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Abstract—Cloud and edge Data-center (DC) are designed to
allocate computing resources dynamically to users based on
the agreed Service Level Agreement (SLA). However, the ever-
increasing demand for beyond 5G services necessitates an efficient
workload management. A key challenge in this regard is auto-
scaling, a dynamic process that adjusts computing resources to
meet fluctuating system demands, optimizing resource utilization
and cost efficiency. Traditional auto-scaling algorithms, which
rely on fixed thresholds or control-theory, may face limitations
in modern DC which are characterized by diverse, dynamic, and
multi-user workloads. In this paper, we propose a Reinforcement
Learning (RL)-based controller that extends the capacity of the
state-of-the-art RL-based auto-scalers to the multi-user workload
scenario. We compare the proposed RL agent against the well-
known Proportional–Integral (PI) controller and a Threshold
(THD)-based controller in a multi-user workload scenario in
terms of created Cloud-native Network Functions (CNFs) and
peak latency performed in a discrete event simulator.

Index Terms—Auto-scaling, Workload Management, Rein-
forcement Learning, Cloud-Native Network Function.

I. INTRODUCTION

In the rapidly evolving landscape of cloud and edge Data-
center (DC), the demand for beyond 5G services has created
new challenges for managing workloads efficiently [1]. One
such challenge is the need for auto-scaling, a process that dy-
namically adjusts the available resources to meet the changing
demands of the system. Auto-scaling is pivotal in ensuring
optimal resource utilization and cost-efficiency in cloud and
edge DC [2]. An example of technological transformations that
have triggered the need for novel 5G workloads auto-scaling
mechanisms is Mobile Network Operator (MNO) migrating
to a Telco Cloud environment. This has been possible as the
latest 5G Standalone (5G-SA) network framework includes
Cloud-native Network Functions (CNFs), which empowers
5G network functions to operate within a cloud environment.
These adaptations grant MNOs the ability to establish a
”web-scale” Telco Cloud capable of scaling up and down
in response to varying user demands for tailored services.
Therefore, the dynamic demands of a ”web-scale” Telco Cloud
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imposes the need for innovative auto-scaling algorithms to
manage resource allocation and ensure optimal performance
effectively.

In traditional single-user workload management, a cloud
provider allocates resources independently to each user [3].
However, this model is not well-suitable for some of the novel
beyond 5G workloads, where the cloud provider needs to
dynamically allocate and distribute resources among multiple
users and their respective workloads, ensuring fair and efficient
utilization while adapting to fluctuations in demand. Examples
of these workloads are those generated in a Neutral Host
Service Provider (NHSP) [4]. A NHSP offers an infrastructure
that can be shared among multiple MNOs. As resources
are virtualized for each MNO using the Neutral Host (NH)
infrastructure, it is critical to ensure that the resource allocation
for the different CNFs of each MNO fulfills the MNOs Service
Level Agreement (SLA). Therefore, designing a multi-user
auto-scaling mechanism that can cope with the dynamics of
such environments is fundamental.

Up to date, auto-scaling algorithms in DC have relied on
fixed thresholds or control-theory to adjust resource alloca-
tion [5]. These algorithms monitor system metrics such as
Central Processing Unit (CPU), storage, memory utilization,
or number of replicas and trigger scaling actions when pre-
defined thresholds are crossed. While these approaches have
been effective in simple scenarios, they face limitations in
modern DC characterized by a) heterogeneous, b) dynamic,
and c) multi-user workloads. For example, fixed thresholds
may fail to capture the complexities of user demands, leading
to over provisioning or under provisioning of resources. This
is where Machine Learning (ML), particularly Reinforcement
Learning (RL), has emerged as a powerful solution to address
the first two aspects [3], [6]. By leveraging historical data,
user behavior patterns, and system performance metrics, RL
algorithms can learn and adapt to changing user demands and
optimize resource allocation through direct interaction with the
environment.

Most current auto-scalers for multi-user workloads still rely
on traditional approaches, which may not capture the complex
nature of multi-user workloads, or ML trained in a supervised
approach, which requires full training if workloads change
drastically [1], [7], [8]. Therefore, there is a clear need to
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design novel algorithms that achieve similar performance as
the ones developed for single-user workload scenarios but are
tailored specifically to handle the multi-user complexities.

