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Abstract—It is a very popular era for machine learning (ML)
applications, and Industry5.0 aims to have AI as one of its
key technologies. Still, only a few ML initiatives make it to a
production-grade implementation, mostly due to lacking proper
Continuous Integration and Delivery framework and MLOps
practices. This is especially true for industrial use cases, where
the trust and reliability of ML applications are mission-critical.
Most of these applications fail during the final stage of the devel-
opment lifecycle, i.e. acceptance testing and validation of the ML
application, while being integrated into Cyber-Physical System of
Systems (CPSoS). This paper explores the key requirements for
deploying ML applications in industrial scenarios, emphasizing
the critical role of Digital Twins, edge AI, and responsible-
explainable AI techniques in ensuring efficient and responsible
operations. Building upon previous models, this paper suggests
two process models: (i) the Olympics model for MLOps-coupled
CPS engineering and (ii) the MLOps engineering toolchain for
industrial applications.

I. INTRODUCTION

The Industry 5.0 paradigm brings together the power of
smart manufacturing with advanced Machine Learning (ML)
applications to revolutionize industrial processes, especially
with human-machine collaboration [1]. However, a large num-
ber of ML projects fail, with many proofs of concept never
progressing into production due to the lack of appropriate
DevOps practices established [2]. In this paper, we present an
overview of ML Development and Operations (ML DevOps)
techniques tailored to Industry 5.0 use cases, discussing their
potential impact on enhancing productivity, sustainability, and
safety in industrial environments.

MLOps is an emerging discipline that aims to streamline
and optimize the end-to-end lifecycle of Machine Learning
(ML) models, from development to deployment and main-
tenance. It borrows concepts and practices from DevOps, a
set of software engineering practices that emphasizes collab-
oration, automation, and monitoring throughout the software
development cycle. MLOps focuses on addressing the unique
challenges faced in deploying and managing ML models, such
as version control of data and models, model (concept) drift,
and reproducibility. By automating model training, testing, and
deployment, MLOps should (in theory at least) enhance model
deployment speed, reliability, and scalability, making it easier
for organizations to deploy and manage ML applications in
production environments [3].

ML-based solutions are already used in industrial opera-
tions, from design and operations [4] to smart maintenance

and quality control [5]. Clear requirements for ML applica-
tions in industrial scenarios, particularly in the context of (i)
Digital Twins (DT), (ii) various Edge AI applications, and (iii)
Responsible and Explainable AI research, that are becoming
crucial for achieving efficient and effective operations in In-
dustry 5.0 scenarios. These are a couple of industrial use-case-
specific requirements that make ML application introduction
a bigger challenge in this domain.

Fig. 1. Industrial data sources in AIMS5.0 project

Fig. 2. Experience with ML Ops in AIMS5.0 project

As a current example, within the European AIMS 5.0 KDT-
JU research project [6], 53 consortium partners have been
asked in 20+ industrial use cases about MLOps and ML
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applications in current endeavours. Based on their answers, it
is clear that while ML and AI applications are desirable, yet
they still face issues around data availability, ML architecture
and MLOps practices, as depicted by the results of this
project’s internal survey, see Figures 1, 2.

The primary purpose of this paper – based on the AIMS
and research literature surveys – is to tailor and customize
Machine Learning Operations (MLOps) practices to meet the
specific requirements and challenges posed by Industry 5.0.
Chapter II collects requirements and presents supporting data
from AIMS 5.0 research project, Chapter III discusses relevant
ML Ops practices and technologies. Chapter IV proposes an
integration architecture for ML Ops practice in Industry 5.0
scenarios and Cyber-Physical System of Systems engineering
(CPSoS) [7]. Chapter V concludes the paper.

II. REQUIREMENTS FOR MLOPS IN INDUSTRIAL USE
CASES

The industrial domains each – such as manufacturing,
production, logistics, aerospace, health etc. – have somewhat
different expectations for ML integration and tool sets than
consumer applications and services or the ICT domain. While
the functional targets are similar – e.g. prediction, classi-
fication, knowledge extraction, object detection, or speech
recognition – there are further non-functional requirements
that present additional challenges. These stem from various
aspects of safety, security and privacy of data, sovereignty,
explainability, real-time synchronization of digital twins, or
resource optimization in distributed, heterogeneous (and po-
tentially edge deployed) environments, just to name a few.

