L2, c2 = 0, ρt, Jm

Require: Selected Threshold δti , Reliability Vector PPP t,

Accuracy Change Rt
i

1 c2 ← c2 + 1
2 m ← (2M × δti + 1)/2
3 if Rt

i ≥ ρt then
4 Rm

1 ← Rm
1 + 1

5 Jm ← Jm + {(PPP t, 1)}
6 else
7 Rm

0 ← Rm
0 + 1

8 Jm ← Jm + {(PPP t, 0)}
9 if c2 = L2 then

10 for m ∈ {1, . . . ,M} do
11 train(Φm(.), Jm)

12 c2 ← 0

13 ρt ← ρt × d2

PPP t is labeled as 0, which decreases the probability of selecting

arm am when the context is similar to PPP t. Similarly, the value

of the counter Rm
0 is incremented (lines 3-8).

The oracles are not trained immediately after labeling PPP t.

Instead, the context and label are saved for future training.

The training of the oracles occurs after every L2 steps. To keep

track of the number of steps, the algorithm maintains a counter

c2. Once c2 reaches the limit L2, the oracles are trained using

the accumulated context-label pairs (line 9). After the training

is completed, the counter c2 is reset to zero to start counting

the steps for the next training cycle. As the model is expected

to converge, the increase in accuracy is anticipated to decrease

over time. Therefore, the value of the improvement threshold

ρt is decreased in line 13 using a decay factor named d2.

V. EVALUATIONS

In this section, we evaluate AMA and Adaptive-ATS under

different mobility scenarios and compare their performances

with several existing baselines.

A. Methodology

Setup. The implementations are done in the Python program-

ming language, and the machine learning models are built

using the PyTorch library. The experiments are conducted on a

desktop computer with a 3.80 GHz Intel i7 processor, 16 GB of

memory, and an NVIDIA GeForce RTX 3080 Ti graphics card.

Throughout the evaluations, we simulate a network consisting

of 20 vehicles. The data in each vehicle is generated from a

non-IID CIFAR-10 dataset [29], where the number of samples

of each class differs across vehicles. There is no overlap in the

data between vehicles, and the data distribution is randomly

generated at the beginning of each run. The data is divided

into 1000 shards, each consisting of 50 data samples, and each

vehicle is assigned at least one shard.

TABLE III: Variants of the CSE Model.

Name CSE 1 CSE 2 CSE 3 CSE 4 CSE 5

p 0.5 0.5 0.5 0.9 0.1
k 0.5 0.3 0.7 0.5 0.5

ML Model. The machine learning model used in each vehicle

is a ResNet-20 model [30] trained on the CIFAR-10 dataset.

The weight decay is set to 0.0001, and the batch size is 32.

The initial learning rate is 0.1, and the momentum is set to

0.9. The aggregation threshold values are quantified from 0.0
to 0.9 with increments of 0.1. The initial value of ε is set to

0.5 and M is set to 10. A linear regression model serves as

the oracle for each arm. K is set to 2 and L1 and L2 are

set to 10 and 15, respectively. The initial value of ρt is set

to approximately 4% and gradually decreases to 0.04% as the

model converges to its final accuracy value.

Link Reliability. The link reliability between any two vehicles

i and j is given by the following expression:

pti,j = ptj,i = k(
dti,j
r)2 ,

where k is an exponential decay factor between 0 and 1, dti,j
is the distance between vehicles at time step t, and r is the

range of communication [6]. A higher value of k indicates

that the wireless signal does not weaken quickly with distance,

resulting in more reliable inter-vehicle communications.

Vehicle Mobility. We have implemented two mobility models

for the vehicles in the network:

• RANDOM WAYPOINT (RWP) [31]: Each vehicle moves

towards a random destination in a 1500m by 1500m grid

at a constant speed. After the training and communication

phases, the vehicles’ positions are updated to their positions

50 steps ahead. The travel speed is randomly chosen from

the range of [50, 150] m/epoch.

• COMMUNITY STRUCTURED ENVIRONMENT (CSE) [32]:

There are five communities of vehicles, with each com-

munity spanning a 500m by 500m square. Vehicles within

a community move together. Each vehicle spends 3 to 6
learning steps within a community and has a probability

p ∈ [0.1, 0.9] of changing its community. We consider

several variants of the Community Structured Environment

(CSE), which are listed in Table III.