In this paper, we present a solution to the auto-scaling
problem by designing a RL-based controller that extends the
capacity of the state-of-the-art RL-based auto-scalers to the
multi-user workload scenario. The proposed controller can
learn diverse user demands and optimize resource allocation
simultaneously. This approach goes beyond state-of-the-art
since a) it removes the need of having multiple single-user
controllers for each type of workload, which have to be also
tailored to each type of workload or adapted to work sub-
optimal on all of them, and b) it achieves a good performance
in terms of peak latency while bounding the number of used
resources in multi-user workload scenarios.

II. SYSTEM MODEL

Auto-scaling is a technique used in cloud and edge comput-
ing to dynamically adjust computational resources in response
to workload changes. It aims to optimize resource allocation
by either increasing or decreasing computing resources like
CPU and memory (vertical scaling) or by adjusting the number
of servers/micro-services (horizontal scaling) for functions,
services, or applications. Auto-scaling controllers typically
target various objectives, such as reducing application delays,
improving resilience, or load balancing. However, this paper
focuses on two primary objectives: meeting Key Performance
Indicators (KPIs) specified in SLA agreements and avoiding
over-provisioning to optimize resource utilization and min-
imize costs, especially in edge DCs, where resources are
limited and cost considerations are crucial [9].

In the last years, RL-based algorithms have been proposed
to solve the auto-scaling problem with outperforming results
compared to traditional methods such as expert and ruled-
base methods and control theoretic approaches in single
user’s workload setups [3], [6], [10], [11]. These results have
demonstrated that RL-based auto-scalers can learn the alloca-
tion of computing resources directly from complex workload
patterns without needing expert knowledge or complex and
time-consuming engineering design procedures. However, the
traditional approach of using single-user scalers in parallel to
dynamically allocate and distribute resources in a multi-user
setup can not ensure a fair and efficient utilization of resources
while adapting to fluctuations in demand as their decisions are
based on only local information, missing the side-effects of
other scalers making decisions over a shared infrastructure.

In order to design RL-based auto-scalers that can manage
the resource allocation of multi-user workload simultaneously,
we first need to extend the single-user’s workload Markov
Decision Process (MDP) framework to cover the multi-user
workload setup. An MDP is defined by a discrete-time stochas-
tic framework for modeling decision-making problems that can
be solved by algorithms such as RL. This process is defined
by a tuple (S,A, p, r) where S is a set of states, A is a set of
actions, p is the transition probability between states s and s′

after action a is taken, and r is the immediate reward obtained

after acting with a in state s. The policy, defined as π, is a
mapping function from states to actions. The solution to an
MDP is an optimal policy that maximizes the expected long-
term reward (discounted sum of immediate rewards). To solve
the MDP, several tools can be employed, RL being one of
those. The optimal policy is found in RL after many agent
interactions with the environment.

For the auto-scaling problem, the state can be defined using
the information retrieved from the computing infrastructure.
More precisely, at any time step t, and set U of users, a system
state s(t) can be defined as:

1) Mean CPU usage ctu among the active CNFs associated
to a given user u ∈ U .

2) Peak (maximum) latency dtu from the active CNFs
associated to a given user u.

3) The number of active CNFs nt
u associated to a given

user u ∈ U .
Based on this information, the RL agent decides if the

number of CNF instances of each user must be increased,
decreased, or kept the same. In other words, the agent needs
to take a discrete action atu per user u, given the state s(t)
and CNF traffic atu. This specific action definition is a multi-
discrete action space, which refers to a RL scenario where
an agent has to select multiple actions simultaneously from
separate action dimensions.

Finally, and without loss of generalization, in this article,
we assume that the SLA associated with the user workload is
the same for all users; this allows us to serve all users with
identical type of CNF, the number of CNF will be determined
by each user workload patterns.

The reward function is defined similarly as in [3] but
extended to the multi-user workload setup. Our agent takes
multi-discrete actions to maintain a given continuous variable
(e.g., latency) at a certain level while controlling the number of
CNF instantiated per user. Consequently, the agent is rewarded
if the actions lead towards that goal. More specifically, the
reward function at time step t is defined as

r(t) =



1/3 |d(t)u − dtgt| < ϵ · dtgt∨
|cpu(t)

u − cputgt| < ϵ · cputgt,∀u ∈ U

0 |d(t)u − dtgt| ≥ ϵ · dtgt∨
|cpu(t)

u − cputgt| ≥ ϵ · cputgt

−100 in episode termination cases

(1)