Digital Twins [8] have emerged to become a cornerstone
technology in Industry 5.0, acting as virtual replicas of
physical assets or processes. These digital replicas enable
real-time monitoring and analysis, significantly improving
maintenance, troubleshooting, and performance optimization.
For ML Ops purposes, DTs essentially allow ML models to
leverage real-time (hopefully complete and accurate) data for
better decision-making. Ensuring synchronization between the
digital twin and its physical counterpart is vital for accurate
predictions and effective model training. Regarding AI-driven
application examples of Digital Twins in smart manufacturing
and advanced robotics, Huang et.al. [9] provided a very
comprehensive survey. This study categorizes the objectives of
AI-driven DTs as productivity, availability, and quality, in all
sorts of application areas from production planning to material
processing and predictive maintenance, as well as from sensing
of novel indicators to XaaS and business models.

With the proliferation of IoT devices and the need for real-
time processing and decision-making, ML algorithms are to be
deployed at the network edge, closer to the data source, since
industrial scenarios often demand real-time decision-making
and they are often latency sensitive. Moreover, mission-critical
data often cannot leave on-premises due to its data quantities
or for business security reasons. The Edge AI paradigm
addresses these challenges by deploying ML models directly

on edge devices, reducing reliance on cloud-based solutions
and minimizing data transmission delays. In Industry 5.0, Edge
AI is supposed to empower decentralized MLOps, enabling
autonomous systems and supporting real-time analytics at the
network’s edge. Ensuring the robustness and security of edge
AI models are also critical factors in maintaining the integrity
of MLOps in industrial applications.

Meanwhile, the Responsible AI paradigm is another key
consideration in the deployment of ML applications in in-
dustrial scenarios. Responsible AI frameworks and techniques
address biases, interpretability, and ethical concerns associated
with ML algorithms. In the context of Industry 5.0, responsible
AI practices need to ensure that ML models are designed and
deployed in a way that respects human values, privacy, and
safety. This includes considerations such as the explainability
of ML models, data privacy, and the impact of these applica-
tions in the cyber-physical production network [4].

A similar paradigm called Explainable AI (XAI) also holds
significant importance for industrial use cases where trans-
parency and trustworthiness of AI systems are crucial. First
and foremost, XAI demands models that provide human-
understandable explanations for their predictions and actions.
Transparent model architectures and feature importance rank-
ings are essential to comprehend the reasoning behind the AI’s
decisions. Moreover, contextual explanations that consider the
specific industrial process, data, and domain knowledge are
vital for users to trust and validate AI-driven outcomes [10].
These are all related to the safe cooperation between humans
and machine cooperation for Industry 5.0 use cases.

These requirements all tie back to the CPS nature of indus-
trial automation: the output of the models is to be utilized in
producing various goods and services by operating machinery.
Currently, ML and AI applications are getting incorporated
into initiativesthat raise high expectations on MLOps meth-
ods,procedures [11], safety and security compliance [12] and
engineering tools to support manufacturing [13] throughout
the organization – or even among organizations. These then
limit the true iterative, trial-and-error nature of DevOps and
MLOps practices that can be included.

III. RELATED WORKS

A. MLOps Overview

Fig. 3. MLOps is often visualized as an extended DevOps model [14]

3rd International Workshop on Analytics for Service and Application Management (AnServApp 2023)



Machine Learning Operations have been extensively re-
searched over the last few years. It is considered an extension
of DevOps practices while focusing on the data engineering
and ML engineering prospects, as depicted in Fig. 3. This
work assumes the ML Ops taxonomy, practices and framework
described in various surveys: [3], [15], [16], [17]. Based on
these and general industrial experience, nearly all ML-based
application includes three main artifacts: Data, ML Model, and
surrounding Code. Corresponding to these artifacts, the typical
machine learning project consists of main phases:

• Data Engineering: data acquisition & data preparation
with ETL-like pipelines [18],

• ML Model Engineering: data exploration, ML model
training and

• Code Engineering: integrating ML model into the final
product, i.e. packaging, serving and monitoring.

