
pUpdate: Priority-based Scheduling for Continuous
and Consistent Network Updates in SDN

Mehdi Nobakht
School of Systems and Computing

University of New South Wales, Canberra, Australia
mehdi.nobakht@unsw.edu.au

https://orcid.org/0000-0003-4676-536X

Arshiya Rezaie Hezaveh
Computer Engineering Department

Sharif University of Technology, Tehran, Iran
arshiya.rezaie@sharif.edu

Abstract—Preserving consistency properties, such as preventing
forwarding loops, black-holes, and congestion, is crucial dur-
ing the transitions in network forwarding state that occur be-
tween network updates. Nevertheless, maintaining these properties
within SDN networks poses challenges due to flexibility and pro-
grammability of SDN, which can result in an increased frequency
of network updates. While existing research has introduced mech-
anisms to uphold consistency during network transitions, they
often overlook the consideration of flow priority when scheduling
forwarding rules. We address this problem with pUpdate, a frame-
work designed to facilitate consistent and continuous network
updates while accounting for flow priority in the scheduling of
forwarding rules within SDN. We have developed pUpdate and
rigorously evaluated its performance through simulations. The
measurements demonstrate that pUpdate adheres to priority-
based scheduling without any degradation in network update
performance when compared to state-of-the-art approaches in
SDN network update.

I. INTRODUCTION

In computer networking, the process of modifying the
network forwarding state is typically known as a network
update. These updates are triggered by events such as topology
changes, failures, and policy adjustments, and they are initiated
by network applications. In comparison to traditional non-SDN
networks, SDN networks experience more frequent updates
due to their enhanced flexibility, which allows for dynamic
modifications initiated by network applications.

Maintaining consistency properites is crucial during network
updates to avoid undesired behavior of network. The essential
consistency properties in networking are: i) prevention of black-
holes: ensuring that no packet are dropped within the network,
ii) avoiding forwarding loops: ensuring that packets do not
circulate endlessly in the network, iii) per-packet consistency:
guaranteeing that packets are forwarded along either their initial
or final routes, but not both, and iv) maintaining congestion-free
condition: designing the network to avert excessive congestion.
These properties are critical in ensuring the reliability and
stability of a network during the transitions that occur between
network updates. Proper management of network updates is
vital to preserving consistency during updates and preventing
performance degradation.

In the literature, research on consistent network updates can
be classified into two primary categories. The first category
revolves around the sequential execution of updates, one at
a time, transitioning the network from an initial state to a
final state in a step-by-step manner [1], [2], [3], [4]. In
this approach, known as single update, a new update must
patiently await the completion of the current update. This
approach assists in preventing conflicts and guarantees that
updates follow a predictable sequence, thereby minimizing
the potential for inconsistencies during the transition between
updates. Nevertheless, it faces challenges when confronted
with sporadic bursts of update requests. In response to this
challenge, a second category has emerged, focusing on the
continuous execution of network updates [5], [6]. Within the
continuous update category, the primary emphasis lies in the
immediate execution of updates as they occur, accomplished
by merging new updates with any previously unexecuted ones.
This amalgamation results in operations akin to executing
updates sequentially.

Despite considerable research efforts aimed at developing
efficient algorithms for ensuring consistent network updates in
SDN, the current solutions often neglect to account for flow
priorities when updating rules. Our prior work [7] highlighted
the repercussions of neglecting flow priorities during the instal-
lation of forwarding rules in SDN, all while striving to maintain
consistency properties. Overlooking flow priority can result in
priority inversion, where lower-priority flows are updated ahead
of higher-priority ones. This situation can lead to extended
network downtime for high-priority flows, particularly in events
like link failures. Additionally, existing methods designed to
preserve consistency during network updates may introduce
deadlocks, where no progress can be made due to a scarcity
of link resources occupied by flows. To mitigate deadlocks,
existing solutions suggest reducing flow rates, which, unfor-
tunately, comes at the cost of decreased network throughput.
Nonetheless, this approach can potentially leave high-priority
flows susceptible while providing relief to low-priority ones,
thereby causing prolonged downtime and imposing resource
constraints on the controller for high-priority flows.

