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Abstract—The use of microservice-based applications is be-
coming more prominent also in the telecommunication field.
The current 5G core network, for instance, is already built
around the concept of a “Service Based Architecture”, and it is
foreseeable that 6G will push even further this concept to enable
more flexible and pervasive deployments. However, the increasing
complexity of future networks calls for sophisticated platforms
that could help network providers with their deployments design.
In this framework, a central research trend is the development
of digital twins of the physical infrastructures. These digital
representations should closely mimic the behavior of the man-
aged system, allowing the operators to test new configurations,
analyze what-if scenarios, or train their reinforcement learning
algorithms in safe environments. Considering that Kubernetes is
becoming the de-facto standard platform for container orchestra-
tion and microservice-based application life cycle management,
the implementation of a Kubernetes digital twin requires an
accurate characterization of the microservice response time,
possibly leveraging suitable Machine Learning techniques trained
with measurement data collected in the field. In this paper
we introduce a new methodology, based on Mixture Density
Networks, to accurately estimate the statistical distribution of
the response time of microservice-based applications. We show
the improvement in performance with respect to simulation-based
inference procedures proposed in literature.

Index Terms—Service Management and Orchestration, Kuber-
netes, Simulation, Optimization, Digital twins.

I. INTRODUCTION

Modern communication infrastructures are undergoing a
rapid shift toward a massive integration of software com-
ponents. This process began with solutions like Network
Function Virtualization (NFV) and Software Defined Net-
working (SDN). These new technologies quickly became
one of the enabling pillars of the 5G architecture, enabling
features like network slicing, thanks to the flexibility level
they offer compared to traditional approaches [1]. As can be
seen from preliminary studies, in the evolution toward 6G
it is foreseen that the adoption of cloud-native technologies
(e.g., microservice-based applications) will increase to reach
the extreme requirements of future services [2]. For example,
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the increasing interest in the use of container-based solutions is
confirmed by the latest updates in the NFV Management and
Orchestrator architecture by ETSI [3], with the introduction
of elements such as Container Infrastructure Service Manage-
ment, Container Image Registry, and Container Infrastructure
Service Cluster Management. In the context of orchestrating
container-based applications, Kubernetes has emerged as the
de-facto standard platform for these tasks. Notably, the Global
System for Mobile Communications Association (GSMA) has
recognized Kubernetes as one of the reference open-source
solutions for telco clouds [4]. This recognition underscores
the growing importance of Kubernetes in supporting telecom-
munication network deployments.

As future networks become more intricate and complex,
there is a pressing need for sophisticated platforms that can
assist network providers in designing and optimizing their de-
ployments. Within this framework, one central research trend
revolves around the development of digital twins for physical
infrastructures [5]. These digital representations aim to closely
mimic the behavior of managed systems, enabling operators
to experiment with new configurations, explore what-if sce-
narios, and train reinforcement learning algorithms in safe
environments. However, creating a digital representation that
accurately mimics the behavior of its physical counterpart is a
challenging task. This applies also to the case of Kubernetes as
a platform for orchestrating microservice-based applications.
With regard to a Kubernetes digital twin, one of the most
challenging parts is the accurate modeling of microservice
response times, which in many cases cannot be approximated
as constant values or with simplistic probabilistic distributions.

Recently we presented the initial design and the evaluation
of KubeTwin, a Kubernetes digital twin [6], showing results
on its capacity to reenact the behavior of a microservice-
based application running on a real Kubernetes cluster. From
those preliminary results it was clear that, to achieve a more
accurate simulation of the system, we need to improve the
characterization of the single microservice response time,
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possibly leveraging a suitable Machine Learning technique. In
this paper, we focus on that issue and investigate a different
statistical description method for the response time based on
Mixture Density Networks (MDNs), which combine the use of
conventional Feedforward Neural Networks (FNN) with char-
acterization by means of mixture models. We show how MDNs
allow us to accurately estimate the statistical distribution of the
response time of an illustrative microservice-based application.
Experimental results show that, by using the improved MDN-
based model, KubeTwin significantly improves its accuracy in
mimicking the physical Kubernetes application compared to
the methodology presented in [6].