B. Model Training Performance

In this set of experiment, our objective is to access the

training performance of AMA in terms of convergence speed.

Implemented Training Approaches. We compare the perfor-

mance of AMA with four baseline approaches:

• ISOLATED TRAINING: Each vehicle trains its model only

on its local data without communicating with other vehicles,

i.e., no federated learning.

• NO MOBILITY: Vehicles collaboratively train their models,

but there is no mobility so that each vehicle always com-

municate with the same set of neighbors.

2023 19th International Conference on Network and Service Management (CNSM)

0 2 4 6 8 10
Epoch (×10)

0.0

0.2

0.4

0.6

0.8

A
cc
u
ra
cy

Isolated Training

No Mobility

Centralized

Ideal Communication

AMA - RWP

(a) Dynamic network (RWP Mobility).

0 2 4 6 8 10
Epoch (×10)

0.0

0.2

0.4

0.6

0.8

A
cc
u
ra
cy

Isolated Training

No Mobility

Centralized

Ideal Communication

AMA - CSE1

(b) Dynamic network (CSE Mobility).

Fig. 3: Average model accuracy with RWP and CSE mobility.

• IDEAL COMMUNICATION: All packet transmissions over

links with pti,j ≥ 0.7 are error-free, i.e., the models are

received fully. Error-free models are always aggregated.

• CENTRALIZED: All vehicles send their local models to

a central server for aggregation. Vehicles are stationary

(mobility is not relevant in this model) and communication

is ideal. This approach is expected to achieve the highest

training accuracy.

Results. Fig. 3 shows the accuracy trend per epoch for

each approach under different mobility models. In ISOLATED

TRAINING, where communication between vehicles is lacking,

the accuracy remains consistently below 60%. However, in

both static and dynamic networks where communication is

reliable, the training process becomes efficient, leading to

increased accuracy similar to conventional federated learning.

Comparatively, convergence is achieved faster in AMA and

IDEAL COMMUNICATION than in other baseline approaches

except CENTRALIZED. Notably, AMA surpasses IDEAL COM-

MUNICATION by 1% with RWP mobility and 3% with CSE

mobility, while achieving a performance close to that of

CENTRALIZED, regardless of the mobility model.

C. Threshold Selection Benchmarks
In this set of experiments, our objective is to study the per-

formance of Adaptive-ATS and compare it with other potential

threshold selection algorithms. To have a fair comparison, we

use the same AMA algorithm for federated learning, but replace

the default Adaptive-ATS with other algorithms.

Implemented Selection Algorithms. We compare Adaptive-
ATS with the following algorithms:

• STATIC: The aggregation threshold is set to a fix value. The

static threshold algorithm is denoted by ST (α), where α is

the fix threshold value.

• EPSILON-GREEDY: The aggregation threshold is set to a

random value with probability ε; otherwise, the value with

the highest average reward is chosen.

• ADAPTIVE-GREEDY: Similar to Epsilon-Greedy, however,

the value of ε decreases over time [27].

• CONTEXTUAL-GREEDY: Same as Epsilon-greedy except

that the expected reward for each arm is predicted using

a linear regression model based on the context.

CSE2 CSE3 CSE4 CSE5
Mobility Scenario

0

5

10

15

20

Im
p
ro
ve
m
en
t
in

A
cc
u
ra
cy

(%
)

ST(0.1)

ST(0.6)

AMA

(a) Effect of threshold on accuracy.

CSE2 CSE3 CSE4 CSE5
Mobility Scenario

0

5

10

15

20

25

30

#
of

M
od
el
A
gg
re
ga
ti
on
s
(×

10
0)

ST(0.1)

ST(0.6)

AMA

(b) Effect of threshold on number of model
aggregations.

Fig. 4: Effect of the aggregation threshold on accuracy and model
aggregations in different CSE mobility scenarios.

ST(0.1) ST(0.3) ST(0.6) ST(0.9) AMA

Threshold Selection Method

0

5

10

15

20

Im
p
ro
ve
m
en
t
in

A
cc
u
ra
cy

(%
)

(a) Effect of threshold on accuracy.

ST(0.1) ST(0.3) ST(0.6) ST(0.9) AMA

Threshold Selection Method

0

5

10

15

20

25

30

#
of

M
od
el
A
gg
re
ga
ti
on
s
(×

10
0)

(b) Effect of the aggregation threshold on
number of model aggregations.