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP



sw1

sw2 sw3

sw4

sw5

(a) Update 1 (U1)

sw1

sw2 sw3

sw4

sw5

(b) State 1 (S1)

sw1

sw2 sw3

sw4

sw5

(c) State 2 (S2)

sw1

sw2 sw3

sw4

sw5

(d) Update 2 (U2)

< 1, 5 >: 10 < 5, 4 >: 5< 5, 3 >: 5 < 3, 4 >: 5

fg

fb

fr

(e) transition from S1 to U2

Figure 1: An Example of network updates (see §II for a detailed discussion of the example)

We present pUpdate, a framework designed to incorpo-
rate flow priority into the scheduling of forwarding rules
within SDN, all while maintaining consistency during network
updates. It combines the advantages of continuous updates
with efficient scheduling algorithms to achieve fast and con-
sistent network updates. We have implemented a prototype
of pUpdate in Java code. We evaluate the performance of
pUpdate by conducting experiments within a testbed topology
that simulates two network topologies; a WAN and a three-
layer FatTree datacenter topology. The WAN topology was
constructed with a total of 8 switches, while the FatTree
topology consisted 80 switches. Evaluation results demon-
strates that pUpdate adheres to priority-based scheduling of
forwarding rules across a variety of evaluation settings without
any performance degradation. These settings include a mix-
and-match of network topologies, varying update arrival rates,
and varying network loads.

II. MOTIVATING EXAMPLE

To demonstrate the negative impact of not considering the
priority of flow in scheduling rule updates in SDN, consider a
five-node network illustrated in Fig. 1. The network topology
has links with a capacity of 10 units each. Directed edges
that are solid indicate executed forwarding rules, while dashed
directed edges indicate unexecuted forwarding rules. All flows
in the network have a demand of 5 units. U1 installs two flows
(fb and fr) with medium and low priorities and color-coded in
blue and red, respectively (Fig. 1a).

A straightforward approach would be to send out all for-
warding rule updates in one shot. For example, instructing all
relevant switches to install the related forwarding rules for fb
and fr at once. However, this approach could result in a black-
hole in sw5 if sw1 updates its rule before sw5. Although the
black-hole will eventually disappear once sw5 updates its rule,
there is no guarantee when this will happen in an asynchronous
system with possible message delays and losses. By properly
ordering and timing updates, the consistency properties of the
network can be maintained. Fig. 1 depicts several intermediate
states (such as State 2 or S2) during the update process to
maintain consistency in the network.

Assume that the controller receives an update event U2 while
executing U1. U2 re-routes flows (fb and fr) to different paths

and installs a new flow fg with high priority, which is color-
coded in green (Fig. 1d). In a single network update strategy,
if update U2 occurs while the controller is executing U1 and
the network state is State 1 (Fig. 1b), U2 must wait until the
execution of U1 is complete. This means that update events
U1 and U2 will be executed sequentially, resulting in network
forwarding state changes between the deterministic states given
by the updates (e.g., U1 → U2).

In contrast, the continuous network update method aims to
transition from an intermediate state to the target state (e.g.,
S1 → U2) without interruptions. The intermediate states con-
tain unexecuted operations that will be queued at the controller.
However, if not properly handled, the queuing can cause flow
priority inversion, where a high-priority flow in a recent update
event may be prevented from being updated due to low-priority
flows waiting to be fully executed. This can negatively impact
network performance.

Consider a scenario where U2 arrives while the controller
is executing U1 and the network state is State 1 (Fig. 1b). To
change the network forwarding state from S1 to U2 (S1 → U2),
the controller has to execute the operations illustrated in Fig. 1e.
If the controller does not prioritize flow updates and first
executes flow fr, flow fg will have to wait until flow fb
releases the link between sw5 and sw4 (denoted by 〈5, 4〉)
because fr has consumed all the remaining capacity of 〈5, 4〉.
This highlights the importance of considering flow priority as
there is no guarantee that fg will acquire its resources in the
next step, as the controller may not update fg if a new update
arrives.

III. PUPDATE ARCHITECTURE

We present an overview of the pUpdate architecture, which
consists of three key components, as illustrated in Fig. 2. Upon
receiving an update event (e.g., Un+1), containing new paths
for a set of flows, pUpdate generates forwarding rule operations
that are subsequently transmitted to the switches.

