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Abstract—Artificial Intelligence (AI) has become a game-
changer across numerous industrial areas, revolutionizing the
way businesses operate and enhancing their competitiveness. The
Arrowhead Framework, renowned for its service-oriented archi-
tecture and interconnectivity principles, presents an ideal plat-
form for the development and deployment of Al-driven solutions
for industrial Cyber-physical System of Systems (CPSoS). This
paper delves into the formulation of an AI Toolbox that enhances
the capabilities of the Arrowhead Framework, aiming to harness
the synergies between Al and a robust architectural foundation.
The paper presents the main objectives and requirements for
the AI Toolbox, and also describes its concept, operation, and
deployment principles. For a better understanding, the paper
demonstrates how the AI Toolbox works through a generic
industrial safety use case. In conclusion, this paper contributes a
comprehensive perspective on the formulation of the Arrowhead
Al Toolbox, demonstrating how the Arrowhead Framework can
offer Al-based services for industrial use cases.

Index Terms—AIl, machine learning, artificial intelligence,
Arrowhead, industrial Al, edge Al, industrial automation, SOA,
intelligent services

I. INTRODUCTION

Al has been present in the industry for several decades now.
The Al industry evolved from a few million dollars in the
last century to billions of dollars nowadays, including thou-
sands of companies building expert systems, vision systems,
robots, software, and hardware specialized for these purposes.
Unveiling the early prospects of Al exposed a multitude of
obstacles, with the most prominent being the lack of computa-
tional power. Computers proved incapable of storing sufficient
information or processing it rapidly, presenting a significant
challenge to overcome. The development of machine learning
and deep learning, along with the emergence of big data,
sparked a renewed interest in Al across various domains,
captivating companies, investors, governments, the media, and
the general public [1].

Even though by 2023 Al assisted industrial applications
are spreading rapidly, there are still several challenges ahead
with their deployment and integration. The Arrowhead Frame-
work is helping the industrial systems to be designed loosely
coupled, however, integrating Al tools into the framework
promises a shorter time-to-market in intelligent industrial
services.

This paper introduces the vision of an Al Toolbox for the
Arrowhead Framework. The overall goal is to improve the
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design, operation, and maintenance for Cyber-Physical System
of Systems (CPSoS) with the help of Al-related technologies.
We describe the necessary objectives and requirements for the
Al Toolbox based on the state-of-the-art while also consid-
ering the smooth integration into the Arrowhead Framework.
The paper addresses the possible implementation approaches,
including service granularity, lifecycle, and Edge Al questions.
The introduced concepts will be explained through a safety-
related use case, where the operation of the Al Toolbox will
be presented in interaction with the Arrowhead Framework.

This paper is structured as follows. Section II introduces the
Arrowhead framework and its main principles. Besides, the
role of Al in the industry is highlighted in several application
areas. The Arrowhead AI Toolbox vision is introduced in
Section III, including the requirements, objectives, architecture
and deployment. Section IV guides you through the concepts
presented in Section III via a safety use case study, while
Section V concludes the paper.

II. RELATED WORKS
A. Arrowhead framework

The Arrowhead architecture incorporates systems, services,
and service-oriented architecture principles [2]. The Eclipse
Arrowhead framework aims to facilitate the development,
deployment, and operation of interconnected, cooperative sys-
tems. It is built upon the philosophy of Service Oriented
Architecture and consists of a set of mandatory core systems
that provide essential service-oriented features such as service
registration, discovery, authentication, and authorization. The
framework’s building blocks are systems that can both provide
and consume services while collaborating as part of larger
system of systems. The architectural objective is to facilitate
the creation and dynamic operation of self-contained local au-
tomation clouds for CPSoS. Every local Arrowhead cloud shall
provide the mandatory core services besides the application
services which implement the actual business logic [3]. Secure
inter-cloud information exchange is also ensured [4].

The services of the core systems — namely the Service
Registry, Orchestration, and Authorization (see Figure 1) — are
commonly utilized by application systems that adhere to the
Arrowhead Framework’s guidelines. The mandatory services
ensure the main objectives of the Arrowhead local cloud,
namely



3rd International Workshop on Analytics for Service and Application Management (AnServApp 2023)

Certificate
Authority
Service Orchestration| FANGEIFENTD]
Registry System System

Digital
Twin
N

Onboarding Gatekeeper
Controller System
Gateway
System

Fig. 1. High-level overview of Arrowhead framework.