However, not all ML projects reach the final operational-
ization stage, i.e., packaging and deployment of the ML
application for continuous serving. While there is a plethora
of design patterns and examples that support this phase, the
majority of the cases do not integrate and validate the ML
application in real-time production traffic. These projects get
s̈tuckät various steps of the development progress. This also
happens to industrial research use cases, since there not only
the ML application development and MLOps process that are
inadequate, but the surrounding CPSoS architecture is usually
evolutionary as well.

Regarding the tool-chains of MLOps best practices, this
work considers the surveys of [15] and [19] for a good
overview, among others. However, it is worth noting that these
tools and ML best practices primarily focus on creating new,
customized ML models from custom data, and serving on
local, private or public cloud deployments, handling the whole
DevOps lifecycle of these developments. However, the ML
industry is slowly moving towards a different business model:
in the last couple of years, ML-based commercial products
(e.g., ChatGPT, Bard, Midjourney) or open source projects
such as Huggingface have started to emerge.

These SaaS (Software-as-a-Service) applications are now
prevalent around us. Agility, convenience, simplicity, scala-
bility, and security are the key drivers behind the adoption or
migration to SaaS applications, whereas full control and high
customizability are the top reasons organizations stick to self-
hosted and self-managed deployments. These SaaS companies
offer ready-made models for specific goals and offer great
experience out-of-the-box in the domains of, among others:

• Computer vision: object and face recognition, classifica-
tions, picture enhancement, etc.

• Audio processing: classification, noise reduction, pattern
recognition, etc.

• Natural Language Processing (NLP): classification, trans-
lation, sentiment analysis, etc.

• Large Language Models (LLM): document question an-
swering, intell. chatbot automation, text generation, etc.

• Other multimodal models: visual answering, image or
audio generation (e.g. from text), etc.

As a result, current MLOps practices need to focus on
incorporating the (primarily API-driven) integration of external
(mostly SaaS or at least hosted) solutions. These SaaS services
are great since they are usually easy to use, do not need
deployment infrastructure, and can satisfy various compliance
and explainability requirements out of the box, as part of
the service. The service providers also provide support and
consultancy for applying their services, and billing happens
based on usage.

However, in order to incorporate external ML solutions into
industrial use cases, new processes are needed to facilitate
their integration. These face challenges while employing them
in CPSoS use cases as the industrial engineering processes
are more waterfall-like and the solution architectures prefer
closed, on-premises infrastructures. The solution architecture
(and hence the corresponding ML Ops processes) need to take
into account the following characteristics of SaaS services:

• secure, private, and reliable connections are needed from
the CPSoS for production and nonproduction environ-
ments separately;

• SaaS products have their own (non-standard) data models,
API designs, and specifications;

• SaaS implement breaking changes in their APIs quite
often due to their agile delivery models;

• SaaS hence needs continuous testing with automated test
suites to validate functionality and fitness;

• together with iterative and agile security and safety veri-
fication steps;

• SaaS platforms have internal observability tools that need
connectors from CPSoS.

B. Digital Twins

In the Digital Twin concept, there are both physical and
virtual representations of the same object or process, and their
change in status parameters affect the behavior of each other
within a given context. The physical entity and its digital twin
are interconnected. A typical scenario is that the parameters of
the physical entity get measured, and its virtual software model
changes its status to match the physical entity’s measured
status. The more refined the digital model is, and the more
detailed the status-information exchange, the better the digital
and physical representation matches. As we can conduct high-
speed calculations and predictions with the digital model, we
can suggest control commands to the physical entity, which
altogether leads to better performance, fewer errors, and safer
operations in the physical world [20].

