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Abstract—IEEE Time-Sensitive Networking (TSN) Task Group
has standardized enhancements for Ethernet networks to ensure
high reliability, deterministic latency and minimal jitter for
time-critical traffic. However, TSN capabilities have not yet
been extended to wireless standards. We discuss the inherent
characteristics of wireless communications that currently limit
TSN performance. We argue for the development of a framework
for an integrated wired and wireless TSN using Software-
Defined Wireless Networking (SDWN) to address this gap. Our
approach focuses on addressing the mobility of wireless stations
by dynamically adjusting the wireless channel bandwidth through
SDWN. This adaptive approach takes into account the proximity
of wireless stations to the access point and configures the wireless
channel bandwidth to meet the stringent latency requirements
of time-sensitive wireless applications. In this paper, we sketch
a general architecture for the framework. Furthermore, we
present the development of a TSN-enabled network emulator
testbed, leveraging a suite of open-source tools including Mininet,
Mininet-WiFi, a modified version of Open Virtual Switch (OVS),
Linux TAPRIO, RYU SDN controller, and SDWN controller.
Our experimental evaluation demonstrates an average one-way
latency of approximately 14 µs, achieved through the utilization
of a modified version of the OVS software switch.

I. INTRODUCTION

Time-sensitive systems, such as vehicular networks, require
precise time synchronization, deterministic end-to-end latency
and jitter, and extremely low packet loss. Time-critical flows,
dedicated by several real-time constraints, often have stringent
timing and performance requirements. In addition to time-
critical traffic, there is also non-critical (best-effort) traffic that
can negatively impact the performance of critical messages.
Ethernet networks were not designed to support the transport
and routing of time-critical traffic alongside best-effort traffic.
To address this, Time-Sensitive Networking (TSN) emerged
as a networking technology that can provide precise time syn-
chronization, timeliness, and preemption in Ethernet networks.
The IEEE TSN Task Group has developed a set of standards
to provide bounded latency, low jitter, and guaranteed high
reliability, while avoiding interference from best-effort traffic
on Ethernet-based communications.

Ethernet-based (wired) Local Area Networks (LANs) may
not be suitable for certain applications as they do not scale
well with large numbers of hosts, and do not support mobility
requirements. Additionally, the installation and maintenance
of wired networks can be challenging and often impose

significant burdens. Thus, there is a strong motivation to use
wireless communications such as IEEE 802.11 Wi-Fi, Cellular
technologies (4G, 5G, and beyond), and wireless technologies
for IoT applications (ZigBee, LoRaWAN, and NB-IoT). Mod-
ern time-sensitive applications, such as industrial automation
and IoT, are expected to leverage both wired and wireless
communications to enable greater flexibility, mobility, and
efficiency.

Most TSN standards are limited to Ethernet-based networks
and do not support wireless access networks. While a few TSN
capabilities have been extended over Wi-Fi 802.11, includ-
ing accurate time synchronization, traffic identification, and
stream reservations, mechanisms for controlling congestion
and achieving deterministic latency and low packet loss in
wireless networks have not yet been explored. Extending TSN
capabilities to wireless environments, such as Wi-Fi (IEEE
802.11) and cellular, is an open research problem.

Extending TSN capabilities over the wireless medium is
a significant research challenge due to the unique physical
properties of wireless channels, such as variable capacity and
higher packet loss caused by radio-frequency interference and
the stochastic nature of the channel. To improve wireless
link reliability, various techniques can be employed, such as
adjusting transmit power, using redundant paths, and adapting
appropriate modulation and coding schemes based on channel
conditions. However, these measures may increase interference
or latency. Additionally, channel access procedures are a
major source of delay in most wireless systems, which allows
multiple users to share the medium.

We advocate for the establishment of a framework that
seamlessly integrates wired and wireless Time-Sensitive Net-
working (TSN), aligning with the IEEE TSN standards. Our
central focus is to ensure bounded latency and mitigate jitter,
particularly in the context of station mobility within wireless
environments. We assume that the influence of other wire-
less characteristics on the evaluated performance metrics is
minimal. To address these objectives, we propose a dynamic
adjustment of the wireless channel bandwidth, by considering
the proximity of wireless stations to the access point.