The paper is organized as follows. Section II presents related
work in the field of application response time characterization.
Section III introduces some background on MDNs. Section
IV describes the layered queueing system describing the
microservice-based application under analysis, and displays
the measurement data obtained from a real Kubernetes system.
Section V describes the MDN-based model we propose in
this paper, and shows the performance of this characterization
method. Finally, Section VI concludes the paper, including
possible future research directions.

II. RELATED WORK

An efficient representation of microservice-based scenarios
requires a mathematical characterization of all the quantities
related to the components involved in the architecture (e.g.,
containers, links, queues, etc.) and their dependencies. This
description is necessary to have an analytical or virtual rep-
resentation as close as possible to the real system, making
it possible to derive relevant performance metrics such as
application response time or throughput experienced by users
and to allow the service providers to take optimization de-
cisions. A microservice-based architecture, such as the one
implemented in Kubernetes, is well suited to be represented
by a so-called Layered Queuing Network (LQN) model, as we
show in Section IV.

The estimation of performance metrics in LQNs is widely
explored in the literature, and many of the works are devoted
to service management applications for Quality of Service
(QoS) assessment. The characterization of these systems can
be derived by analytical models based on queuing theory or by
data-driven methods; in this context, data-driven approaches
allow to avoid complex analytical modeling when dealing with
large layered queuing systems, taking advantage of a variety of
machine learning methods (e.g., supervised and reinforcement
learning) to process data and model the performance metrics
of the aforementioned systems, enabling the possibility to
discover relations between data that may not be known a priori.
The analytical approach in [7] merges different results of queu-
ing theory and provides a model to characterize sophisticated
distributed systems. In this case, the solution of the LQN
model is obtained through an iterative method involving a
succession of layers’ submodels whose composition describes
the whole system with a top-down procedure.

The LQN decomposition through submodels is again ex-
ploited in [8] for the characterization of mean and variance of
the service response time: to make the analysis more realistic
an MDN supervised machine learning model is adopted to
approximate the unknown Probability Density Function (PDF)
of the response time in each layer conditioned to some
parameters, then the overall response time PDF is obtained
performing convolutions of all the involved PDFs to reduce the
complexity of the convolution operation, each of the layer’s
PDF is fitted on a phase-type distribution to benefit of its
closure property.

Adopting the same Machine Learning model, the service
response time of the LQN can be modeled avoiding theoretical
queue models, where the conditioning parameters can be
explored in the space of available system’s measurements [9],
such as previous realizations of response times or lengths
of queues when a request comes to the system, or server
statistics [10] such as CPU and memory utilization. The
necessity to account for uncertainty with probabilistic models
can be extended with online learning to dynamically predict
the latency requirement with varying workloads over time
[11]. However, these ML models treat the whole application
monolithically, while we model each microservice singularly.

Independently on the adopted machine learning model,
once the data-driven method is applied, the characterization
is available, and it helps the service management to meet
the objectives by adopting different control actions: auto-
scaling of replicas, request routing, request admission/blocking
are common strategies [9], [11], [12]. In contrast to the
supervised learning models, another possibility is to employ
reinforcement learning: this ML class helps to directly map
control parameters (in addition to statistics) on performance
metrics. However, these models need to interact with the
environment, and a simulator of the LQN system is needed
to speed up the procedure by avoiding the overhead in setting
up a test-bed and collecting results from it. Again, supervised
learning may help in these situations [13]-[15].

From a different perspective, our work aims to merge the
benefits introduced by a Machine Learning model accounting
for uncertainty in each component of the system architecture
with the benefits of leveraging a digital twin: by characterizing
each component in a modular way inside the digital twin and
accounting for their uncertainty it is possible to have a full and
close to reality description of them that can be reflected in the
digital twin. At the same time, the digital twin enables the
possibility to easily integrate evolving architectural and deci-
sion strategies that could be time-consuming to be managed
in an analytical or in a full machine learning model of the real
system (e.g., update of specific microservices, introduction of
new microservices or implementation of specific scheduling
strategies).

III. MIXTURE DENSITY NETWORKS

The prediction of a continuous random variable (farget)
with conventional FNNs for regression often leverages the
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minimization of the Mean Squared-Error (MSE) cost func-
tion, providing an approximation of a target value with its
conditional average, limiting its description. A more complete
description of a random variable, in particular for targets with
high variability, may be evaluated through the conditional PDF
of the target data, given an input vector (features).