The Initial Operations component generates operations to
transition from the current paths to the target paths associated
with the new update event. The Operation Composition com-
ponent compares the new update event with the ongoing update
event, and then combines these operations with unexecuted
operations to produce new operations that can change the net-
work forwarding state from the current intermediate state to the

2023 19th International Conference on Network and Service Management (CNSM)



Initial Operations

Operation Composition

Priority-based Rule Scheduling

Forwarding Rule Operations

Un+1

Figure 2: Priority-based Network Update Framework

target state. The Priority-based Forwarding Rule Scheduling
component installs flow rules based on flow priority.

Initial Operations: When a new update event is received,
pUpdate pauses the ongoing update process and begins to
process the new event. Initially, it assumes that all pending
forwarding rules have already been executed. Then, it compares
the paths in the new event with the paths in the current
update to identify the necessary initial operations to transi-
tion from the current paths to the target path. Subsequently,
pUpdate compares the paths in the new event with the paths in
the current update to identify the necessary initial operations
for transitioning from the current paths to the target path.
These initial operations are equivalent to the operations that the
controller would execute in the single update method, meaning
that arriving update events are executed sequentially or in a
blocking manner.

Operation Composition: Operation composition aims to
optimize network updates by reducing the number of required
operations and minimizing controller-to-switch communication
overhead. In the context of switch operations, there are three
types: add, delete (del), and modify (mod), each with the
following format:

• add(target switch, flow, next hop)
• del(target switch, flow)
• mod(target switch, flow, new next hop)

The add(swi, fk, swm) operation forwards flow fk to switch
swm after being executed in switch swi. This is achieved
by adding the match-action fields in the forwarding table of
switch swi that direct flow fk towards swm. The del(swi, fk)
operation removes the forwarding rule for flow fk from the
forwarding table of switch swi. Since each flow has at most
one entry in each switch’s forwarding table, only one entry will
be removed. The mod(swi, fk, swj) operation changes the next
hop of flow fk to switch swj in the forwarding table of switch
swi.

During this phase, the initial operations are combined with
any unexecuted operations from the current update, considering
allocation of the links in the data plane state, to generate new
operations. As a result, new operations replace the existing
unexecuted operations in the control plane. This step results

< 1, 3 >: 10 < 3, 2 >: 10 < 2, 5 >: 10 < 1, 5 >: 10 < 5, 3 >: 5 < 3, 4 >: 5 < 5, 4 >: 5

fb fg

fr

(a) Initial Operations

< 1, 3 >: 10 < 3, 2 >: 10 < 1, 5 >: 10

fb fr

(b) Unexecuted Operations

fb fr

< 5, 4 >: 5 < 2, 5 >: 5 < 5, 3 >: 5 < 3, 4 >: 5

(c) Executed Operations

< 1, 5 >: 10 < 5, 4 >: 5< 5, 3 >: 5 < 3, 4 >: 5

fg

fb

fr

< 2, 5 >: 10

(d) Operation Composition

Figure 3: State of proposed framework when U2 arrives at S2

in fewer equivalent operations capable of transitioning the
network forwarding state from the current intermediate state to
the target state specified by the new update. Table I outlines all
possible combinations of new operations from a newly arrived
update event and unexecuted operations from current update
event, with taking into account the executed operations in the
data plane.

Priority-based Forwarding Rule Scheduling: In the final
phase, pUpdate pushes flow forwarding rules to individual
switches according to the flow’s priority level. Within the
pUpdate framework, two priority scheduling policies have been
integrated: Strict Priority and Weighted Round Robin (WRR).

In the context of Strict Priority Scheduling, forwarding rules
linked to flows of higher priority are first installed in the data
plane, preceding the installation of forwarding rules related
to lower-priority flows. The execution of forwarding rules
associated with lower-priority flows occurs after the higher-
priority flow has finished processing. This scheduling policy is
commonly used in operating systems and real-time systems,
where tasks are assigned priorities, and tasks with higher
priorities are executed ahead of those with lower priorities. Its
purpose is to allocate network resources to flows based on their
priority, thereby mitigating priority inversion issues. However,
a potential drawback is that low-priority flows might encounter
resource starvation if a high-priority flow consistently obstructs
the installation of low-priority flow rules.