The proposed framework leverages a centralized Software-
Defined Networking (SDN) controller to implement a control
mechanism for TSN capabilities through three steps: topology
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Table I: IEEE 802.1 TSN Standards

IEEE Standard Area of definition
1588, 802.1AS Timing and synchronization
802.1Qca Path control and reservation
802.1Qbv Time-aware scheduling
802.1Qbu & 802.3br Frame preemption
802.1Qcc Central configuration method
802.1Qci Time-based ingress policing
802.1CB Frame replication and elimination

discovery, scheduling based on TSN flow requirements, and
schedule distribution. Furthermore, we employ a Software-
Defined Wireless Networking (SDWN) controller to enable
programmability of wireless parameters, facilitating the dy-
namic configuration of the wireless network, including adjust-
ments to channel bandwidth.

Deployment and evaluation of TSN frameworks often re-
quires the use of dedicated and costly hardware solutions. In
contrast, this paper describes a flexible and straightforward
testbed to evaluate the proposed framework. To this end,
we have developed a testbed prototype, employing Mininet
and Mininet-WiFi network emulators, a modified version of
Open vSwitch (OVS), and Linux Time-Aware Shaper (TAS)
toolset. The testbed achieves an average one-way latency of
approximately 14 µs for a TSN UDP stream with 1518-byte
payload and a 10 ms inter-packet gap. This work represents a
step towards developing a testbed using existing open-source
tools as a platform to study the performance of TSN networks,
both in general and within the context of wireless TSNs.

II. BACKGROUND ON TIME SENSITIVE NETWORKING

The IEEE 802.1 TSN standards aim to deliver data flows
with very low packet loss rates and bounded end-to-end
latency and jitter over IP networks. The IEEE TSN work-
ing group is developing Ethernet-based TSN standards that
provide deterministic communications, including time syn-
chronization, traffic scheduling, and bandwidth reservation. A
summary of a subset of the TSN standards and definitions can
be found in Table I. Below, we will provide a brief overview
of the key aspects relevant to this work.

IEEE 802.1Qcc is a centralized paradigm that manages
and controls the network globally. It enhances the existing
decentralized mechanism for flow reservation and stream
management by having flow requirements sent from a Cen-
tralized User Configuration (CUC) to a Centralized Network
Configuration (CNC). In this fully centralized model, the CNC
is responsible for the configuration and control of the TSN
switches, while the CUC is responsible for the endpoints
(Talkers/Listeners). The CUC communicates with the CNC
using the User Network Interface (UNI) for routing and
reservation.

While the majority of TSN standards are designed for
Ethernet as the transport medium, TSN can be extended to
support other types of transport media as well. Figure 1

Figure 1: TSN Reference Protocol Stack [1]

illustrates a TSN protocol stack with three physical layer
media including Ethernet, Wi-Fi, and cellular.

Some TSN functionalities have been extended to IEEE
802.11, such as time synchronization (timing measurement
capability in 802.11-2012), stream reservation (SRP over
802.11 for Audio and Video defined in 802.11aa), and 802.11
links in an 802.1Q network (802.11ak). However, other QoS
features to control congestion by reducing latency and jitter
have not been explored. Therefore, further research is needed
to address the worst-latency and reliability requirements. It
is worth noting that it is not practical to meet TSN-grade
performance in wireless TSN due to the characteristics of
wireless environments.

III. RELATED WORK

Numerous studies have explored diverse facets of TSN
standards, encompassing topics like time synchronization,
scheduling, routing, and protocols for congestion control.

Several studies have examined techniques and challenges
related to scheduling and routing in time-sensitive SDN.
Nayak et al. [2] proposed routing and scheduling algorithms
for a Time-Sensitive SDN (TSSDN) that leverages the global
view of the control plane on the data plane to schedule and
route time-critical flows. Another approach by Said et al. [3]
implements the fully centralized IEEE 802.1Qcc model using
SDN, and explores how SDN capabilities can speed up the
process of updating new flows or configuring a TSN network.