In order to characterize the conditional probability of the
target, a model combining a conventional FNN and a mixture
model can be adopted. This model is called MDN and pro-
vides a general framework to approximate conditional density
functions of targets by modeling the probability parameters as
a function of the features [16].

Given a feature vector X and a generic random variable T
the set of parameters that characterize it would be (61, ..., 6,,),
making possible to write its PDF as:

p(1]61(%), ... 0, (X)) (1)

where ¢ is a possible value for 7. By omitting the parameters
in the notation, it can be referred to as p(t|x) simply.

The MDN aims to model the conditional probability density
as a linear combination (mixture model) of kernel functions:

C
p(tlR) = > ac(®)ge(15) @)
c=1

where p(e) is the PDF of the target variable, C is the number
of kernel components in the mixture, a.(X) is the mixing
coefficient of the c-th kernel (it represents the prior probability
of that kernel conditioned on X), ¢.(¢|x) is the c-th kernel
(representing the conditional density function of the target ¢,
conditioned on X).

The model allows different kernel choices (e.g., Normal,
Uniform, Exponential, or other distributions); in the following,
we opted for the Weibull distribution as kernel of choice,
which is characterized by two parameters, y and k, called scale
and shape, respectively. We chose the Weibull distribution
since it generalizes the Exponential distribution and is suitable
for describing non-negative random variables, such as the time
between occurrences of events.

The generic Weibull kernel conditioned to X is:
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Hence, in the mixture model, each term is characterized by
a set of three parameters (mixture parameters): @.(X), y.(X)
and k. (%), assumed to be unknown continuous functions of
the features X.

In order to model the unknown functions:

« the first stage of the model is a conventional FNN, which
takes as input a vector of features X and transforms them
through proper weights w, providing as output a vector
y(E;w);

« the output vector of the first stage is provided as input of
a second stage represented by a mixture model.

In the mixture model, the transformed features y(x;w) are
processed through appropriate activation functions to model
the mixture parameters (i.e., mixing coefficients, scales, and
shapes). The final output of the model turns out to be the
conditional probability density of the target (2). The combina-
tion of the two stages is referred to as a MDN, whose basic
structure is represented in Fig 1.

p(t]%)

Fig. 1. Structure of a MDN.

The adoption of this model requires the definition of some
hyper-parameters (i.e., fixed parameters defining the specific
implementation of the neural network), such as the number of
mixture components C, the kernel functions, and the number
of hidden layers and units in the FNN.

The mixing coefficients @, (¥) must satisfy the condition:

C
D@ =1 )
c=1

which can be achieved by choosing the softmax activation
function for these outputs, leading to the generic c-th mixing
coefficient expressed as:

ey(l(‘
Zic=1 e

where y,. represents the FNN output related to the c-th
mixing coefficient.

&)

ac

The scale y.(X) and shape k.(X) parameters must satisfy
the conditions:

Ye(¥) >0 ke(x) >0 6)

They can be achieved by choosing the Exponential Linear Unit
(ELU) activation function:

Ye = ELU(y,,) +1 (7
ke =ELU(yg,.) +1 (8)

where y,, and y;_ represent the FNN outputs related to the
scale and the shape of the c-th component, respectively. The
ELU is defined as:

Y, y>0

9
e?-1, y<0 ©)

ELU(y) = {

The weights w in j(X;w) are learned during the training of
the MDN through a training set {X(q),t(q)} of cardinality m
by Maximum Likelihood Estimation (MLE). The objective of
MLE is to find the set of parameters for which the observed
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data (the training set) have the highest joint probability.
Assuming that the training examples are drawn independently
from the PDF given by (1), the likelihood function of the set
can be written as:

L= l_[p(t(q),i(")) — l_[p(t(q)ﬁ(q))p(f(m) (10)
q=1 g=1

The maximum likelihood estimate is:

w = arg max L(w)
w

Y

From the likelihood it is possible to derive the error function:

m
E=—log L(W)=-— Z log p(t4)|5(@))
g=1
Formula (12) is called negative log-likelihood (NLL), in its
expression the p(x) factor is neglected since it does not depend
on the NLL parameters. Its minimization is equivalent to the
maximization of the likelihood.
By taking into account the mixture model (2), the NLL
becomes:

m m C
E = ZE(q) - _ ZlogzQc(f(q))¢c(t(q)|i(q)) (13)
g=1

g=1 c=1

(12)

c
where E(@) = —logzac()?(q))¢c(t(q)|i(‘1)) is the error

c=1
contribution of the g-th element in the training set.