Weighted Round Robin (WRR) stands as a scheduling algo-
rithm used for distributing resources, such as CPU time, net-
work bandwidth, or disk access time, among various competing
processes or flows. WRR operates by assigning a weight to
each priority class (Npr), which then dictates the number of
flows to be updated during each scheduling round. For instance,
if we allocate Nhigh = 10, Nmedium = 8, and Nlow = 5

2023 19th International Conference on Network and Service Management (CNSM)



Table I: Composition rules

New Operation Unexecuted Operation Allocation of Links in the Data Plane State Composition Result Scenario #

add(swi, fk, swm)
∅ {li,m 9 fk} add(swi, fk, swm) 1

del(swi, fk) {li,m → fk} Null 2
del(swi, fk) {li,j → fk} mod(swi, fk, swm) 3

del(swi, fk)
add(swi, fk, swm) {li,m 9 fk} Null 4

∅ {li,m → fk} del(swi, fk) 5
mod(swi, fk, swm) {li,j → fk} del(swi, fk) 6

mod(swi, fk, swq)
add(swi, fk, swm) {li,m 9 fk} add(swi, fk, swq) 7

∅ {li,m → fk} mod(swi, fk, swq) 8
mod(swi, fk, swm) {li,j → fk} mod(swi, fk, swq) 9

Note: Null means:”do nothing”, ∅ means there is no operation for the flow in the switch. {li,m 9 fk} means link li,m is not
allocated to flow fk.

to high, medium, and low priority classes respectively, each
round of scheduling would involve updating 10 high-priority
flows, followed by 8 medium-priority flows, and finally, 5 low-
priority flows. WRR is effective in mitigating the potential re-
source starvation issues linked with Strict Priority Scheduling,
although it may introduce some degree of priority inversion as
a trade-off.

An example. To illustrate the process in the architecture dis-
cussed above, consider the example introduced in §II. Imagine
a scenario when the network state is S2, the next update (U2)
will arrive. The architecture prioritizes flows while changing
the network state from S2 to U2.

The Initial Operations compares the new paths in U2 with the
paths in the current update (U1) to identify initial operations.
For example, in U1 policy, sw1 forwards fb to sw3, but the
next hop after sw1 is sw5 in U2 policy. Therefore, if updates
are executed sequentially, sw1 must execute the operation
mod(sw1, fb, sw5) to change the path of fb (Fig. 3a).

In the next step, the Operation Composition changes the net-
work forwarding state from the current intermediate state (S2)
to the target state (U2). The operation mod(sw1, fb, sw5) can
be merged with the unexecuted operation add(sw1, fb, sw3)
(similarly, {l1,3 9 fb}), resulting in add(sw1, fb, sw5)
(Figs. 3b and 3c). This scenario matches with scenario 7
in Table I. Instead of executing two update operations
add(sw1, fb, sw3) and mod(sw1, fb, sw5) sequentially, only
one operation is needed to achieve the same result (Fig. 3d).

if Strict Priority scheduling is used, flows will be updated in
the following order: fg , which has the highest priority, will be
updated first. Next, fb, a medium priority flow, will acquire its
resources. Lastly, the flow with the lowest priority, fr, will be
updated.

IV. IMPLEMENTATION AND EVALUATION

We have developed a pUpdate prototype, which consists of
more than 3,000 lines of Java code. The prototype includes
the implementation of the two previously discussed priority-
based scheduling algorithms. We evaluate the performance of
pUpdate prototype through simulation-based experiments. The
simulation environment setup is a flow-level simulation.

S1 S3

S6 S5 S2

S4

S7S8

Figure 4: WAN topology as described in [2]

We first evaluate the performance of pUpdate with two
priority-based scheduling algorithms when different classes of
flows are waiting to be installed. Furthermore, to show that
pUpdate is advantageous, we compare it against two state-of-
the-art proposals, single update from Cupid [3] and continu-
ous updates from Coeus [6]. We specifically chose Cupid as
our benchmark due to its superior performance compared to
its predecessors, including Dionysus [2] and SWAN [1]. By
comparing our architecture against Cupid, we can showcase
the advancements and improvements achieved in the realm of
single update approaches. Similarly, we selected Coeus [6] as it
represents the most recent work in continuous update methods.
Coeus builds upon the foundation of Update Algebra [5]
and incorporates considerations for the congestion freedom
property.

