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Abstract—This study introduces Virtual Machine (VM) Con-
solidation using a Transformer-based Deep Reinforcement Learn-
ing (DRL) method, to address the complexity and inefficiency in
operating Software Defined Networks-enabled Network Function
Virtualization (SDN-enabled NFV). The distribution of Virtual
Network Functions (VNFs) as VMs across servers often leads to
energy loss due to irregular deployment. The proposed approach
enhances energy efficiency while maintaining the performance
of Service Function Chains (SFCs). By refining the VM con-
solidation process and leveraging a more sophisticated DRL
method, this approach promises a more efficient solution to VM
consolidation in SDN-enabled NFV environments.

Index Terms—SDN, NFV, Energy Efficiency, VM Consolida-
tion, Deep Reinforcement Learning

I. INTRODUCTION

Today’s networks often exhibit overly complicated struc-
tures due to the increasing number of devices dedicated
to specific functions, developed to meet various business
requirements. The network infrastructure that facilitates the
connection and configuration of these devices has grown
increasingly complex. It leads to diminished flexibility and
challenges in responding to dynamic market demands [1].

While Software Defined Network-enabled Network Func-
tion Virtualization (SDN-enabled NFV) emphasizes network
flexibility and efficiency, achieving this in practice is not
straightforward. Typically, Virtual Network Functions (VNFs)
are distributed in the form of containers or Virtual Machines
(VMs), and they are allocated to servers, utilizing resources
such as CPU, memory, and bandwidth. If VNFs are not
properly distributed across servers, energy loss will occur
by maintaining unnecessary servers [2]. Management features
such as Auto Scaling can cause VNFs to be deployed irreg-
ularly and inefficiently, especially in the late night and early
morning hours, when the overall traffic reduced.

Several methods have been proposed to address this problem
in both hardware and software. Hardware solutions have made
significant progress in improving energy efficiency. However,
they have not effectively addressed the inefficient distribution
of software-based VNFs. In other words, a software-based
method is needed to effectively manage and operate VNFs.
One such method is VM Consolidation, which optimally
distributes VMs across physical servers to enhance energy
efficiency. Previous studies have explored rule-based [2], Ma-
chine Learning (ML), and Reinforcement Learning (RL) [3]

[4] approaches for VM Consolidation. However, these VM
Consolidation studies have several limitations:

• Loss of information due to the conventional VM Consol-
idation procedure.

• Use of insufficient methods to account for VM relation-
ships.

To address these limitations, this study proposes VM Con-
solidation using a Transformer-based Deep Reinforcement
Learning (DRL) approach and refining the VM Consolida-
tion procedure. The proposed method aims to overcome the
aforementioned challenges and enhance the efficiency of VM
distribution and management in SDN-enabled NFV.

II. RELATED WORKS

Various methods have been proposed to improve server
energy efficiency (Fig. 1). Initially, hardware-based approaches
such as Cooling Systems or Power Controllers were intro-
duced. Also, a method such as Dynamic Voltage and Fre-
quency Scaling (DVFS) was proposed [5]. This has benefited
from the server’s power supply, but it operates on a per-server
basis rather than per-VM basis. However, VM Consolidation
presents system control on a VM basis [3] [4] [6].

Fig. 1. Energy Saving Techniques

VM Consolidation aims to distribute and schedule VMs
effectively in multi-server environments, such as Cloud Data
Centers (CDCs), to minimize server energy consumption while
maintaining the quality of services running inside each VM.
Conventionally, VM Consolidation encompasses a three step
decision making process (Fig. 2) [6]. The first step, Server Se-
lection (or Host Detection), determines which server to extract
the VM from. The second step, VM Selection, identifies the
VM to be extracted from the chosen server. Finally, in the VM
Placement step, a server is selected for the VM to be relocated
to. Several studies have proposed which algorithm to use at
each step [7]. However, these VM Consolidation approaches
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is not suitable for managing VMs in the SDN-enabled NFV
environment, despite being effective for commercial services
in CDCs. This is because it does not consider the performance
of the service function chain (SFC) at all. For instance, the
overall processing time of an SFC can be reduced by placing
all VNFs belong to single SFC to the same server or edge.
Therefore, VM Consolidation for SDN-enabled NFV have to
take these requirements into account.