Back-propagation is the standard procedure to minimize
the error function. For this purpose, the gradient of the error
function concerning the FNN output needs to be computed
as reported in [17]. The software implementation of the
back-propagation algorithm for this model can be inspired by
regression FNN based on the MSE function. The modification
of the error function is required to apply standard optimization
procedures such as gradient descent.

At the end of the training, the MDN can approximate the
conditional density function of the target data given the input
features, allowing it to have a probabilistic description of the
data generation process. The MDN results are useful to derive
the specific moments (e.g., mean and variance).

IV. REPRESENTATION OF MICROSERVICE APPLICATIONS

The cloud-native deployment scenario under analysis in the
experimental work can be represented through a multi-layered
queuing system.

A. System description

The general implementation of the system can be described
by several components.

e Requests: the system receives incoming requests sent by
users, represented by a Poisson process with average
request rate A [req/s].

e Replicas: they represent multiple processing entities pro-
viding a given microservice (i.e., an independent portion

of processes related to a more complete composite ser-
vice) at a time; as they can operate in parallel and the
execution is non-threaded, a section with n,., replicas
can contemporarily execute up to np instances of mi-
croservices. The processing time related to a microservice
performed by each replica can be represented by a random
variable T, with unknown distribution.

e Queues: each replica in the system has its own queue in
which requests are put on hold in case they cannot be
immediately served.

o Load balancer: it routes the incoming requests to the
available replicas; the simplest way to do it is to perform
equal load balancing. In standard Kubernetes clusters, the
load balancing is probabilistic, with each replica having
the same probability of being chosen to serve a request.

In a cloud-native deployment, a service is obtained through
the chaining of several microservices, and this composition is
strictly related to the kind of service provided to the users.

With reference to a particular service, the structure de-

scribed above can be stacked as many times as the number
of microservices that compose the overall service, where each
layer is responsible for a specific microservice. Figure 2 shows
an example of a two-layered queuing system.

e — T

msly ms2y
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— —_—
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# - msl; . - msia

msiy, i

i,

msl

Tyep

Fig. 2. Example: a two-layered queuing system with nep replicas for both
layers. In the first layer, on average, the load balancer (LB) equally distributes
requests among replicas.

The multi-layered queue system during its operations (e.g.,
load balancing, queuing, microservices processing) introduces
a random response time to the users, which we will refer
to as TTR (time-to-resolution). The distribution of the TTR
is unknown and depends on the kind of service and the
configuration of the system.

In our experiments, we implemented a two-layered queuing
system with different values of n, € {1,2,3,4}. The system
is managed by the Kubernetes platform, and the replicas are
deployed as containers distributed on a cluster.

The designated service for that system is an image process-
ing application, in particular:

« the first layer is dedicated to an image pre-processing
microservice (msl) to simplify the operations of the
second microservice;

« the second layer is dedicated to the actual image process-
ing microservice (ms2).

The random processing times of a generic replica in the first
and second layers are indicated as 7,51 and Ty,52, respectively.
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B. Training Data Collection

Before delving into the results of the proposed solution, we
believe it is important to present how we obtained the training
data. Furthermore, we will discuss their behavior since we
think they can give meaningful insight into the performance
of microservices in realistic Kubernetes deployments and
motivate the choice of more sophisticated methods for the
characterization of microservice processing time. Firstly, the
system we employed for the measurements is a small two-
node Kubernetes cluster. Each node runs Ubuntu 20 LTS
and is equipped with 4 vCPU, 8G RAM, and 70G of disk.
The only plugin we added to the Kubernetes deployment was
Calico as Container Network Infrastructure (CNI), without any
other custom module. Therefore, it could be considered as an
ordinary standard deployment.