A. Evaluation Setup

We evaluate pUpdate across a variety of settings that mix-
and-match two network topologies, different workloads and
traffic patterns, and varying update inter-arrival times. The
evaluation cover a range of parameters, including topologies,
workload, performance metrics, and network properties. To
ensure robustness and accuracy, we conducted each experiment
10 times and present the average results obtained. The summary
of all evaluation parameters are listed in Table II.

Topology. We consider two network topologies, a WAN
topology from Dionysus [2] and a three-layer FatTree datacen-
ter topology [10]. The WAN topology consists of 8 switches
as shown in Fig. 4. The switches are connected by 10 Gbps
links. The FatTree topology consists of Edge (or Top-of-Rack),

2023 19th International Conference on Network and Service Management (CNSM)



Table II: Evaluation parameters for simulation

Topologies WAN - A WAN topology consisting of 8 switches, which aligns with the same topology employed by [2], also used in prior
works [6], [3], [8], [9]
DC - A three-layer FatTree topology with 8 pods that consists of 80 switches [10] and 128 hosts.

Switch Properties The average time required for inserting, removing, and modifying rules is 5 ms, 5 ms, and 10 ms, respectively. According to
the findings of [2] on commodity switches [11]

Link properties WAN - Link capacity: 10 Gbps, Propagation delay: 200 ns [12]
DC - Link capacity:1 ∼ 10 Gbps, negligible propagation delay [2]

Traffic Classification 20% high-priority, 30% medium-priority and 50% low-priority flows according to [13], [1]

Workloads The test is stressed by varying T from 100 ∼ 1000 ms, i.e., 1 to 10 updates per second [14], [15].
The average links’ utilization varied between 20% to 80% [3].
We varied number of flows to update from 100 to 1000 flows per update [5], [6], [3].

Evaluated metrics Ratio of updated to generated segments for flows with different priorities, CDF for time of updated flows, update completion
time.

Aggregation, and Core layers. The FatTree testbed includes a
total of 80 switches, with 32 edge switches, 32 aggregation
switches, and 12 core switches. In terms of link capacity, the
Aggregation and Core layers in the network are equipped with
links with capacity of 10 Gbps. On the other hand, the links
in the Edge layer have a capacity of 1 Gbps.

Workload. We evaluate pUpdate across various workloads,
including a combination of all-to-all traffic and bursty traffic
to simulate realistic network update scenarios. Consistent with
recent studies [5], [6], we introduce variations in the number
of flows to update, ranging from 100 to 1000 per update, as
well as the update inter-arrival time (T), which spans from 250
ms to 1000 ms. While previous studies [5], [6] typically alter
the path of 20% of flows during each update, we adopt a more
comprehensive approach. In our evaluation, we modify the path
of all flows in order to thoroughly assess the robustness of
our approach and gauge its worst-case performance for every
update. Moreover, the average link utilization is above 80%.,
which aligns with findings from a previous study [3].

Traffic Flow. In order to generate the datasets for our
experiments, we followed a specific procedure. Firstly, we
randomly selected two nodes that were not adjacent to each
other to form a source-destination pair (s, d). Next, we chose
another random node t and determined the shortest loop-free
path from s to d that passes through t. After that, we assigned
a demand and priority to the flow based on our network traffic
classification policy, which is discussed in detail below. Finally,
we verified that the link capacity was not exceeded, ensuring a
congestion-free condition. We created the datasets using over
600 lines of Python code. To generate these datasets, we used
the computational cluster Katana supported by Research Tech-
nology Services at UNSW Sydney [16], employing 24 GB of
RAM and 12 CPU cores. It is important to note that generating
datasets for large-scale topologies can be resource-intensive.
For instance, creating datasets for the FatTree topology required
approximately 12 hours to complete due to its complexity and
scale.