¢ loose coupling,

« late binding,

« service discovery and
« information assurance.

While the Arrowhead framework provides examples and
best practices on how to implement application services, while
the Arrowhead implementation gives great freedom to design
application services. Also, Al functions in intelligent services
can be formed freely and in numerous ways, resulting in
heterogeneous services not suitable for cooperation or unified
deployment. To ease the implementation of intelligent Arrow-
head services and decrease the time-to-market while providing
great scalability and reliability, the design of an integrated
Arrowhead Al Toolbox is beneficial for both the Arrowhead
framework and the several different Al-supported scenarios
and use-cases.

B. Al in the industry

In recent years, Al has rapidly transformed the way busi-
nesses operate, revolutionizing processes and driving unprece-
dented levels of efficiency and innovation. The AI Index
Report [5] gathers and presents data on artificial intelligence.
Its goal is to offer reliable and globally sourced information
— besides many others — about Al-related economic and
industrial trends. Al integration in the industry has rapidly
transformed various sectors, enabling advanced automation,
data analysis, and predictive capabilities. Regarding the Al ca-
pabilities integrated into at least one function or business unit,
as shown in Figure 2, robotic process automation demonstrated
the highest embedding rates within high tech/telecom, financial
services and business, and legal and professional services
industries, reaching 48%, 47%, and 46%, respectively. Across
all industries, the most prevalent embedded Al technologies
included robotic process automation (39%), computer vision
(34%), natural language text understanding (33%), and virtual
agents (33%).

Figure 3 illustrates the Al adoption across industries and Al
functions in 2022. The highest adoption rate was observed in
the risk domain for high tech/telecom, accounting for 38%. It
was closely followed by service operations in the consumer
goods/retail sector at 31% and product and/or service devel-
opment in the financial services industry, also at 31%.
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Fig. 2. AI Capabilities Embedded in at Least One Function or Business Unit,
2022 [5].
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Fig. 3. AI Adoption by Industry and Function, 2022 [5].

Besides the economic interest, there are several researches
and surveys which are covering the role of Al in industrial
domains and use cases. The study by [6] presents an anal-
ysis of Al applications in real manufacturing environments,
highlighting key enabling technologies and design principles.
They formulate crucial challenges and opportunities for future
research, proposing a conceptual framework to facilitate the
transition towards a digitized and data-driven culture, en-
couraging industrial adoption. This paper represents one of
the pioneering works, providing a comprehensive understand-
ing of Industrial Artificial Intelligence within the Industry
4.0 landscape, examining its foundational components and
emerging trends. Additionally, [7] systematically explores the
generation, definition, characteristics, classification, technical
system, and current state of Industrial Artificial Intelligence
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(I-Al). Based on existing research and industrial projects, the
paper presents a detailed framework and reference model for
I-AI implementation in various industries. Besides, there are
many other comprehensive studies focusing on the challenges
of Al and implementation issues in the industry [8], [9], [10].

ATl’s integration in the industry has significantly impacted
how businesses interact with clients, partners, and manage sup-
ply chains [11], [12], [13]. Besides, Al researches are focusing
on inventory management [14], [15], customer feedback [16],
[17], [18] and customization [19], [20] also. Leveraging Al-
powered solutions has led to enhanced customer experiences,
streamlined collaborations with partners, and optimized supply
chain operations, ultimately driving overall business success.

Other prominent segment of the industry that utilizes Al
are design process [21], [22], planning, and manufacturing
[23], [24], [25], [26] processes has ushered in a new era of
innovation and efficiency. From concept ideation to production
optimization [27], Al-powered solutions are reshaping how
industries approach product development, planning, and manu-
facturing, resulting in improved design quality, streamlined op-
erations, and enhanced productivity. Within the manufacturing
sector, Al-driven robotics and automation [28], [29] systems
are optimizing production lines, enhancing product quality
with Al-supported quality assurance[30], [31] and process
monitoring [32], [33], [34].

Furthermore, AI’s integration in maintenance, operation,
and recycling processes has revolutionized how industries
manage their assets, optimize operations, and promote sus-
tainability. From predictive maintenance [35], [36], [37] to
life-cycle management [38], [39], Al-powered solutions are
transforming the way businesses approach asset management,
reduce downtime, and waste contamination [40], [41]. A rel-
evant survey machine learning applied for smart maintenance
and quality control is provided by [42].

As Industry 4.0 relies on ultra-reliable low-latency commu-
nication (URLLC), the synergies with wireless technologies
such as 5G and beyond offer promising solutions to tackle
the challenges [43]. Network and service optimization is
essentially supported by Al-based solutions in this field.