On top of this cluster, we deployed the application described
in the previous section. Both microservices are Python-based
software components exposing HTTP endpoints to enable the
interaction between them. Furthermore, both microservices log
the duration of each HTTP request in their internal log. By
retrieving these logs, we can discover the time needed to
complete each request, thus allowing us to measure the time
a request spends in each of the two microservices. Then, by
feeding these data to the MDN network, we can obtain the
statistical distribution of the two microservices response time.
It is important to mention that this process could be highly
automated with well-known Kubernetes plugins, such as log-
collecting tools like Fluentd or tracing operators like Jaeger
(built-in in the Istio service mesh). Finally, we developed a
Python script to generate a fixed number of HTTP requests
with a configurable Poisson arrival rate.

Thanks to these tools, we performed several measurement
campaigns of 1000 requests each, at increasing arrival rates
and with different application configurations. In detail, we
increased the number of replicas of each microservice from
1 to 4, and we also varied the behavior of each application
component by introducing a “slow-down" factor sd. This value
affects the response time of each microservice by making them
repeat their computing operations sd times before sending
out the reply. The reason behind this choice was that, in this
way, we could obtain microservices with different execution
times in a controlled manner. Furthermore, by increasing these
execution periods, we could verify that some peculiar behav-
iors were not depending on the time scale of the measured
execution time of a single function.

We performed the experiments scaling the sd factor from 1
to 10. For each value, we normalized the request rate over the
sd factor to keep the server utilization (i.e., the ratio of the
arrival rate to the service rate) constant. Furthermore, we com-
pared the behavior of microservices for the multiple replicas
configuration with an sd factor equal to 10. As before, during
the experiments we tuned the Requests per Second (RPS) value
to keep the utilization constant (i.e., by multiplying the RPS
value by the number of replicas considered). Focusing on the
first microservice in the single replica configuration, Fig. 3
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Fig. 3. Comparison of msl mean proc. time, conditioned to RPS and sd
factor from 1x to 10x (non threaded).
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Fig. 4. Raincloud plot [18] of ms1 proc. time, conditioned to RPS, for sd = 10
and one replica (non threaded).

shows a decreasing mean for increasing values of the request
rate, which applies for all the sd values. This behavior is
counterintuitive since it would be reasonable to believe that
the average processing time of a microservice would either
remain constant or increase with a higher number of incoming
requests.

As can be seen from the kernel density estimations depicted
in Fig. 4, the processing time of the first microservice exhibits
strong multimodality in which the two main kernels vary their
prior-probability with the arrival rate: for increasing arrival rate
the prior-probability of the kernel with higher processing times
decrease in favor of the kernel with lower processing times.
The reason behind these results requires further investigation,
but we believe it might depend on specific CPU allocation
policies that try to optimize highly active processes. This result
was one of the main reasons that motivated us to search for
modeling tools capable of learning these hidden dependencies.
The first microservice shows the same dependency even in
the case of multiple replicas (Fig. 5). In particular, for the
cases with one and three replicas, the difference in the mean
processing time between the extreme values of request rate is
about 8%. On the other hand, the same behavior is no longer
appreciable for the second microservice, at least for the single
replica deployment, as shown in Fig. 6 where the processing
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times seem to have no relationship with the request rate.
Going deeper into the statistics of the second microservice
in the multi-replica deployment, Fig. 7 shows an opposite
behavior of ms2 with multiple replicas; this is highlighted in
Fig. 8 showing some processing times for the two replicas
deployment.

In general, Figures 5 and 7 show that for both microservices
there are slight variations in the response time by changing the
number of replicas considered. Again, this was an additional
element that pushed us into this research of a more complex
modeling tool.

V. MODELS FOR CHARACTERIZATION OF MICROSERVICE
RESPONSE TIME

In this section, we discuss the implementation of the model
for the characterization of microservice-based applications
in Kubernetes, according to the methodology described in
Section III. After, we will show its performance on the test set
and its field evaluation with the Kubernetes digital twin. The
model aims to characterize, employing a MDN, the specific
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Fig. 8. Raincloud plot of ms2 proc. time, conditioned to RPS, for sd = 10x
and two replicas (non threaded).

microservice processing time, given the knowledge of the
request rate to the system and the number of available replicas.

A. Models implementation
As previosly discussed, in our microservice framework the
mathematical objective of the model is to approximate:

p(tms,il/l, nrep) (14)

Where p(e) indicates the PDF, #,, ;[ s] is the i-th microservice
processing time (i = 1,2), (4, np) are the request rate and
the number of available replicas for that microservice, respec-
tively. In other words, the model looks for and generalizes a
probabilistic (rather than point estimate) relationship between
processing time, request rate, and number of available replicas,
which proves useful to make simulations and perform analysis
by the digital twin.