Fig. 2. VM Consolidation Procedure

Clearly, a series of studies have attempted to adapt VM
consolidation to the SDN-enabled NFV environment. Initially,
rule-based methods were employed; however, due to the
NP-hard nature of VM Consolidation in SDN-enabled NFV
environments, this approaches were computationally expensive
and suboptimal [2]. Consequently, several high-performance
methods utilizing Deep Reinforcement Learning (DRL) have
been proposed [3] [4] [6]. The commonly applied methodology
utilizes the simple deep learning network, which learns the
value of taking actions in specific states to find the optimal
policy. However, this methodology has limitations, so we
incorporates Self-Attention Mechanism (SAM), components
of Transformer [8], that can reflect the relationship between
multi elements data like VNFs or Servers.

Furthermore, this study proposes the elimination of the
Server Selection step from the conventional three step VM
Consolidation process. The Server Selection step provides only
reference information for the VM Selection step, as designing
a system that favors VMs belonging to a specific server
may introduce biases due to information loss. If the Server
Selection step can consistently provide optimal results, then
including it will be a good choice for performance. However,
based on my current understanding, existing research cannot
provide assurance regarding this matter.

III. IMPLEMENTATION

A. Requirements

In this study, we aim to optimize SDN-enabled NFV
during low-traffic periods, such as dawn, by redistributing
VNFs implemented through VMs. Therefore, we named the
implementation SDN Lullaby. Before presenting the specific
implementation, we define the following requirements:

1) VM Consolidation is performed on edge-by-edge basis.
This means that we don’t consider about moving VNFs
to other edge.

2) This study assumes a low-traffic period with minimal
services and no deployment of new VNF during VM
Consolidation.

3) Computing resources of each server are measured based
on CPU and memory usage.

4) We have two goals. First is to minimize the number
of servers hosting VMs with VNFs installed to reduce
energy consumption. Second is maximizing the network
processing performance of SFCs. For this, this system
considered to reduce processing time for SFC. Simply,
if we make all VNFs belong to a specific SFC position
to same server, we can reduce the SFC processing time.
So, if the number of SFCs with all VNFs installed on the
same server increase, then SFCs could perform better.

5) The reward in this system considers both energy effi-
ciency and SFC processing time. In other words, the
objective is to maximize the number of servers without
any VNFs installed and maximize the number of SFCs
with all VNFs on the same server.

B. Environments

Before introducing our DRL method, we explain the envi-
ronment in which the model operates.

1) State: We defined four types of information that can be
acquired on Edge Networks.

• Edge Information: Edge’s CPU/Memory Capacity, and
CPU/Memory Load

• Each Server Information: Each Server’s Id, CPU/Memory
Capacity, and CPU/Memory Load

• Each SFC Information: Each SFC’s Id, CPU/Memory
Request

• Each VNF Information: Each VNF’s Id, CPU/Memory
Request, installed Server Id, and included SFC Id

As a result, we obtained the following structured State data:

State = {
Edge information,
List of Each Server Information,
List of Each SFC Information,
List of Each VNF Information

}

2) Action: What the system wants is to move a particular
VM to a particular server. Accordingly, in the corresponding
environment, the action is expressed as a pair (VM ID,
Server ID). This is possible because unlike the existing VM
Consolidation method discussed earlier, it consists of only
two steps instead of three steps. In previous studies, VM was
selected after identifying the server to remove VM, but in this
paper, VM is directly selected without the Server Selection
step (VM Selection). And, the server to install VM is also
selected immediately (VM Placement).

Action = {VM ID,Server ID}
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3) Rewards: The purpose of the system is to maximize the
number of servers that do not have any VNFs installed, and
maximize the number of SFCs with all VNFs on the same
server. Therefore, we use a simple reward formula defined
below, that the total number of servers is NServer, the number
of servers without any VNFs installed is N0

Server, and total
number of SFCs is NSFC, N∀

SFC is the number of SFCs with
all VNFs installed on the same server.