where d
(t)
u is the peak latency from the active CNFs at time

step t for user u (taken from the system state), dtgt is the target
latency as defined by the SLA and ϵ is a range of tolerance
allowed by the SLA (e.g., 20% above or below the target
value). Notice that the reward function considers all the users
equally important; therefore, if the computing resource is well
optimized, the reward sum equals one. Also, similar to [3],
the reward considers both the peak latency and CPU usage to
trade them off; otherwise, the agent will take the most obvious
action: to keep increasing the number of CNF instances,
disregarding the economic impact of such a decision, or
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maintain the CPU in a range reducing it to a threshold-based
algorithm. Finally, the agent is highly penalized if it incurs a
termination situation, e.g., very high latency or the number
of CNF instances surpasses the maximum capacity of the
infrastructure (see Section III).

Traditionally, RL algorithms fall into two categories based
on how they determine the optimal policy [12]. Action-value
methods learn action values to make action selections, while
policy gradient approaches directly acquire a parameterized
policy for action decisions, bypassing action-value estimates.
While action-value RL algorithms offer the advantage of learn-
ing both the optimal policy and value function simultaneously,
they face challenges in environments with large or continuous
action spaces, requiring explicit estimation of action values
for all state-action pairs. In contrast, policy gradient methods
stand out in handling extensive and continuous action spaces
by directly optimizing the policy function but may encounter
high gradient estimate variance, affecting learning stability.

As described in the MDP model, given the multi-discrete
action space of the problem and continuous state space,
policy gradients are better suited. In this paper, we have
selected the policy-gradient Proximal Policy Optimization
(PPO) algorithm, which combines some of the performance
improvements that have been introduced by Advantage Actor
Critic (A2C), such as having multiple workers, with a trust
region to improve the learning of the actor component from
Trust Region Policy Optimization (TRPO) [13]. In general,
the main idea of PPO is that after an update, the new policy
should not be too far from the old policy. For that, PPO
uses clipping to avoid too large updates. PPO agents have
demonstrated a good balance between sample complexity, ease
of implementation, computational cost, and performance [13].

III. EXPERIMENTAL SETUP AND EVALUATIONS

A. Experimental scenario

Our base computing resource scenario comprises two
servers, three users, and three dedicated load balancers (one
for each user), as depicted in Figure 1. Each CNF instance
requests resources from the servers based on the workload to
be processed while ensuring that the specified thread limit is
not exceeded. As explained in Section II, a user workload in
our system model can represent a set of computing jobs or
aggregated traffic to be processed by a computing unit, where
each workload has a specific pattern. We use DynamicSim,
a simulator that enables the creation of edge-cloud network
scenarios and provides several metrics such as CPU usage
and peak latency. Notice that DynamicSim tracks the latency
of the jobs and reports the maximum of those latencies
per tick as peak latency. More details about the simulation
platform can be found in [3]. The parameters used to constrain
the servers operation and the CNF are described next. Each
server can execute up to 20 CNF instances with up to 16GB
of RAM. On the other hand, a CNF instance can process
a maximum of 300 jobs per tick (i.e., every discrete time
step in the simulator). In addition, the expected performance,
i.e., SLA, is predetermined between well-defined boundaries.

Fig. 1. Scenario used for the evaluation which is composed of three users’
workloads and two servers.

First, a CPU consumption of 75% provides a target value
to avoid the non-linear energy consumption above this level
[14] and a latency threshold of 20ms to process the jobs,
which is a value expected in processing cloud-based interactive
streaming content [15], with an accepted deviation margin for
both measures set at 20%. Notice also that instantiating new
CNF instances is facilitated through load balancers, which use
the least-load distribution strategy to allocate CNF instances
across servers.

In terms of the workload generation, the traces used to
generate the workloads are based on the facebooklive18
dataset [16], which periodically fetched Facebook live video
broadcasts and viewers metadata, such as geo-location and
video resolution, using the APIs provided by Facebook (which
were disabled in 2019). Specifically, data was captured in con-
secutive intervals of 300sec, and the dataset is available during
several days in May, June, and July of 2018 for all geographic
regions (Europe, Asia, North America, South America, Asia,
Africa, and Oceania). To use such metadata for our purpose,
we assume that the work (i.e., number of jobs) the Facebook
live servers do is proportional to the number of live streams in
nearby geographic locations and their video resolution. This
assumption makes sense for live streams as they rely on low
or even zero-latency video encoding using simple devices.
In contrast, further video compression/post-processing can be
done at the edge server with more computing resources.