The model is a FNN implemented with the Keras API [19]
and the TensorFlow probability library [20], with the following
characteristics:

« 2 input neurons: one input neuron for RPS and one for

Nreps
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¢ 4 mixture components: the approximated PDF is the
superposition of 4 Weibull’s PDFs;!

« 12 output neurons: the outputs represent the parameters
of the components in the mixture model, considering that
every Weibull’s PDF is characterized by 3 parameters (the
mixture parameter in the superposition, the scale and the
shape);

« 2 hidden layers: each hidden layer has 8 neurons.

The hidden neurons are set with LeakyReLU (Leaky Rectified
Linear Unit) activation function. The activation functions for
the output neurons depend on the parameter they represent, as
discussed in Section III.

At the end of the training phase the microservice processing

time is characterized in the following way:

P(tms,ilfl, nrep) =

4
(15)
= Z ac(a, nrep)¢c (tms,i |4, nrep)
c=1

B. Performance evaluation on test set

The model architecture described in Section V-A was ap-
plied to both microservices msl and ms2 with the data set pre-
sented in Section IV-B. The available data set was partitioned
in the following way: 70% for training set, 20% for validation
set and 10% for test set. The performance of the model must be
evaluated though a goodness of fit measurement, quantifying
the disagreement between the prediction made by the model
and a sample of observed values. The goodness of fit of our
MDN model was evaluated through the Kolmogorov-Smirnov
(KS) test [21] and the Wasserstein distance [22] on the test
set, represented by 12 samples with 1000 elements each.

The Kolmogorov-Smirnov test compares the empirical Cu-
mulative Distribution Function (eCDF) F, (f) provided by a
sample with n elements with a reference CDF F(¢) through
the KS-distance, defined as:

Dy = sup |[F (1) = F(2)] (16)
t
The hypotheses of the test are:
Hy : F(t) = F, (1), Vt (17)
Hy : F(t) # F,(t), for some ¢ (18)

Under the null hypothesis, the KS-distance (16) is distributed
according to the Kolmogorov distribution and converges to
0 in case n — oo. The statistical significance of the test is
represented by the p-value p, that is the probability of having
a KS-distance at least as extreme as the one observed under
the null hypothesis. By setting a significance level « (typically
a = 0.05), the null hypothesis Hy is rejected in favour of the
alternative H; in case p < «, otherwise there is a lack of
evidence to reject Hy.

Figures 9 and 10 represent the performance of models for
msl and ms2 on the test set, in terms of the KS test. For msl1,

1During initial trials, the Normal, Gamma and Weibull PDFs were tried,
then the latter was chosen because it provides the best fit among them.
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Fig. 9. Performance evaluation of MDN model for msl in terms of KS on
the test set.
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Fig. 10. Performance evaluation of MDN model for ms2 in terms of KS on
the test set.

despite most distances being below 0.1, 7 out of 12 sets show
the null hypothesis is rejected with p-values below 0.05. For
ms2 the maximum distance is below 0.08 and 4 out of 12
sets show the null hypothesis is rejected. Since the KS test
compare the maximum distance between distributions, while
the objective of our models is to generate samples to emulate
the microservices inside the digital twin, we introduced the
Wasserstein metric to take into account the overall distance
between test samples and samples generated by our models.
In particular, this metric represents the minimum “cost” to
transform the distribution of one sample to the other one.

In the one dimensional case, for two empirical measures
P and Q with respective samples tq,...,¢, and uq,...,u, of
cardinality n (in ascending order), the p-Wasserstein distance
is defined as:

| & 1/p
W, (P, Q) = (; Zl Iei — uiu") (19)
In our framework, the 1-Wasserstein distance (1-WD) imple-
mented in [23] was employed to quantify the distance between
a sample in the test set for a couple (4, n.p) and the sample
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Fig. 11. Performance evaluation of MDN model for msl in terms of
Standardized Wasserstein metric on the test set.
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Fig. 12. Performance evaluation of MDN model for ms2 in terms of
Standardized Wasserstein metric on the test set.