Reward = N0
Server/NServer +N∀

SFC/NSFC (1)

0 ≤ Reward ≤ 2

In this formula, energy efficiency and SFC performance
were considered with the same weight as follows, but it is
also possible to design them to give higher weights to specific
value by changing them.

4) Emulation: Training DRL in a real SDN-enabled NFV
system is extremely expensive. Adding VNFs, deleting them,
and redirecting SFCs again excessively increases the learning
time at each step. Therefore, learning through an emulation
environment is suitable for overall training. So, we directly
implemented this emulation environment for training and
evaluation.

C. Architecture

Our agent has 3 components, preprocessor, DRL model, and
postprocessor. The preprocessor simply reformats the state to
DRL model’s input, and the DRL model outputs values of
each VNF/server. Then, finally, the postprocessor chooses an
action based on these values. (Fig. 3)

Fig. 3. Agent Architecture

1) Preprocessing: The preprocessor reformats the state, as
defined in the Environment Section III-B, to serve as input
for the DRL model. Since the Agent performs two decision-
making steps (VM Selection and VM Placement), separated
input formatting is required for each step. In the VM Selection
step, the preprocessor extract information of edge, each VM,
and each server from state. In the VM Placement step, the
preprocessor extract information of edge, target VM, and each
server from state and result of VM Selection. Therefore, as

shown in TABLE I, input is transmitted in three dimension
tensor data.

VM Selection VM Placement
total Dimension 3 3
Dimension 1 Batch Size Batch Size
Dimension 2 Number of Maximum VNF Number of Server
Dimension 3 11 11

TABLE I
SDN LULLABY INPUT DIMENSION

In particular, in order to deliver information on each VNF
and server in Dimension 3, 11 data were extracted from the
State in the form presented in TABLE II. And zero padding
was applied to VM that do not exist for batch learning because
the number of VMs for each episode continues to change.

VM Selection VM Placement
VNF CPU Request Server CPU Capacity
VNF Memory Request Server CPU Load
Placed Server CPU Capacity Server Memory Capacity
Placed Server CPU Load Server Memory Load
Placed Server Memory Capacity Selected VNF CPU Request
Placed Server Memoy Load Selected VNF Memory Request
Placed SFC ID Selected VNF’s SFC ID
Edge CPU Capacity Edge CPU Capacity
Edge CPU Load Edge CPU Load
Edge Memory Capacity Edge Memory Capacity
Edge Memory Load Edge Memory Load

TABLE II
SDN LULLABY INPUT DATA

Fig. 4. DRL Model Architecture

2) DRL model: The overall network structure is shown
in Fig. 3. As described in the previous section, the step of
VM Consolidation was compressed from step 3 to step 2.
Therefore, the entire system was expressed through two steps,
VM Selection and VM Placement. First, in the VM Selection,
a neural network estimate the value of each VNF. In the same
way, the VM Placement has the same structure and performs
it. The only difference is they output each server’s value.

In Fig 4 architecture, each network was divided into three
parts: input layer, hidden blocks, and output layer. In the input
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layer, a single Fully Connected (FC) layer was used to perform
simple encoding on data to the input for the hidden blocks.
The hidden blocks utilized the SAM presented in Transformer
Architecture. Compared to Multi Layer Perceptron (MLP),
SAM has the advantage of being able to estimate the hidden
value in consideration of correlation between each VNF/server
that cannot be performed in MLP. In other words, given
information on all VNFs/servers included in the edge, it is
advantageous to use the relationships between them to select
the most appropriate VNF to move and find the server to
locate. In addition, it can bring greater advantages in inference
time and learning time in that parallel processing is possible
compared to Recurrent Neural Network (RNN). In the process
of applying Self-Attention, there is a process of performing
position encoding to convey the position information of each
sequence, but this information is not important in this system
and does not need to be considered. In addition, we choose
Query, Key, and Value for SAM all took the same value. Fi-
nally, in the output layer, the data input from each VNF/server
is compressed into one value through the FC layer. This value
can be thought of as a value for each VNF/server.