Flow Priority Levels. In real-world networks, traffic is car-
ried with different priorities. Building on prior research [1],

1000 800 600 500 400 330 250
Update Inter-arrival Time (ms)

0

10

20

30

40

50

60

70

80

90

100

U
p
d
at
ed

S
eg
m
en
ts

R
at
io

(%
)

High priority Medium priority Low priority

(a) Strict Priority Scheduling

1000 800 600 500 400 330 250
Update Inter-arrival Time (ms)

0

10

20

30

40

50

60

70

80

90

100

U
p
d
at
ed

S
eg
m
en
ts

R
at
io

(%
)

High priority Medium priority Low priority

(b) Weighted Round Robin

Figure 5: Ratio of updated flows with different scheduling
algorithms in WAN topology [2]

[13], we implement a network traffic classification policy to
allocate a priority level and corresponding demand to each flow.
Consistent with previous findings [1], we estimate that 20%,
30%, and 50% of network traffic belongs to high, medium, and
low priority flows, respectively. In line with these observations,
we implemented a prototype that takes into account three
distinct traffic classes. Our classification system categorizes
flows into three priority levels represented by L = 3 and
labeled as {HIGH, MEDIUM, LOW}. Although additional
traffic classes could be incorporated into our architecture, we
only consider three traffic classes in our implementation and
evaluation for simplicity.

B. Evaluation Results

We devise experiments aimed at assessing the pUpdate pro-
totype through simulation. To carry out this evaluation, we
execute a simulation run encompassing 15 consecutive network
update events. Within these events, we allocate flow priority
levels, as previously described, and measure the update time
for the identified flows linked to these update events.

1) Priority-based Scheduling Policies: The purpose of this
experiment is to examine how different priority-based schedul-
ing policies affect the network performance. We focus on two
scheduling policies: strict priority scheduling and weighted
round-robin, and measure the ratio of updated flows for each.

2023 19th International Conference on Network and Service Management (CNSM)



Fig. 5 shows the ratio of updated flows to the total number
of flows for various update inter-arrival times (T), ranging from
250 to 1000 ms. Previous studies [5], [6] typically conducted
their experiments with the fastest update inter-arrival time set
at 330 ms. In contrast, we intentionally introduce a higher level
of stress during testing by reducing the update inter-arrival time
to 250 ms.

Strict Priority Scheduling. Fig. 5a demonstrates that the
ratio of updated flows with higher priority is consistently
greater than or equal to the ratio of updated flows with lower
priority. Specifically, the ratio for high-priority flows never falls
below 75%, meaning that the pUpdate prototype prioritizes the
updating of high-priority flows over medium and low-priority
flows.

Note that due to the limited availability of link capac-
ity, not all high-priority flows have been updated even with
strict priority scheduling. In situations of high link utilization,
pUpdate defers the updating of flows with insufficient resources
until adequate resources become available. Furthermore, during
the time period T = 600 to 1000 ms, there is sufficient time
to update medium-priority flows once all possible high-priority
flows have been updated and before the next update arrives.

Weighted Round Robin. We used WRR scheduling algorithm
with the following parameters: Nhigh = 10, Nmedium = 12
and Nlow = 20. Fig. 5b shows that the number of lower-priority
updated flows is higher than in the strict priority scheduling
(Fig. 5a), for example, when T = 250 ms, the ratio of updated
low-priority flows is less than 10% in Fig. 5a, while in Fig. 5b,
the ratio for low-priority flows is almost 20%. However, the
precedence of higher-priority classes is preserved.

It is important to note that not all high priority flows are
updated in Fig. 5. This can be attributed to several factors.
Firstly, the arrival of a new update pauses the execution of
the current update, causing any unexecuted operations to be
combined with the new ones. Secondly, if there is a shortage
of link capacity, deadlock resolution is triggered in, which
prioritizes updating and limits the throughput of low priority
flows. This can cause our architecture to spend more time
on low priority flows than it would during the regular update
process, leading to potential delays in updating higher priority
flows.

Takeaway. pUpdate adheres to priority-based scheduling and
the ratio of updated flows with a higher priority is always
greater than or equal to the ratio of lower priority flows.

2) Priority-based SDN Update: The purpose of this ex-
periment is to demonstrate pUpdate’s capability to schedule
forwarding rules based on flow priority.