Several surveys have explored the impact of wireless pro-
tocols, such as 5G and unlicensed spectrum, on latency in
TSN [4]. Studies have also looked into the problem of low
latency resource allocation and scheduling for wireless control
systems in 5G and Wi-Fi networks [5]. In addition, [6]
presents a work that integrates IEEE 802.1AS synchronization
in IEEE 802.11 for wireless TSN.

Cavalcanti et al. [7] provide an overview of the potential
applications, requirements, and unique research challenges of
extending TSN capabilities over wireless networks, particu-
larly for industrial automation systems. Susruth et al. [8] utilize
wireless TSN features to enable low-latency wireless commu-
nications in an industrial collaborative robotics scenario. They
implement a TSN control plane GCL on a Wi-Fi network stack
using Linux kernel tools on the nodes. In our work, we do not
limit ourselves to a specific application, and instead aim to
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Figure 2: System Architecture

develop a wireless TSN paradigm that can be applied to a
broader range of fields.

IV. AN INTEGRATED APPROACH FOR WIRED AND
WIRELESS TSN

Figure 2 illustrates an overview of our proposed architecture
for extending wired TSN domain standards to wireless TSN
domain. Our integrated wired and wireless TSN model is based
on the management model for wired TSN as defined in IEEE
802.1Qcc. We assume an integrated wired and wireless SDN
composed of multiple TSN-enabled bridges and several wired
and wireless talker/listener pairs, generating and receiving
time-critical traffic. The green lines in Figure 2 represent
data plane communication. Control plane communication is
represented by solid blue lines for switches and dashed blue
lines for managing traffic flows on end hosts, which include
talkers and listeners.

In our approach, we adopt a fully centralized TSN control
plane architecture as presented in IEEE 802.1Qcc to sup-
port QoS capabilities such as congestion control by reduc-
ing latency and jitter, and increasing reliability. CUC and
CNC are the two main control plane components. In our
architecture, CUC and CNC act as SDN applications. CUC
is responsible for discovering end devices, retrieving their
capabilities and user requirements, and configuring TSN flows
on the end devices. CNC performs the appropriate TSN routing
and scheduling updates. CNC uses remote management to
discover the physical topology, retrieve bridge capabilities,
and configure TSN features/resources on each bridge. The
functionality of CUC can also be integrated into CNC. The
SDN controller is responsible for traditional network configu-
ration and monitoring, thus configuring the bridges in normal
network conditions.

To extend TSN features to wireless networks, we utilize
SDWN controller to configure radio parameters such as wire-
less channel bandwidth to meet time-critical flow require-
ments. We propose using an intelligent application running

on the SDWN controller to provide deterministic access to
wireless channels and reduce latency by increasing wireless
channel bandwidth for time-critical flows and limiting best-
effort traffic bandwidth.

As there is a correlation between the distance of wireless
stations from the access point and the required wireless
channel bandwidth for time-critical flows, we have developed
an algorithm that monitors the positions of wireless stations
and calculates their distances from the Wi-Fi access point.
Based on these measurements, the algorithm generates the
necessary channel bandwidth to meet the requirements of TSN.
By dynamically adapting the channel bandwidth based on
wireless station positions, we aim to achieve bounded latency
for time-critical applications in wireless networks.

Before talkers and listeners can start exchanging TSN flows,
several steps are required to provision a TSN path. We
describe a workflow of these steps to show how the entities
communicate with each other.

Topology discovery. First, the CUC requests the CNC to
discover the physical network topology. Learning the physical
topology is a necessary step in preparing for schedule com-
putation. The SDN paradigm, with its logically centralized
controller, is aware of the entire network and has a complete
view of the network and its topology. Upon discovering the
topology, the CNC knows how the end devices are connected
and will inform the CUC. Any changes in the topology due
to link failure, node addition, or removal is handled by the
SDN controller, which updates the CNC accordingly to take
the necessary action.

Provisioning the required network resources. The CUC
determines which end device (talker) intends to communicate
with other end devices (listener/s). It then defines the latency
requirements for the communication, the maximum size of the
Ethernet packet that will be sent, and other dependencies.

