
Vendor Agnostic Network Service Orchestration
with Stacked NSO Services

Marc Koerner
Department of Energy / ESnet / Lawrence Berkeley National Laboratory

Berkeley, USA
MKoerner@{ES.net; LBL.gov}

Abstract—The Energy Sciences Network (ESnet) is the Depart-
ment of Energy’s internal wide area network provider, delivering
connectivity for all US national laboratories including some
satellite sites in Europe. The ESnet network is a highly reliable
and high bandwidth network, which transports vast amounts of
data between laboratories and supercomputing facilities. Thus,
ESnet is supplying the scientific community with the connectivity
requirements for all sorts of data analytics and simulations.

One of the major goals within the ESnet6 deployment was to
have an orchestrated and fully automated network configuration
management system. Hence, ESnet is leveraging tools like the
Cisco Network Service Orchestrator (NSO) to deploy router
configuration in a centralized and also service oriented fashion.
After building the first iteration of services following a significant
optimization in the router configuration and eventually deploy-
ment time, ESnet decided to take advantage of the accumulated
knowledge during the first implementation and started to revise
the NSO service architecture. The first prototype using the
revised architecture is currently getting implemented in scope
of our management router based configuration service. This
paper will elaborate on the advantages of minimum functional
configuration based stacked service architecture in comparison
to plain networks service model based design.

Index Terms—Configuration Management, Intent-based Net-
working, Network Service Orchestration

I. INTRODUCTION

With emerging technologies like Software-Defined Net-
working (SDN) and Network Function Virtualization (NFV)
the foundation for a rethinking of the operation of networks
was created. The central control paradigm and the abstraction
concept introduced by virtualization triggered a lot of new
network management and operational concepts. The entire
development started around the OpenFlow technology and
quickly extended beyond that. However, the main idea remains
the same: a centralized network control entity is managing the
network based on the networking fabric paradigm. This means
the network acts as one entity and is no longer controlled in a
decentralized way. The key is to follow an abstracted network
function driven workflow, which will lead to an automated
device configuration provisioning across multiple network
nodes or even the entire network. The logical consequence
of this approach is an intent driven automation. Based on this
concept, network operators can configure a network service,
like a Virtual Private Network (VPN) or a Label Switched Path
(LSP), on demand and in a global manner. ESnet has adopted
that technology and implemented a fully automated intent
driven network orchestration stack, leveraging multiple tools

to provide an automated provisioning of customized network
services. Introducing the entire ESnet software stack would
exceed the scope of this paper. The focus of this paper will
be on the design and implementation of the vendor agnostic
stacked network service architecture for NSO.

Fig. 1. ESnet6 network and user facilities

The remaining paper is structured as follows: a related work
in section II and background in III. This is followed by an
overview of the current implementation in section IV-A, the
lessons learned in IV-B, and the revised approach described
in section IV-C. Which will be followed by the results of the
implemented prototype IV-D. The paper will end with a short
conclusion and future directions V regarding the refactoring
and integration process.

II. RELATED WORK

Configuration management in general goes all the way
back and started with some research around how to deal
with general software configuration management. Introducing
fundamental ideas around versioning as well as an object
oriented approach [1] around composition and aggregation.
Significantly later during the introduction of SDN [2] to packet
switched networks, the controller logic became more complex
and the controller became a mixed architectural management
system also dealing with network configuration [3]. The mo-
mentum kept going and network configuration management
systems and their applications moved more into the focus [4].
This also led to configuration management platforms like NSO
[5]. Thus, eventually leading back to the fundamental question
of how to architect services on top of network configuration
management systems in an efficient manner [6].

3rd International Workshop on Analytics for Service and Application Management (AnServApp 2023)

978-3-903176-59-1 ©2023 IFIP



III. BACKGROUND

Network configuration management in general is a very
challenging task, which is getting even more complicated once
devices from multiple vendors are involved. Not only that the
user has to deal with different command line interfaces (CLI)
even standardized application interfaces (API) like Netconf
might look totally different. Moreover, hardware and software
specific device implementations look completely different as
well. A simple example for instance is the maximum transfer
unit (MTU). While normal MTUs of 1500 bytes or more based
on e.g. Q-in-Q VLAN tagging are usually not a problem at
all, jumbo frame support with regards to the MTU might
be slightly different by a few bytes. Hence, configuring a
backbone link (BBL) between two core routers from different
vendors becomes a very challenging endeavor taking up to
multiple days of configuration and testing.