III. ARROWHEAD Al TOOLBOX IN INDUSTRY

A. Objectives & Requirements

While the application of AI has widespread, Arrowhead
Framework still lacks of Al services. The paper presents the
requirements and different design aspects of the so called Al
Toolbox for the Arrowhead Framework. The main purpose
of the AI Toolbox is to provide interchangeable, re-usable
Al services to facilitate the implementation of intelligent
services in the Arrowhead Framework. The objectives of the
Al Toolbox can be summarised as follows:

Decrease the time-to-market Support fast development of
intelligent services. This requires re-usable services and
easy deployment.

Reliability and security Since AI tools handle potentially
sensible data, the AI Toolbox needs to provide means
to prevent unauthorized access to data.

Scalability The computing needs of Al algorithms are so high
that scalability of the algorithms is a great concern.
Upgradeability Modern Al algorithms change rapidly, or the
existing algorithms learn from new data, so the state-of-
the-art models must be continuously deployed, especially

in the Edge Al paradigm.

While Arrowhead Framework specifies a couple of
lightweight requirements against application services, like
loose coupling, and late binding [2], it states no rigid bounds
to implement application services. However, for Al services,
some additional requirements can be stated based on the
objectives of the Al Toolbox presented earlier.

Re-usability To decrease development time, Al services
should be implemented in a specific granularity which
makes the services general enough to be utilized in
different use cases but specific enough to implement
complex tasks.

Composeability Rapid development of industrial use cases
requires that the Al services use common data models and
interfaces to combine them to implement more complex
tasks easily.

Upgradeability Changes in objectives or learning from new
data result in new models, which should be deployed
seamlessly and easily.

Heterogeneity Heterogeneity should be required in multiple
senses against Al services. Heterogeneity in platforms,
implementations, and all other factors related to reliability
shall be considered while designing Al services.

B. Al Service scale levels

The implementation of Al services to extend the Eclipse
Arrowhead framework has different scales or entry levels.
There are a couple of trade-offs between different levels,
regarding scalability, granularity, re-usability, and development
time. E.g. a specific use-case can be implemented using
different existing Al solutions — e.g., Tensorflow models — as
an Arrowhead service. However, this service will provide only
functions to fulfill a specific use case, preventing re-usability.
Also, providing clear and standard services ease the problem
of vendor lock-in phenomena by providing interchangeable
services. The different Al Toolbox scale levels can be seen in
Figure 4, where the concept of the Arrowhead Al Toolbox is
depicted. There are four levels of Al Service scale, differing
primarily in granularity. The three implementation based levels
are supported by the fourth — mostly theoretic — methodology
scale. In the following, the four levels are presented more
deeply and compared to the objectives and requirements.

1) Application scale: Application scale is the highest scale
level of Al services. Application scale means that Al services
provide solutions for complete use cases, e.g., a whole predic-
tive maintenance service specifically for railway switches. The
service is implemented as an Arrowhead application service
and can be accessed through a specified, custom interface.
However, services at this scale can hardly fulfill the require-
ments for re-usability since every use case needs its own
service to be implemented using standard tools. Of course,
there can be quite general use cases — such as geofencing —
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Fig. 4. Arrowhead Al Toolbox concept with different Al service scale levels supported by a common process and methodology. The examples in the different
scales are for illustrative purposes only; there are many other categories and examples.

where it is easier to transform the input data to according
to the application service interface requirements and use the
Application scale implementation rather to implement the
whole application.

2) Tools scale: Tools scale is a compromise between algo-
rithmic scale and app scale. Tools basically provide applied
Al methods, which are commonly one or more Al models
combined with some inner logic to solve a recurring problem.
E.g. localization of assets in a factory consists of a couple
of small steps, but the problem arises in numerous use cases.
Tools scale can provide excellent reusable scale and support
rapid development. Also, careful design of service interfaces
can provide good composability.

3) Algorithmic scale: The level of Algorithmic scale is
granular since well-known AI and ML algorithms are im-
plemented as Al services. Algorithmic scale is mostly about
choosing the best service interfaces to provide composable ser-
vices. However, using pure algorithms — while being highly re-
usable — requires great effort to implement complex use cases.
Also, using pure Al algorithms requires great knowledge of Al
methods and techniques, which is against rapid development.