There are various ways to design and operate Digital Twins.
One of the current trends in the industry 5.0 concept is to
apply the model-based approach in this domain [21]. These,
together with the requirements and application categories [9]
mentioned in the related work section, substantiate that DT-
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related subtasks are necessary to appear in the extended
MLOPs workflow and toolchain that endorses CPSoS.

IV. ML OPS FOR INDUSTRY 5.0

A. Engineering Process for Cyber-Physical System of Systems

Standardized process model descriptions for industrial en-
gineering contribute significantly to the effectiveness of en-
gineering complex system of systems. The Automation Engi-
neering Model of the ISO/IEC 81346 standard [23] defines
such a process. The Arrowhead Tools Engineering Process
(AHT-EP) – introduced in [22] and depicted by Figure 4 –
is an extended version of ISO 81346, as it is applicable for
dynamic, service-oriented CPSoS. The core design principle
of AHT-EP is to harmonize flexibility and adaptability with
the robustness inherited from earlier process models, so it can
be adapted to various industrial domains from manufacturing
to production, from energy grids to logistics.

Just like in DevOps, tools are associated with the steps
of the ISO/IEC 81346 standard and of its extension, the
AHT-EP. In other words, we can categorize tools that are
useful in Functional Design (step 2) or that can be of major
help in Deployment and Commissioning (step 4). Besides
extending the standard, the practical benefit of using the AHT
Engineering Process is that tools can be associated for each
of the n = 1..8 steps. If we tailor the output of the stepn tool
to the input of the stepn+1 tool, humans can focus on more
meaningful tasks than format conversions.

Use-case examples for automatic execution of such
toolchain steps are provided by [22]. These process models
pose, in general, some requirements on the solution architec-
ture involved: namely that (i) the technology toolchain and
solution platform is relatively stable throughout the cycle, (ii)
the infrastructure and deployment requirements are established
at project start, (iii) operational model can be clearly estab-
lished at an early stage.

Nevertheless, in order to fit the current reality of AI/ML-
supported productization lifecycles and tools, this AHT-EP
needs to be matched with the ML Ops toolchain, as well
as with Digital Twinning (i.e., creation, operation, synchro-
nization, verification, and validation). The DT models need to
be continuously fed production data, and the output of DT
models might be reused for training and validating other ML
applications.

B. The Olympics Model for MLOps-Coupled CPS Engineering

As the proposed process goes, the whole MLOps lifecycle
needs to be augmented with the requirements driving the Dig-
ital Twin and Systems Engineering design flow. As described
earlier, the challenge is bringing the AHT-EP and other CPSoS
engineering standard development processes together with the
ML-Dev-Ops cycles of the organization.

In this paper, building on the above-mentioned related
works, we propose the extension of the DevOps and MLOps

process (as seen in Fig. 3) with two additional aspects: man-
aging the Digital Twin lifecycle and integration of the DevOps
aspects with the industrial Systems Engineering process. This
newly proposed process model – resembling the five circles
of the Olympics – is illustrated by Figure 5.

Furthermore, a CI/CD model, together with an appropriate
toolset for CPS applications, is suggested in [24]. The process
is illustrated for (Arrowhead-capable) CPSoS in Figure 6,
which is especially useful for System of Systems containing
resource-constrained devices (e.g., microcontrollers and other
equipment without any operating system), edge computing
platforms and corporate on-premises or public cloud infras-
tructure jointly. This diagram also assumes the join venture
between various IT and OT groups in an agile delivery model,
where all aspects of the CPSoS can be continuously deployed
and orchestrated with the same framework: embedded systems,
control systems, as well as enterprise applications. Here, the
following details need to be considered:

1) The Digital Twin lifecycle: is the first extension of the
traditional DevOps model. Either model-based [21] or not,
the creation of the DT and its continuous synchronization
is essential. Furthermore, the functional, safety and security
verification and validation (V&V) of the connected DT (that
might be an ML) model has to be an essential part of the
workflow.

– DT creation is influenced by two things: the system
model of the SysEng cycle (i.e., mapped with ”Procurement &
Engineering (3)” of AHT-EP), and the verified and developed
software of the Dev cycle. The Digital Twin can be created –
and re-created – based on these inputs and their changes in
time.