An even more simplified example is for instance the config-
uration of a loopback interface address. Different port naming
schemes as well as the CLI / Netconf differences make
even seemingly simple tasks like an IP address assignment
somehow challenging. This is when model driven config-
uration management comes into play. Similar to the SDN
controller principle an abstraction layer is introduced, which
communicates with heterogeneous network equipment. Instead
of having a unified API / agent on the devices as defined
in the OpenFlow paradigm, the abstraction is moved into
the controller. Configuration management tools like the Cisco
Network Service Orchestrator leverage an internal API which
will be wrapped by a Network Element Driver (NED). This
driver is a device specific implementation of the device API
and allows the configuration management system to access the
configuration data. However, the device specific abstraction
is not part of this implementation and remains a challenge
which needs to be addressed by the service developers. The
configuration management platform is just providing the re-
quired framework for building service logic on top without
implementing southbound Netconf interfaces or northbound
CLI/REST interfaces. It is a service development framework
with a unified access model. Thus, building an intent driven
service like the aforementioned BBL can significantly reduce
deployment time from previously two days to 15 minutes for
an up and running full functional BBL.

IV. ARCHITECTURE AND IMPLEMENTATION

This section will give a brief overview about the existing
implementation as well as the architectural design guide for
the revised approach.

A. Current implementation

ESnet is using the Cisco NSO to build network services. The
basic set of services is configuring independent device specific
configuration sections using different XML based templates
for Junipers and Nokia routers, as well as some Ciena optical
equipment. Static configuration information is directly mapped
by structured XML code while certain model based values e.g
the IPv4 and IPv6 address for a loopback interface, which

is getting set based on the Yang model, is eventually handed
down to the regrading template section.

ESnet’s NSO services are typically composed out of the
following components:

• The Yang service model which translates into a CLI
command structure as well as the JSON based REST API

• Service logic is written in python which usually includes
some data validators and template based variables

• The XML based device configuration template for the
different devices which directly translates into device
configuration

TABLE I
ESNET’S NSO SERVICES

Service Descrition Lines of Code
Yang Python XML

Port basic port settings:
MTU, LLDP, etc

641 263 442

BBL Configures a BBL be-
tween two routers

544 652 552

VPLS Configures a L2 VPLS
between n routers and m
interfaces

527 920 570

In particular, the BBL service model relies on certain leaf
references from the port and routing-domain service. Both
services are getting referenced in the Yang model in order
to verify that by the BBL service required configuration is
in place. In this example the instantiated port and e.g. the.
intermediate system to intermediate system (IS-IS) routing
protocol settings which are required to set up the BBL related
additional configuration information like the IP addresses on
both sides. This is why the BBL is also a very good example
of an intent based service which is using a configuration man-
agement system like NSO in order to create a service instance
across multiple devices from possibly different vendors.

Fig. 2. UML Example of the current NSO Service Architecture

Based on different factors like for instance the amount of
knobs a service is providing for a specific customer adopted
sdevice setting, the service logic can grow rapidly, the same
applies to the validation logic, and the configuration templat-
ing.

B. Lessons Learned

Building an intent driven service for a configuration man-
agement system utilizing heterogeneous network equipment
can very quickly become a challenging task. Vendor specific

3rd International Workshop on Analytics for Service and Application Management (AnServApp 2023)



configuration and fundamental different configuration princi-
ples introduce a high level of complexity and need to be
designed appropriately. The first implementation was a sig-
nificant improvement compared to the diverse tools ESnet has
been used before. However, following a top-down approach
led to the following issues:

1) Monolithic services with a high complexity: Having a
top down approach leads to mostly monolithic services with
significant complexity. The initial implementation is usually
looking reasonable but typically growing over time. Not cov-
ered requirements or previously not identified corner cases
tend to blow up the service code base as well as the testing.
The service internal value validation is getting more complex
with the size and the service in general is getting harder to
understand for developers.