Computing schedule. In the next step, the CUC initiates a
request to the CNC to compute the schedule with consideration
of the discovered topology and TSN flow requests. The
CNC returns a response to the computation request indicating
success or failure of the scheduling logic. The computational
requirements can be complex and may require a detailed
knowledge of the application within each end device.

Confirming the computation result. After the schedule has
been computed, the CNC sends the details to the CUC. This
information includes the details for each end device and bridge
involved in TSN flows, as well as the necessary information for
configuring the flows. This includes information for each end
device and bridge involved in the TSN flows, such as unique
flow identifiers, transmission and reception window times at
each hop, and end-to-end latency. It is important to note that
when transmitting a TSN flow, the talker is given a window
in which to transmit.

Distributing the schedule. Once the CUC confirms that the
schedule will work and meets the requirements, it issues a
request to the CNC to distribute the computed schedule to
the TSN bridges. The CUC will also inform the talkers and
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listeners for the TSN flows. The talkers are then responsible for
transmitting every TSN flow according to the agreed schedule.

V. IMPLEMENTATION

We implemented the proposed scheme for an integrated
wired and wireless TSN environment using Mininet and
Mininet-WiFi network emulators and a software TSN switch
with Linux support for TAS. Mininet-WiFi [9] is a fork of
Mininet which allows the using of both WiFi Stations and
Access Points. In the virtualized environment, we used OVS
instances for traffic forwarding between the talker and listener
hosts and the TSN switches. The RYU SDN controller was
used to program the OVS switches.

Note that when we use network emulators, the clocks of
all virtualized TSN switches are synchronized, so all switches
refer to the same cycle base time with their schedules. As a
result, we do not need to implement PTP to synchronize clocks
in network devices.

To support TSN scheduling functionality, we used the Time-
Aware Priority Shaper (TAPRIO) Qdisc on the egress ports of
the OVS in the Mininet environment. TAPRIO is the Linux
queuing discipline (Qdisc) that implements TAS as a simplified
version of IEEE 802.1Qbv. In more detail, TAS uses a gate
behind each queue. When the gate of a queue is open, the
first packet in the queue is allowed to be transmitted. The
time schedule in the GCL determines whether a gate is open
or closed. Each entry in the GCL has a timestamp that defines
the time when the state of the gates should change to a given
state. TAPRIO allows for the configuration of GCL entries.

TAPRIO requires a multi-queued network interface. To
enable multiple transmission queues on Virtual Ethernet pairs,
we have modified Linux kernel 5.2.16. This allows us to use
multi-queued Virtual Ethernet devices inside Mininet.

The configuration of Linux TAPRIO Qdisc is done using the
Linux traffic control tool (TC). In order to define how to assign
packets to traffic classes, TAPRIO uses the priority field of the
Linux socket buffer structure. Since the socket buffer structure
is an internal kernel data structure for managing packets, it
cannot be directly set from user space. We leverage the Priority
Code Point (PCP) field of the VLAN tag to classify traffic
into TSN and non-TSN traffic classes. By utilizing this field,
we assign appropriate priorities to different types of traffic.
Additionally, we have made modifications to OVS to enable it
to read the VLAN tag and set the socket buffer priority right
before the packet reaches the QDISC.

To facilitate SDWN control, we utilize an extended SDN
controller designed to enable the programming of radio pa-
rameters through an open Southbound API for wireless access
points, as well as an open Northbound API for the Centralized
Network Controller (CNC). By employing such SDWN, we
gain the ability to program Wi-Fi access points and configure
bandwidth settings as outlined in IV. Furthermore, we have
implemented an agent based on [10] that provides programma-
bility for a range of Wi-Fi parameters at the physical, MAC,
and Link-Layer levels. This agent operates in parallel with
OpenFlow and utilizes a specifically developed protocol to

accomplish its tasks effectively. With this setup, we achieve
enhanced control and programmability over various aspects of
the Wi-Fi network, enabling us to optimize its performance
and meet TSN requirements.

VI. PRELIMINARY EVALUATION

Our ultimate goal is to evaluate the performance of con-
verged wired and wireless TSNs. With that in mind, the
purpose of this preliminary evaluation is to assess the perfor-
mance of the testbed we developed utilizing a suite of readily
available open-source tools and off-the-shelf solutions. The
outcomes of this evaluation will provide valuable insights into
overcoming the challenges associated with the integration of
wired and wireless TSNs.