Fig. 5: Effect of aggregation threshold on accuracy and model
aggregations in RWP mobility.

Static Threshold Selection. We compared the final model

accuracy and the number of aggregations in different CSE

mobility scenarios for ST (0.1), ST (0.6), and AMA. Fig. 4(a)

shows the improvement in accuracy achieved by each al-

gorithm compared to the fixed baseline threshold 0 (i.e.,
always aggregating all received models). As can be seen,

the improvement is consistently positive, thus highlighting

the importance of using a threshold in the system. The 0.6
threshold yields better results in more dense environments

with higher link reliabilities, and the 0.1 threshold generates

favorable results regardless of the environment. Notably, AMA
achieves higher accuracy compared to the static threshold

algorithms in all scenarios. While these results indicate that

a 0.1 threshold is a good choice in the considered scenarios,

as shown in Fig. 4(b), the 0.1 threshold requires an average

of 83% more model aggregations than AMA. This makes AMA
the best choice as it provides higher accuracy with reduced

computational overhead compared to the 0.1 threshold. We

have also compared the performance AMA under the RWP

mobility model with static aggregation threshold values 0.1,

0.3, 0.6, and 0.9. The results are presented in Fig. 5. As

can be seen from the figure, while lower threshold values,

such as 0.1 and 0.3, produce higher improvement in training

accuracy, AMA achieves similar accuracy with 51% and 10%
fewer aggregations than ST (0.1) and ST (0.3), respectively.

2023 19th International Conference on Network and Service Management (CNSM)

RWP CSE1
Mobility Scenario

0

5

10

15

20

Im
p
ro
ve
m
en
t
in

A
cc
u
ra
cy

(%
)

Epsilon-Greedy

Adaptive-Greedy

Contextual-Greedy

Adaptive-ATS

(a) Effect of dynamic threshold selection
method on accuracy.

RWP CSE1
Mobility Scenario

0

5

10

15

20

#
of

M
od
el
A
gg
re
ga
ti
on
s
(×

10
0)

Epsilon-Greedy

Adaptive-Greedy

Contextual-Greedy

Adaptive-ATS

(b) Effect of dynamic threshold selection
method on number of model aggregations.

Fig. 6: Effect of dynamic threshold selection method on accuracy and
model aggregations in different mobility scenarios.

Dynamic Threshold Selection. We compare the three greedy

algorithms (that dynamically select the aggregation threshold)

to Adaptive-ATS under both mobility models. The results, de-

picted in Fig. 6, demonstrate that Adaptive-ATS performs the

best in terms of accuracy among all the algorithms while

requiring fewer aggregations. This indicates that incorporating

contextual information into the threshold selection algorithm

can significantly enhance its performance, and the use of an

adaptive epsilon value enables a balanced trade-off between

exploration and exploitation.

VI. CONCLUSION

In this paper, we proposed AMA for federated learning in

vehicular networks, taking into account the unreliability of

wireless communications caused by vehicle mobility. Our ap-

proach utilizes a dynamic threshold to adapt the participation

of vehicles in the federated learning process, and we evaluated

it using two different mobility models. The results demonstrate

that our method surpasses other approaches in terms of final

accuracy and the number of aggregations required. For future

work, we recommend exploring more advanced reinforcement

learning methods that consider additional context information

such as vehicle direction and speed. Additionally, investigating

alternative machine learning algorithms to enhance the model’s

accuracy or training multiple models simultaneously, could be

worthwhile avenues of research.

REFERENCES

[1] A. Nanda, D. Puthal, J. J. Rodrigues, and S. A. Kozlov, “Internet of
autonomous vehicles communications security: overview, issues, and
directions,” IEEE Trans. Wireless Commun., vol. 26, no. 4, 2019.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[3] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, 2020.

[4] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized
federated learning,” in NeurIPS, 2018.

[5] J. Posner, L. Tseng, M. Aloqaily, and Y. Jararweh, “Federated learning
in vehicular networks: Opportunities and solutions,” IEEE Network,
vol. 35, no. 2, 2021.

[6] H. Ye, L. Liang, and G. Y. Li, “Decentralized federated learning with
unreliable communications,” IEEE J. Sel. Topics Signal Process., vol. 16,
no. 3, 2022.

[7] Z. Du, C. Wu, T. Yoshinaga, K.-L. A. Yau et al., “Federated learning
for vehicular internet of things: Recent advances and open issues,” IEEE
Open Journal of the Computer Society, vol. 1, 2020.