2) Validation complexity: Service validation is basically its
own challenge. It is supposed to make sure that the engineer
or higher automation layer using the service is providing
correct data. Moreover, it is also important for consistency
and correctness within the network. This could affect internal
configuration references like prefix list names associated with
a certain filter as well as configuration related ids which should
be unique across the system or even the network as a whole.

3) Same functionality is getting defined in multiple ser-
vices: Simple configuration information like the definition of
an interface as well as the regarding assignment of an IP
address for that interface is getting defined multiple times.
Redundancies like these increase the code base and add
additional maintenance and test overhead. Adding or changing
configuration parameters have to be maintained and tested in
multiple places and add significant refactoring complexity.

4) Redundant data: Instead of taking advantage of refer-
encing lower layer services which already contain the con-
figuration information like a particular prefix list, it’s getting
defined in multiple places on multiple devices and can cause
consistency issues once it is subject to change.

C. Revised service architecture

The current implementation provided a significant positive
impact on the way ESnet’s routers are getting configured.
The configuration complexity for the operators was reduced
and a significant time reduction accomplished. However, large
monolithic services introduced their own complexity and thor-
oughly automated testing and documentation was required.
Overlapping data is challenging when it comes to validation. In
order to anticipate the identified issues the current architecture
was audited. The outcome was a re-architectured design of the
current service model and move towards a more granular and
layered service design. In detail, the key idea is to leverage of
the NSO internal opportunity to stack services and encapsulate
certain configuration information into logical blocks which
can be reused across higher layer services. The outcome was
a move away from the linear monolithic service architecture
towards a 3-tier stacked service approach.

1) Tier-1: Tier-1 services are building the vendor agnostic
abstraction of simplified device configuration sections. They

reduce the overall amount of configuration options but still
cover every lever which is required for the services using this
fundamental building block. Since they just abstract configura-
tion information they might not be able to work independently.
An example for tier-1 services could be a VLAN or a prefix-
list. Another bold concept for the tier-1 services is that instead
of getting mapped to a single device the service model will
have a device list which is not mandatory. Thus, the config
information can exist independently and later mapped against
multiple devices in order to generate the same configuration
information up to N times. An exception to this model are
services which are bound to a unique resource, for instance
the physical port on a particular device.

2) Tier-2: Tier-2 services introduce a basic service abstrac-
tion. They are composed out of tier-1 services and build the
first layer of functional services. In order to compose tier-
1 services into a functional block they may introduce some
additional device configuration which they use to glue tier-1
services together. Tier-2 services can also be stacked to build
further functional service blocks.

3) Tier-3: This is the highest layer of services which are
mostly fassade services. They are composed out of tier-2 and
tier-1 services and build an operation foundation for ESnet’s
network operation and customer facing product portfolio. They
only expose a minimal amount of variables which allows
operators to bring up the service with mostly default settings.
These default values are hard coded within the tier-3 service
template and can be adjusted by editing the tier-2 or tier-1
services in case a higher layer of adaptation is needed. Again,
the automation software or a qualified user can make changes
to the underlying services instantiated by the fassade service in
order to tweak values individually. These services have zero
device configuration in their templates and rely only on the
lower layer services. They reflect a fully abstracted and device
agnostic definition of a network service.

Fig. 3. UML Example of the New NSO Service Architecture

The new architecture is applying object oriented (OO) pro-
gramming concepts to the configuration management service
architecture. It works based on a combination of composition
and aggregation of services and leverages the NSO internal
Yang leaf reference mechanism as a key principle for an initial
data validation as well as a pre-selection of possible sub-
services. Most services and their data configuration data can

3rd International Workshop on Analytics for Service and Application Management (AnServApp 2023)



exist without even getting applied to a device. However, once a
tier-3 service is getting instantiated all related tier-2 and tier-1
services are getting either a device information or instantiated
all configuration information is coming together and applied
to the corresponding device or devices. Thus, large chunks
of configuration can be generated and applied with the pre-
existing data from lower layer services in the configuration
database (CDB) and some minimal input based on the required
information for the tier-3 service.