Moreover, we extracted seven consecutive days from three
geographic regions (Europe, North America, and South Amer-
ica) and applied cubic spline interpolation (with some added
Gaussian noise) to increase the granularity to 1sec. For the dif-
ferent implemented algorithms, the first five days of the trace
can be used as training data to find/learn the controller param-
eters, and the last two days are used for testing/validation. This
strategy is very well known in the ML community to evaluate
the performance of the algorithms under unseen input data
(generalization).

B. Implemented algorithms

In order to evaluate the performance of the RL agent
designed in the previous section, we implement a PPO-based
controller to realize it together with two more controllers as
baselines: one based on rules and one based on control theory.
The details of their implementation are below:
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Fig. 2. Performance of the three proposed agents in terms of the number of
created CNFs and peak latency, together with the actual users’ workloads.

Threshold based controller: Threshold (THD)-based re-
source allocation in a multi-client scenario involves using
reactive scalers, one per user. They employ THD-based rules,
which rely on the observed performance metric (e.g., service
latency) to execute the pre-set scaling actions (e.g., increase,
decrease, nothing). For our implementation, we use CPU
usage and peak latency as metrics to monitor and define
the thresholds, similar to the RL agent reward function and
fully aligned to the objectives to optimize. More precisely, the
latency thresholds are set at 24ms (upper) and 16ms (lower),
and CPU thresholds are set at 90% (upper) and 60% (lower).
An action is triggered if a monitored metric goes above or
below any of the two thresholds. After taking action, the
system continues to monitor the system metrics. If the action
was adequate, the metrics should return to acceptable levels.
If not, further action may be needed.

Proportional–Integral (PI)-based controller: A PI con-
troller is commonly used for auto-scaling in various systems,
including cloud computing, industrial processes, and network
management. In our implementation, the PI controller uses the
current dtu and previous dt−1

u peak latency to decide how to
set the number of CNF instances. In particular, it keeps track
of a variable ϕt

u at time step t:

if dtu > θU : ϕt+1
u = ϕt

u + α
(
dtu − θU

)
+ β

(
dtu − dt−1

u

)
if dtu < θL : ϕt+1

u = ϕt
u + α

(
dtu − θL

)
+ β

(
dtu − dt−1

u

)
(2)

with θU , θL, α and β tunable parameters. Notice that if dtu
lies between the two thresholds, i.e., θL and θU , referred to as
the dead zone, ϕt

u is not updated. If, at the beginning of time
step t+ 1,

• if ϕt+1
u exceeds the the number of CNF instances by more

than 1, that number of CNF instances is increased by 1,
• if ϕt+1

u subceeds the number of CNF instances by more
than 1, that number of CNF is decreased by 1,

• otherwise the number of CNF instances is kept the same.
The integral and proportional elements are represented by

the second and third components in equation (2), correspond-

TABLE I
COMPARISON OF THE CNFS AND PEAK LATENCY PERFORMANCE

Metric Method Users Mean Std min Max

#CNF

PPO
User 1 4.76 0.93 2 7
User 2 3.82 0.86 2 5
User 3 7.59 1.24 4 10

THD
User 1 2.59 1.94 1 7
User 2 2.28 1.46 1 6
User 3 4.40 2.82 1 12

PID
User 1 2.82 1.37 2 6
User 2 2.55 0.96 2 5
User 3 4.28 2.35 2 11

Peak
Latency

PPO
User 1 0.0064 0.0030 0.0033 0.1377
User 2 0.0076 0.0153 0.0038 0.4819
User 3 0.0154 0.0865 0.0041 1.0957

THD
User 1 0.0082 0.0023 0.0033 0.0267
User 2 0.0083 0.0018 0.0043 0.0243
User 3 0.0086 0.0011 0.0056 0.0195

PID
User 1 0.0076 0.0018 0.0033 0.0228
User 2 0.0077 0.0017 0.0033 0.0223
User 3 0.0085 0.0015 0.0033 0.0234

ingly. The integral element aims to maintain the maximum
delay close to the upper threshold if it exceeds that threshold
and close to the lower threshold if it succeeds that threshold.
In contrast, the proportional component is designed to actively
respond to changing trends in latency progression. If the
latency lies in the dead zone between the two thresholds, the
PI-based controller does not react. Note that the PI controller
only requires the maximum latency (both current and past
values) for its input and does not require information about
CPU utilization. The optimal values for its parameters, θU , θL,
α, and β, are usually established through several trial runs on
training data. In the experiments in Section III-C, we found
θU = 0.012 (sec), θL = 0.007 (sec), α = 10 (1/sec) and
β = 300 (1/sec) by running an extensive set of tests with
different parameters on the training set (of two days).