Methodology. For this experiment, we consider two topolo-
gies: FatTree and WAN topology. Each update event involves
assigning a new path for all flows in the network, placing sub-
stantial pressure on the network update scheduling algorithm.
The average link utilization exceeds 80%, increasing the like-
lihood of deadlocks and priority inversion. In this experiment,
we use strict priority scheduling algorithm. Furthermore, the

100 200 300 400 500 600
Segments Update Time [ms]

0

10

20

30

40

50

60

70

80

90

100

C
D
F
(%

)

High priority Medium priority Low priority

(a) T = 600 ms, #flows = 600, WAN

100 200 300 400 500
Segments Update Time [ms]

0

10

20

30

40

50

60

70

80

90

100

C
D
F
(%

)

High priority Medium priority Low priority

(b) T = 600 ms, #flows=1000, FatTree

0 50 100 150 200 250 300 350 400
Segments Update Time [ms]

0

10

20

30

40

50

60

70

80

90

100

C
D
F
(%

)

High priority Medium priority Low priority

(c) T = 400 ms, #flows = 600, WAN

50 100 150 200 250 300 350 400
Segments Update Time [ms]

0

10

20

30

40

50

60

70

80

90

100

C
D
F
(%

)

High priority Medium priority Low priority

(d) T = 400 ms, #flows=1000, FatTree

Figure 6: CDF of flow update times with priority-based
scheduling forwarding rule updates; WAN topology on the left,
and FatTree topology on the right.

traffic pattern is highly imbalanced, resulting in significant load
on certain links (nearly at full capacity).

Fig. 6 shows the Cumulative Distribution Function (CDF) of
flows update time. As illustrated in the figures, higher priority
flows have shorter update times compared to lower priority
flows, with an exception, which will be discussed below. It is
important to note that high link utilization (> 80%) can result
in multiple calls to deadlock resolution. Consequently, this can
limit the throughput of lower-priority and bandwidth-intensive
flows, and cause shorter update times for some low priority
flows to allocate resources to high and medium-priority flows.

Fig. 6a displays CDF in a WAN with an inter-arrival time
of 600 ms for update events. As depicted in the figure, 90% of
high-priority flows have received updates before lower-priority
ones. Fig. 6c corresponds to an experiment with a 400 ms
update inter-arrival rate, indicating that approximately 10%
of the updated flows with low priority exhibit shorter update
times compared to the medium-priority flows. Our analysis
revealed that during the final stages of updating flows, they
were contending for some shared links that were close to full
utilization, and it was not possible to allocate the link’s full
bandwidth without reducing the bandwidth of the low priority
flows.

Figs. 6b and 6d show CDF in FatTree topology. Despite
the higher number of flows comparing with WAN topology,
flows generally have less update time. This is because of more
links and switches in FatTree topology which give pUpdate the
ability to update more operations simultaneously. As shown in

2023 19th International Conference on Network and Service Management (CNSM)



3004006008001000
Update Inter-arrival Time [ms]

0

2

4

6

8

10

12

14

16

18

C
om

pl
et

io
n

Ti
m

e(
s)

100 flows
200 flows

400 flows
Coeus

Cupid
pUpdate

(a) WAN topology

3004006008001000
Update Inter-arrival Time [ms]

0

2

4

6

8

10

12

14

C
om

pl
et

io
n

Ti
m

e(
s)

100 flows
200 flows

400 flows
Coeus

Cupid
pUpdate

(b) FatTree topology

Figure 7: Update Completion Time with Strict priority schedul-
ing

Fig. 6b, a minor priority inversion occurred when update time
exceeds 500 ms. We observed that when T = 600 ms the
behavior of our architecture is similar to when T = 400 ms
until the time exceeds 400 ms. At T = 400 ms, an unbalanced
traffic pattern causes deadlocks. To resolve the deadlocks,
pUpdate had to update (and limit) the low priority flows,
causing a minor priority inversion.

Takeaway. pUpdate respects flow priority, which is measured
by flow update time, ensuring that flows with higher priority
receive updates earlier. However, it is important to note that
deadlocks can become inevitable in cases of severe link uti-
lization, leading to priority inversion.

3) Update Completion Time Performance: The purpose of
this experiment is to benchmark pUpdate against other existing
solutions for achieving consistent SDN network updates in
terms of update completion time. The update completion time
represents the amount of time required to complete all updates.