D. New Tier-3 Architecture Prototype

Esnet is deploying two different categories of routers
on operational sites. The first category are the core routers,
which are building the core network. The second category
are management routers, which are used to connect certain
onsite periphery. They offer mostly management access across
various equipment which is usually co-located with the core
routers. This can be for instance network performance test
equipment, optical transponders, and other hardware. MGMT
routers share certain network management services like DHCP,
NTP, or syslog based on relay agents. These services are
getting whitelisted with with ACLs. The ACLs again are
referencing specific prefix lists which contain specific pre-
fixes for bidirectional traffic. Similar to the idea behind the
afore mentioned system service, where the router’s loopback
interface addresses are getting configured and the QoS pa-
rameter based queue configurations, the management router
base configuration service is supposed to provision a certain
foundation of configuration options. This is the first service
which was developed as a prototype following the new design
pattern. The result is very impressive, since after setting up
all dependencies for the management router base configuration
like the regarding VLANs, prefixes, and ACLs in NSO as tier-
1 services, a complete base configuration can be generated
by just providing the IP addresses for the Integrated Routing
and Bridging (IRB) interfaces for in the tier-3 service. This
can basically be repeated for each device this particular
service configuration should get applied to without the need
to change any other data. While creating a perfect balance
of service abstraction and flexibility a significant reduction
in code complexity could be achieved compared to the first
implementation. Just to be fair, the current prototype does
not introduce any evaluation logic in python at the moment.
However, service size in general was reduced dramatically and
modules can get reused within multiple services now. One
example from the prototype is the IRB service which is getting
instantiated five times within the MPR-base-config service.
Moreover, ACL and IPL services are getting used within the
IRB service and code is getting applied multiple times to the
final device configuration without any repetitions inside the
NSO XML templating.

V. CONCLUSION AND FUTURE WORK

We were able to reduce the code complexity and are further
investigating and evaluating the new architecture. Additional
base config related services like the static-routing service

TABLE II
ESNET’S NEW MGMT ROUTER BASE CONFIG SERVICES

Service Descrition Lines of Code
Yang XML Tier

IPL Configures a list of pre-
fixes

63 38 1

ACL Configures the ACLs us-
ing internal refs to IPL

61 100 1

Interface Configures the abstract
construct of a logical in-
terface including IPs

133 56 1

VLAN Configures a VLAN en-
try

60 19 1

IRB Configures an IRB in-
terface using the VLAN,
Interface and ACL ser-
vice

82 61 2

MPR-base-config Creates and configures a
complete MGMT router
base config with multi-
ple IRBs

92 121 3

are currently in development. We will further continue to
implement additional tier-1 services and refactor the pre-
existing service logic while keeping the service model as a
tier-3 facade service. This will help with the transition since
the existing REST API endpoint to our automation software on
top will remain the same even though the underlying service
architecture is getting a complete overhaul. Moreover, the
existing system and integration tests can be used to validate the
correctness of the refactored layered architecture and should
still produce the identical router configuration.

ACKNOWLEDGMENT

This work was created within the scope of the ESnet6
project and the regarding funding of the Department of Energy.
I would also like to acknowledge all the work from people
across the organization involved in ESnet6 who did not directly
participate in this paper.

REFERENCES

[1] Hal Render and Roy Campbell. 1991. An object-oriented model of
software configuration management. In Proceedings of the 3rd inter-
national workshop on Software configuration management (SCM ’91).
Association for Computing Machinery, New York, NY, USA, 127–139.
https://doi.org/10.1145/111062.111079

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in
campus networks,”ACM SIGCOMM Computer Communication Review,
April 2008.

[3] Open Daylight, https://www.opendaylight.org/
[4] Xu Chen, Z. Morley Mao, and Jacobus Van der Merwe. 2009. PACMAN:

a platform for automated and controlled network operations and config-
uration management. In Proceedings of the 5th international conference
on Emerging networking experiments and technologies (CoNEXT ’09).
Association for Computing Machinery, New York, NY, USA, 277–288.
https://doi.org/10.1145/1658939.1658971

[5] Cisco Network Service Orchestrator (NSO),
https://www.cisco.com/c/en/us/products/cloud-systems-
management/network-services-orchestrator/index.html

[6] S. van der Meer, J. Keeney, L. Fallon, S. Feghhi and A. de Buitléir,
”Large-scale Experimentation with Network Abstraction for Network
Configuration Management,” 2019 22nd Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), 2019, pp. 60-65,
doi: 10.1109/ICIN.2019.8685922.

3rd International Workshop on Analytics for Service and Application Management (AnServApp 2023)