3) Postprocessing: Lastly, this study goes through the pro-
cess of filtering and selecting the output of the DRL model.
The default is to select the VNF/server with the highest
value, but the following impossible or meaningless actions are
prevented from being performed through filtering. This method
is one of the ways to handle impossible actions in DRL.

• If no server has sufficient capacity and cannot move a
VNF to any server, it prevents the selection of that VNF.
(VM Selection)

• If the server is original location of selected VNF, it
prevents the selection of that server. (VM Placement)

• If the capacity of the server is not sufficient to move the
VNF, prevent the selection of that server. (VM Placement)

In other words, after extracting the value to select each
VNF and server extracted through the network, in case of
an impossible action, 0 was masked in the output value
through filtering to prevent the corresponding value from being
selected.

IV. EXPERIMENTS AND EVALUATION

A. Environments

We conducted performance evaluation of SDN Lullaby
in the following experimental environment. The experiments
were performed using a Quadro RTX 5000 GPU. The emula-
tion environment, as described in Section III-B4, was utilized
for the experiments. The parameters presented in TableIII were
used as inputs for the emulation process.

Each Server
CPU capacity

Each Server
Memory capacity

Number of
Server

Number of
SFC

12 32 8 8

TABLE III
EMULATION ENVIRONMENT PARAMETERS

Further implementation details and code contents have been
uploaded to the public GitHub repository. (https://github.com/
euidong/sdn-lullaby)

Fig. 5. Rule-based Approach Procedure

B. Compare with baselines
First, we will show the results of performance comparison

with the existing system. We use a baseline rule-based model.
It was implemented to follow Fig. 5. This is an slight variation
of V.Eramo et al [2].

Fig. 6. Reward according to edge load, (left) is baseline agent’s result, and
(right) is DQN agent’s result.

Fig. 6 illustrates how the reward of each method changes
as the edge load varies. For edge loads of 0.1, and 0.2, the
overall performance of the DRL implementation is higher
than that of the rule-based method. However, as the edge
load increases, it can be observed that the rule-based method
outperforms the DRL methods. This performance difference
can be attributed to the conflicting requirements of energy
efficiency and SFC performance. However, for requirements
during low-traffic periods when edge load is minimal, this
performance difference is not significant.
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C. Effect of Step Compression
This evaluation compares the results of actually removing

one step from VM consolidation. Here, we set the maximum
edge load to 0.2 and compared the DRL model with and
without the server selection step of the baseline model. In
Figure 7, we can see that the overall training time is reduced by
removing steps. So we can see that two step inference is much
faster than three step inference. Additionally, the two step
model reached rewards above 1.4, while the three step model
only reached around 1.2. It can be seen that performance
has improved as information loss between each step can be
reduced.

Fig. 7. Step Compression Effect

D. Effect of Self Attention Mechanism
This evaluation shows the performance comparison of the

SAM method and LSTM [9] widely used in existing papers
(Fig. 8). First of all, it can be seen that the method utilizing
LSTM takes remarkably long training time because parallel
processing is impossible due to structural limitations. Process-
ing time to process the same step was required more than 10
seconds per 200 episodes. In addition, it can be seen that SAM
is more advanced in terms of performance. The SAM based
model reached a reward of 1.4 or higher, but the LSTM based
model only reached around 1.3.

Fig. 8. SAM and LSTM Performance

V. CONCLUSION

The proposed approach aims to increase energy efficiency
while preserving or enhancing network quality. By operating
entirely based on DRL without the need for manual interven-
tion, it offers the following contributions:

• Reducing the VM Consolidation process from three steps
to two steps, which not only reduces inference and
training time but also offers advantages in terms of
performance.

• Providing an alternative Full DRL approach to designing
SDN-enabled NFV management.

Although this study makes important contributions, there
are some limitations that should be considered. First, the
current implementation relies on a single FC layer to encode
the input data. Utilizing advanced encoding methods can
potentially improve performance. Second, the evaluation is
limited to the currently implemented emulation environment.
In further research, the proposed approach should be applied
to a real SDN-enabled NFV environment to demonstrate its
effectiveness through concrete experimental results.
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