4) Methodology scale: Being on a theoretical scale, the
methodology provides specifications, requirements, and best
practices for implementing Al services. However, while the
Methodology scale can also be considered an independent
level of Al service scales, it is best to imagine it as a basis
of all other service scale levels since it can provide means
to fulfill all the objectives and requirements of AI Toolbox
services.

C. Al Toolbox lifecycle

The lifecycle of Al services shares the very same four steps
(see Figure 4). To provide re-usable services, the customization
step makes it possible to tailor the service to special needs.
This includes e.g., the settings of the parameters. The next
step is optional, however, most algorithm requires training to
be able to perform specific tasks, e.g., detecting uncommon
objects in an image. Training can be complex and shall support
widely spread frameworks to efficiently accomplish fine-tuned
models. Deployment is a crucial point in the lifecycle, since
models require variable resources or perhaps massive paral-
lelization. Also, real-time upgradeability needs the necessary
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tools to replace old models with new models on-the-fly. After
deployment, the Al service is assessed to prove it fulfills
its function, meeting the expected metrics in the application
context. The lifecycle might start from the beginning, or it can
be periodic, as models are fine-tuned from time to time.

D. Al Toolbox implementation

While having different Al Toolbox scale levels, it does not
mean that one of them must be chosen. In the implementation
of the AI Toolbox, all scale levels can be implemented side
by side to provide different services for different needs. Also,
methodology shall be provided at all scale levels to provide
integrated and unified interfaces and promote heterogeneity
while implementing Al services. However, hierarchical imple-
mentation (i.e., task scale uses algorithm scale services) is not
always recommended because of performance issues.

The most promising implementation scale is the tools
scale: it provides the best re-usability while requiring little
knowledge of Al methods. However, to satisfy composability,
standardized and clean service interfaces shall be designed.
Here, the methodology can provide guidance to best practices
of interface development. Also, unified and independently
designed interfaces make it possible to create interchangeable
services with different implementations — helping to avoid
vendor lock-in and ensure reliability.

E. Edge Al concerns

In our discussion Edge AI refers to Al models running
on edge infrastructure. State-of-the-art studies show how to
create, deploy and operate these AI models, investigating
algorithm performance, cost-effectiveness, privacy, reliability,
and efficiency challenges [44], [45], [46]. Also, there are recent
research on domain-specific Edge Al usage, utilizing Al for
mobile networks, especially for future 6G networks [47].

Deng et al. [44] present three ,,grand challenges” in Al
on edge, namely data availability, model selection, and co-
ordination mechanisms. Firstly, securing usable raw training
data is crucial, requiring incentives for data provision. Model
selection faces complexity in determining accuracy thresholds
and resource allocation. Lastly, coordinating heterogeneous
edge devices for uniform Al learning necessitates flexible
mechanisms across hardware and middleware layers.

State-of-the-art Edge Al solutions pose challenges to the
design of the Arrowhead AI Toolbox, namely, three follow-
ing concerns can be formulated. First, Edge AI solutions
extensively support real-time on-the-fly model deployment to
provide the most up-to-date Al models at the edge. These
models are mainly trained in the cloud but deployed onto edge
devices automatically through numerous available platforms.
However, Arrowhead lacks these features yet, and it is not
decided how to implement on-the-fly model upgrade. Second,
edge devices have limited resources and use special platforms
to run Al models. Also, training and deployment of edge
Al models split between the cloud and the edge device.
While Arrowhead supports devices with limited capabilities,
interoperability with edge Al platforms shall be investigated.
Third, distributed learning and — in particular — federated

learning are specific to Edge AIl. Distributed and federated
learning helps to employ the resources of numerous edge
devices, converting limited resources into a serious computing
capability. Especially federated learning also helps to realize
the security objective — no other device gets information from
data handled by edge devices. However, the implementation
of distributed learning is also an area to be investigated in
Arrowhead Framework.

IV. CASE STUDY VIA AUTHORIZATION DECISION IN A
RESTRICTED AREA

In this section, we introduce a theoretical industrial use case
and describe a possible solution with the help of Arrowhead
Al Toolbox System on the different granularity scales. The
problem is to alert the system if any unauthorized person
or object (forklift, automated guided vehicle, etc.) enters a
previously specified restricted area (see Figure 5). The high-
level description of the proposed solution for this problem is
described by Algorithm 1. The solution utilizes several Al
and non-Al elements, including object detection, identifica-
tion, authorization and geofencing methods. First, the camera
stream is analyzed by an object detector (such as YOLOVY), to
get the bounding boxes of the objects in the camera images.
To project the bounding boxes onto the map of the area to
get 2D coordinates, plane detection must first be performed.
If the projected object is inside the restricted area, further
examination is needed. In the case of a person, face detection
and person identification is applied before the system checks
if the person is authorized or not. In the case of non-human
objects, a different authorization procedure is needed. The
output of the process is a service call to alert the system if an
unauthorized person or object is in the restricted area.