Benchmarking. We compare pUpdate with two state-of-the-
art proposals, single update from Cupid [3] and continuous up-
date from Coeus [6]. Figs. 7a and 7b depict update completion
time in WAN and FatTree topologies, respectively. The figures
clearly demonstrate that pUpdate outperforms the alternative
approaches in terms of update completion time. This superiority
can be attributed to the advanced update algorithm integrated
into pUpdate, which efficiently schedules a higher number of
operations to be executed in switches in parallel, resulting in a
reduced update completion time.

Takeaway. pUpdate is able to maintain flow priority without
any update performance degradation in the term of update
completion time in both WAN and FatTree topologies.

V. SUMMARY

We have proposed pUpdate for achieving efficient consistent
and continuous network updates in SDN by incorporating
priority-based scheduling algorithms to install forwarding rules.
This feature ensures that critical flows receive appropriate

treatment and are given higher priority during forwarding rule
installation, leading to a more optimized and efficient network.
We have developed a prototype of pUpdate using Java code and
evaluated its ability to handle continuous and consistent SDN
update using experiment simulations. Two scheduling algo-
rithms, namely Strict Priority Scheduling and Weighted Round
Robin (WRR), are utilized in this study. Furthermore, we have
evaluated the effectiveness of pUpdate using a simulation-based
testbed that utilizes a WAN topology and FatTree datacenter
topology. Moving forward, we plan to extend our evaluation to
include other network topologies, such as large-scale Google’s
B4 topology.

REFERENCES

[1] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-Driven
WAN,” in Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, 2013, pp. 15–26.

[2] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic Scheduling of Network
Updates,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 539–550, 2014.

[3] W. Wang, W. He, J. Su, and Y. Chen, “Cupid: Congestion-free Consistent
Data Plane Update in Software Defined Networks,” in IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications. IEEE, 2016, pp. 1–9.

[4] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized Consistent
Updates in SDN,” in Proceedings of the Symposium on SDN Research,
ser. SOSR ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 21–33.

[5] G. Li, Y. R. Yang, F. Le, Y.-s. Lim, and J. Wang, “Update Algebra:
Toward Continuous, Non-blocking Composition of Network Updates
in SDN,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1081–1089.

[6] X. He, J. Zheng, H. Dai, C. Zhang, W. Rafique, G. Li, W. Dou, and Q. Ni,
“Coeus: Consistent and Continuous Network Update in Software-Defined
Networks,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 2020, pp. 1509–1518.

[7] A. Rezaie Hezaveh and M. Nobakht, “On Priority-Based Scheduling for
Network Updates in SDN,” in 2023 IEEE 48th Conference on Local
Computer Networks (LCN), 2023.

[8] W. Zhou, D. Jin, J. Croft, M. Caesar, and P. B. Godfrey, “Enforcing Cus-
tomizable Consistency Properties in Software-Defined Networks,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), 2015, pp. 73–85.

[9] K.-R. Wu, J.-M. Liang, S.-C. Lee, and Y.-C. Tseng, “Efficient and
consistent flow update for software defined networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 3, pp. 411–421, 2018.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data
Center Network Architecture,” ACM SIGCOMM computer communica-
tion review, vol. 38, no. 4, pp. 63–74, 2008.

[11] A. Networks. Arista 7500r series. [Online]. Available: https://www.
arista.com/en/products/7500r-series/literature

[12] Q. Cai, M. T. Arashloo, and R. Agarwal, “dcPIM: Near-optimal proactive
datacenter transport,” in ACM SIGCOMM, 2022.

[13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-
deployed software defined WAN,” ACM SIGCOMM Computer Commu-
nication Review, vol. 43, no. 4, pp. 3–14, 2013.

[14] M. Kuźniar, P. Perešı́ni, D. Kostić, and M. Canini, “Methodology,
measurement and analysis of flow table update characteristics in hardware
openflow switches,” Computer Networks, vol. 136, pp. 22–36, 2018.

[15] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Rules placement
problem in openflow networks: A survey,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 2, pp. 1273–1286, 2015.

[16] “Computation cluster Katana,” https://researchdata.edu.au/katana/
1733007, 2023, [Online; accessed 1-July-2023].

2023 19th International Conference on Network and Service Management (CNSM)