We implemented a prototype of the proposed architecture
in Mininet and Mininet-WiFi network emulators as explained
in Section V. As previously discussed, the Linux Kernel
was modified to support multi-queued Virtual Ethernet. The
prototype system included the RYU SDN controller version
4.34 and Mininet version 2.3.0 and Mininet-WiFi.

We built a testbed topology consisting of four OVS TSN-
enabled software bridges between the talker and listener pairs.
The capacity of all links was set to 1 Gbps. The experiment
used two sets of flows: i) time-critical traffic involves the
transmission of UDP packets within a 1518-byte Ethernet
frame at a rate of 100 packets per second and ii) best-effort
traffic of UDP packets with 1518 bytes Ethernet frame. In
our findings, we detail the effects observed when utilizing a
customized version of OVS and TSN TAPRIO scheduling on
latency and jitter. These evaluations were conducted within
a 10 ms cycle time while systematically varying the ratio
between time-critical and best-effort traffic.

It is important to note that, in general, the average latency of
a virtual TSN switch is expected to be higher than for a phys-
ical TSN switch due to the overhead incurred by the software
implementation of the switch functionality. We evaluated the
latency of a GCL entry with a time-sensitive traffic duration
of 7.5 ms, followed by 2.5 ms of best effort traffic within
a 10 ms cycle. In our experiments, we emulated the network
using both Mininet and Mininet-WiFi. To ensure reliability and
accuracy, we conducted each experiment 10 times, and present
the average outcomes derived from these multiple iterations.
Figure 3 illustrates the one-way latency over time, alongside
its Cumulative Distribution Function (CDF), for the mentioned
UDP stream within the Mininet emulator, as observed in one
experimental run. Furthermore, Table II provides statistical
insights into one-way latency, including payloads of diverse
sizes ranging from 64 bytes to 1518 bytes. Note that these
reported results represent the averages derived from 10 distinct
experiment runs.

Furthermore, we examined the impact of a GCL entry
with 5 ms allocated to both time-sensitive and best-effort
traffic. As a result, we observed an increase in the average
delay for time-critical traffic, reaching 15.5 µs in Mininet.
This experiment shows that even when the background (best-
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Figure 3: Latency for a one-way TSN UDP stream 1518B.

Table II: Comparison of latency measured for TSN UDP
stream with data rate of 100 packets per second.

Frame Size
Latency [µs]

low mean peak
1518B 4.013 14.636 22.580
1024B 4.179 17.968 23.872
512B 4.653 15.271 22.586
256B 4.373 12.831 21.724
64B 3.182 17.025 19.364

effort) traffic saturates the link, time-critical traffic continues
to guarantee deterministic latency.

VII. CONCLUSION

We have argued that wireless TSN is an important and
rich area for future research, highlighting the challenges in
extending TSN capabilities to wireless networks. We proposed
an architecture for integrating wired and wireless TSN using
SDN and SDWN. To extend TSN features to wireless medium
during mobility of stations, we utilized an algorithm that
dynamically adapts the channel bandwidth based on wireless

station positions in order to guarantee bounded latency of time-
critical applications in wireless networks.

Furthermore, we have developed a prototype of testbed for
implementing TSN in an integrated wired and wireless net-
work and reported the implementation results using Mininet,
a modified version of OVS, and the Linux traffic shaper
TAPRIO. Our observations reveal an average one-way latency
of approximately 14 µs for a TSN UDP stream featuring
a 1518 bytes frame size, operating at a data rate of 100
packets per second. These results were achieved through the
implementation of a customized version of the OVS software
switch. Building upon the insights gained from our preliminary
evaluation of the developed testbed, we plan to delve into
a detailed examination of the algorithm’s performance, with
a specific focus on guaranteeing bounded latency within the
dynamic context of station mobility. Furthermore, we intend
to expand our research scope and consider additional wireless
characteristics, including the impact of radio-frequency inter-
ference and the stochastic nature of the channel.
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