generated by our model with the same couple as input. In
order to relate this metric with the test sample under analysis,
we introduced the Standardized Wasserstein distance as the
ratio between the 1-WD previously described and the standard
deviation of the test sample under analysis. In this way, the
metric can be interpreted as the “distance in terms of standard
deviations”. Figures 11 and 12 show performance evaluation
performed with Standardized Wasserstein distance. For msl
all the distances are below 0.2, with 8 out of 12 test samples
showing a distance below 0.1. The performance on ms2 shows
even smaller distances, with 10 out of 12 test samples below
0.1. Since most of the test samples show distances close or
lower to 0.1, we expect the error in the approximation of
the true microservices samples with the ones generated by
our mixture models in the digital twin to be relatively small
compared to the variability of the true data. However, in a
production scenario, the approximation error restrictions need
to be related to the specific application requirements.

C. Digital Twin evaluation

After obtaining the model of the two microservices from
the MDN, we plugged them into the KubeTwin simulator
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Fig. 13. Comparison between the mean and 99th percentile response time
of the real application and KubeTwin, with sd = 10 and 1 replica for each
microservice.

to compare the overall application response times from the
Kubernetes cluster with the ones generated by the simulator. In
this experiment, we reenacted with KubeTwin the same request
generation patterns as during the measurement campaigns. At
each request generation time, the simulator samples from each
microservice distribution a response time using as input the
RPS of the last eight requests (tunable parameter). Then, the
simulator computes the total request time by summing up the
two distribution samples and the queueing time of the request.
The details on how KubeTwin manages the internal queues can
be found in [6].

Figure 13 depicts the mean and 99th percentile of the
total application response time measured from the Kubernetes
system and Kubetwin, with sd = 10 and a single replica for
each microservice. The results show that the simulator can
reenact the system behavior with good accuracy. In detail, the
average MSE measured between the two is around 0.00263 for
the mean response time, as reported in Table I. We repeated
the test with the same configurations but considering the
microservices modeled with the methods presented in [6] (i.e.,
a three-component Gaussian Mixture Model fitted over the
data measured with RPS = 1). Applying this modeling method,
we obtained a much larger MSE value of about 0.20881 for the
mean response time. These results show a strong improvement
in the performance of KubeTwin, thus proving the soundness
of the proposed characterization of the response time with a
MDN approach.

Finally, we made the same tests with three replicas. Fig-
ure 14 reports the results of the MDN-based model with this
application configuration. Comparing them to those obtained
with a single replica, there is a slight performance degradation.
We believe this might be caused by the randomness introduced
by the load-balancing feature of Kubernetes. Since vanilla
Kubernetes distributes the request among the available replicas
using equiprobable iptables rules, some microservices might
receive higher request rates than others, thus leading to diverse
response times. Nevertheless, the comparison with the method
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Fig. 14. Comparison between the mean and 99th percentile response time
of the real application and KubeTwin, with sd = 10 and 3 replicas for each
microservice.

TABLE I
AVERAGE MEAN SQUARE ERROR (MSE) COMPARISON BETWEEN THE
PROPOSED SOLUTION AND THE GAUSSIAN MIXTURE PRESENTED IN [6]
FOR BOTH MEAN AND 99TH PERCENTILE OF THE TTRS.

MDN Gaussian Mixture [6]

rep Mean 99th percentile Mean 99th percentile
1 0.00263 0.00423 0.20881 1.02729
3 0.04830 1.95080 10.38479 56.5381

presented in [6] still shows a substantial MSE reduction.

VI. CONCLUSION

In this work, we showed how an MDN-based model for
the estimation of the statistical distribution of the response
time of microservices could improve the performance of
simulation-based approaches like KubeTwin, improving its
effectiveness as a digital twin for Kubernetes environments. In
detail, we observed a meaningful performance improvement,
with an MSE reduction of about two orders of magnitude
compared with the results obtained in [6]. As mentioned in
the previous sections, as future research direction, we want
to investigate the reasons behind the counterintuitive behavior
of some microservices (e.g., Fig. 4). Furthermore, we plan
to test the proposed solution with more complex applications
and to enrich the ML model by adding more input features
(e.g., overall cluster load or request types) that might further
improve the statistical description of the microservices. Lastly,
we want to automate this learning process by implementing
Continual Learning mechanisms to train the model at runtime,
exploiting tools like Istio to gather the training data.
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