[8] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A
segmented gossip approach,” arXiv preprint arXiv:1908.07782, 2019.

[9] T. Wink and Z. Nochta, “An approach for peer-to-peer federated learn-
ing,” in Proc. IEEE/IFIP DSN Workshops, 2021.

[10] A. Taı̈k, Z. Mlika, and S. Cherkaoui, “Clustered vehicular federated
learning: Process and optimization,” IEEE Trans. Intell. Transp. Syst.,
2022.

[11] H. Ochiai, Y. Sun, Q. Jin, N. Wongwiwatchai et al., “Wireless ad hoc
federated learning: A fully distributed cooperative machine learning,”
arXiv preprint arXiv:2205.11779, 2022.

[12] A. Nguyen, T. Do, M. Tran, B. X. Nguyen et al., “Deep federated
learning for autonomous driving,” in IEEE IV, 2022.

[13] J.-H. Chen, M.-R. Chen, G.-Q. Zeng, and J.-S. Weng, “BDFL: a
byzantine-fault-tolerance decentralized federated learning method for
autonomous vehicle,” IEEE Trans. Veh. Technol., vol. 70, no. 9, 2021.

[14] T. Lu, D. Pál, and M. Pál, “Contextual multi-armed bandits,” in AIStats,
2010.

[15] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi et al., “Federated optimization
in heterogeneous networks,” Proc. MLSys, vol. 2, 2020.

[16] E. Jeong, S. Oh, H. Kim, J. Park et al., “Communication-efficient on-
device machine learning: Federated distillation and augmentation under
non-iid private data,” arXiv preprint arXiv:1811.11479, 2018.

[17] L. Huang, Y. Yin, Z. Fu, S. Zhang et al., “Loadaboost: Loss-
based adaboost federated machine learning with reduced computational
complexity on iid and non-iid intensive care data,” arXiv preprint
arXiv:1811.12629, 2018.

[18] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation
in federated learning,” arXiv preprint arXiv:1905.10497, 2019.

[19] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab et al., “Braintorrent: A
peer-to-peer environment for decentralized federated learning,” arXiv
preprint arXiv:1905.06731, 2019.

[20] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” arXiv preprint arXiv:1901.11173, 2019.

[21] Q. Chen, Z. Wang, Y. Zhou, J. Chen et al., “CFL: Cluster federated
learning in large-scale peer-to-peer networks,” in Proc. ISC, 2022.

[22] I. Aliyu, M. C. Feliciano, S. Van Engelenburg, D. O. Kim et al., “A
blockchain-based federated forest for sdn-enabled in-vehicle network
intrusion detection system,” IEEE Access, vol. 9, 2021.

[23] H. Liu, S. Zhang, P. Zhang, X. Zhou et al., “Blockchain and federated
learning for collaborative intrusion detection in vehicular edge comput-
ing,” IEEE Trans. Veh. Technol., vol. 70, no. 6, 2021.

[24] S. Otoum, I. Al Ridhawi, and H. T. Mouftah, “Blockchain-supported
federated learning for trustworthy vehicular networks,” in Proc. IEEE
GLOBECOM, 2020.

[25] S. R. Pokhrel and J. Choi, “A decentralized federated learning approach
for connected autonomous vehicles,” in Proc. IEEE WCNCW Workshops,
2020.

[26] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk et al., “Vehicular
networking: A survey and tutorial on requirements, architectures, chal-
lenges, standards and solutions,” IEEE Commun. Surveys Tuts., vol. 13,
no. 4, 2011.

[27] A. dos Santos Mignon and R. L. d. A. da Rocha, “An adaptive imple-
mentation of ε-greedy in reinforcement learning,” Procedia Computer
Science, vol. 109, 2017.

[28] D. Cortes, “Adapting multi-armed bandits policies to contextual bandits
scenarios,” arXiv preprint arXiv:1811.04383, 2018.

[29] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Master’s thesis, Department of Computer Science,
University of Toronto, 2009.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, 2016.

[31] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa, “Stochastic properties
of the random waypoint mobility model,” Wireless Networks, vol. 10,
no. 5, 2004.

[32] H. Ochiai and H. Esaki, “Mobility entropy and message routing in
community-structured delay tolerant networks,” in Proc. AINTEC, 2008.

2023 19th International Conference on Network and Service Management (CNSM)