Algorithm 1 High level description of object detection, iden-
tification, and authorization based on visual geofencing in an
industrial scenario.

Input:

Video stream

Configuration parameters (Restricted area, Authorization list,
person ids, possible object types, etc.)

Output:

List of objects with authorization decision

Procedure

—_

: Object detection, segmentation, classification (Yolov5)

2: Plane detection

3: Location calculation

4: if Inside the restricted area then

5. if Human then

6: Face detection

7: Person identification (Vanilla CNN)
8: Authorization decision

9:  else if Anything else then

10: Authorization decision

11:  end if

12: else if Outside the restricted area then
13:  Done

14: end if
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Fig. 5. Tllustration of the authorization decision use case in a restricted using
object detection and geofencing [48].

A. Application scale solution

As an application scale solution, the whole procedure de-
scribed by Algorithm 1 has to be implemented by the Arrow-
head AI Toolbox system — by using well-know frameworks
such as Tensorflow — , the user have to send only the raw
input video stream — according to the interface specification
— and the customized configuration parameters, such as the
list of authorized persons/objects, person ids, list of possible
object types and so on. The result is a service call to the
specified service. The main drawback of this approach is the
lack of service flexibility, scalability and reusability. This use
case is already specific enough that it cannot be easily reused
by other industrial partners and does not comply with the main
principles of Al Toolbox System.

B. Tools scale solution

The use case can be grouped into three reusable, separate
problems, object identification (detection, segmentation, clas-
sification, identification), geofencing and authorization deci-
sion parts. For these three separate problems, the Al Toolbox
has existing implementations, the user has to access toolbox
building blocks (e.g. person identification) and build the
complete process chain by oneself according to the interface
specification. This means that the geofencing part (the YOLO
algorithm with the area entering detector) and the authorization
part (which provides yes/no answers to images of persons) are
implemented and published. The user develops the solution
using the mentioned Al Toolbox System tools. The advantage
of this method is that the object identification, geofencing and
authorization parts are general enough to be used in other use
cases, as well.

C. Algorithmic scale solution

The algorithmic scale solution basically means that every
line presented by Algorithm 1 can be a different service
provided by the AI Toolbox System. In this approach, ob-
ject detection, segmentation, and classification have to be
implemented by the user. The AI Toolbox System only offers
concrete algorithms such as Yolov5. The same principles
apply to the plane detection, location calculation, person/object

identification, and authorization parts. The advantage of the
solution is that the algorithms are very general, however,
implementation of the application takes much more time. A
further drawback is that the user has to comply with the
interface specification for every used algorithm during the
pipeline, which can be challenging and time-consuming in
certain cases.

D. The role of the Methodology

As Figure 4 presents, the Methodology is fully orthogonal to
the the three implementation scales, and always present in any
implementation since best practices and design considerations
are discussed. However, pure methodology implementation
can be imagined as a cookbook (or guide) on how to im-
plement image-based authorization system (or geofencing) in
the Arrowhead Framework.

V. CONCLUSION

The paper presented the concept of AI Toolbox for in-
dustrial automation applications, by suggesting a common
methodology through different implementation scales of Al
services compared to the diverse, vendor-custom designs of
intelligent services in the Arrowhead Framework. While the
emphasis is on the three implementation scales, the fourth
theoretical methodology helps to bring together the distinct
implementation scales — suggesting unified interfaces and
design practices. Based on the concept as a starting point,
a couple of future works and research challenges can be
identified:

o Research regarding the unified interfaces of Al Toolbox

services to provide composable services.

o Enumerating the required Al services in the Al Toolbox

in the various Arrowhead Framework use-cases.

o Research on deployment and customization of Al ser-

vices.

o Research on Edge Al issues, mainly deployment, and

federated/distributed learning.

e Recommendations on Arrowhead Framework to imple-

ment Al Toolbox-specific services.

Carrying out the tasks in the future can lead to the ar-
chitecture and implementation of the Arrowhead AI Toolbox
which can decrease time-to-market while providing security,
reliability, and scalability to industrial services.
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