PPO-based controller: In this paper, we use the PPO
implementation provided by Stable Baselines1 with its default
parameters since a) this is a popular and widely-used library
that provides a collection of robust and reliable RL algorithms
to provide benchmarks for reproducibility, and b) it offers the
implementation of state-of-the-art algorithms, such as PPO,
which have been extensively tested and optimized. We trained
the RL-based controller using 1, 2, 3, and 4 days of workload
traces. After testing each one of them, we observed that the
agent trained for one day yielded superior results, and we
selected it for the performance evaluation.

C. Performance evaluation results

Figure 2 shows the distribution of different user workloads
and, together with Table I, how each controller can manage
them in terms of the number of created CNFs and peak
latency. We can see that THD restricts the creation of CNF
more effectively in relation to the workloads compared to
the other two algorithms, providing the best performance in
terms of created CNFs. This feature makes THD a suitable
candidate for scenarios where cost savings, energy efficiency,

1https://stable-baselines3.readthedocs.io/en/master/
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and more efficient resource utilization are the most critical
priority. Moreover, it is also suitable when there are computing
constraints to run the controller algorithm.

Results also reveal that the PPO is the controller with
the lowest performance in the number of created CNFs, on
average, although their maximum values are better than the
other two. However, the proposed PPO algorithm outperforms
the other two algorithms when considering latency, which
could be particularly beneficial in real-time applications where
low latency is crucial, such as high-frequency trading, video
streaming, or online gaming. Of course, having a lower
latency directly results from having a more significant number
of CNFs than required (over-provisioning), but the over-
provisioning is still bounded. The performance of the PPO
controller also demonstrates that extending the RL agent to a
multi-user workload setup is more challenging than its single-
user counterpart. Some hypotheses of this performance can
be related to the multi-discrete action spaces of our MDP,
which impacts exploration and credit assignment problems.
More precisely:

Exploration: Multi-discrete action spaces tend to have a
more significant number of possible action combinations com-
pared to simple action spaces, resulting in the agent exploring
a more extensive set of combinations, which can lead to slower
learning or convergence to suboptimal policies.

Sample efficiency: Learning in multi-discrete action spaces
often requires significantly more samples (i.e., interactions
with the environment) than single action spaces. This also
makes it challenging to gather enough diverse experiences to
effectively train the agent.

Credit assignment: Determining which actions led to the
obtained rewards, e.g., the assigning credit problem, is more
difficult in multi-discrete action spaces since it may not be
straightforward to identify which specific combinations were
responsible for the observed outcomes, making it harder for
the agent to learn from its experiences.

The PI algorithm, while not excelling in either latency or
CNF creation, offers a balanced performance that might be
preferable in certain situations. PI can be a viable choice when
neither latency nor CNF creation is the sole deciding factor,
but rather a combination of both. Moreover, PI controllers are
well known for their simplicity and robustness when deployed,
making them a good choice for systems where simplicity and
reliability are important, and the resources to run the algorithm
are constrained. However, their time-consuming design and
lack of adaptability when workloads change drastically may
limit their usability.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a RL-based controller that
extends the capability of state-of-the-art RL-based auto-scalers
to the multi-user workload scenario and compared its per-
formance with two well-known controllers, one THD-based
and one PI-based, which have been adapted to run in this
setup. Although our RL-based controller did not outperform
the other two in all evaluations, the THD-based controller

outperformed the others in terms of the lower number of
CNFs and the PI-based one trading off both CNFs and peak
latency, it did provide better latency control while bounding
better the maximum number of created CNFs. However, some
deficiencies need to be studied further. First, it is necessary
to investigate how to design a reward function for a MDPs
that strikes a better balance between optimization objectives.
Second, this paper did not consider complex scenarios, such as
distributed and federated domains. In these cases, it is required
to adapt our algorithm to enable multi-agent and federated
operation by combining federated learning techniques with
multi-agent RL, aiming for more robust and scalable resource
allocation in such scenarios.
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