– DT synchronization is a continuous task, enabled by low-
latency communication. The more refined the DT model is
(in time-granularity and in functional variables), the better the
CPSoS control options are.

– V&V stands for Validation and Verification, and it is
a distinguished task in ML-coupled CPS engineering. It is
responsible for making sure not only functional V&V, but
also V&V in terms of security and safety. This is why we
dedicated section IV-C to describe the background of this task
below. Once the V&V is successful, it results in the MLOps
lifecycle to startup the Packaging step on the Dev cycle and
the Deployment in SysEng cycle.

2) The SysEng lifecycle: corresponds to well-established
Engineering processes, such as ISO 81346 or AHT-EP. As
the latter is overstretched (from requirements to training and
education), the SysEng cycle in the Olympics model uses its
process steps from ”Functional Desing (2)” to ”Evolution (7)”.

– SysModel – as in System Modeling – covers the initial
steps of AHT-EP, such as ”Functions Design (2)” and ”Pro-
curement and Engineering (3)”. This also feeds the DT Cre-
ation task. Depending on the CPSoS and the use-case, many
matured system engineering tools are available to support the
SysModel phase.

3rd International Workshop on Analytics for Service and Application Management (AnServApp 2023)



Fig. 4. The graphical overview of the Arrowhead Tools Engineering Process [22]

Fig. 5. The Olympics model for MLOps-coupled CPS engineering

– Deploy is the same task as ”Deployment and Commis-
sioning” as in ISO 81346 or AHT-EP.

– Align is responsible for fine-tuning the model after de-
ployment of the DT, and leading to the Ops cycle –, including
steps ”Operations & Management (5)”, ”Maintenance, Decom-
mission & Recycling (6)” and ”Evolution (7)” of AHT-EP.

C. Validation, Safety, Security

Regarding Industrial application settings, the MLOps pro-
cess clearly needs to be secured, against attacks targeting the
training data, the training process, the model, and the query,
as described by [25]. Going into further details, the authors
of [26] propose a structured verification at each phase of the
ML development process (ML lifecycle) in three dimensions,
namely data, code, and model. They argue that the verification
of these components at each phase could cover the verification
of the ML system as a whole. Still, this proposal misses cross-
validation and verification of some non-functional features of
ML-integrated CPSoS.

In our view, the validation and verification for CPSoS and
Digital Twins must go further and requires the creation of
methods and procedures on:

• safety;
• time-criticality;
• responsible usage;
• human acceptance (i.e., through XAI or other ap-

proaches),
• integrability;
• decision control allowances.

D. MLOps Engineering Toolchain for Industrial Applications

As described above, based on the requirements set in
Section II, design adaptation is required for the ”de-facto
standard” MLOps solution architecture. The proposed solution
of this paper is presented in Figure 7. This takes into account
the details presented in the Related Works and considerations
made for Digital Twins, ML Ops practices, the involvement
of SaaS solutions, and the current engineering process for
CPSoS. In this Figure, blue colored components represent the
main integration points (i.e. source and destination systems)
of the CPSoS; the ”observability” components are highlighted
with yellow color (i.e. Digital Twin), while the data platform
components (green color), the ML Ops CICD (orange) and the
ML infrastructure (red) are also depicted in one continuous
cycle of data (and model) flow. In this proposed toolchain, the
”de-facto” MLOps lifecycle is continuously executed on:

• ML Infrastructure elements – which also appear in those
MLOps models that are extended with the infrastructural
view, and refer to a hybrid cloud setup wih resources
deployed in the edge or corporate on premises, in public
clouds or procured as SaaS.

• Cyber-Physical Production Systems elements – that rep-
resent Industry4.0 and 5.0 data sources of various levels,
including individual CPSs, the Manufacturing Execution
System (MES) and various corporate systems.

• Data Platform - for ETL: Extract, Transform and Load
the collected data arriving from the data sources; then
feeding forward into exploration mechanisms, the Digital
Twin synchronization mechanisms, and into the continu-
ous and automated ML validation and verification testing.

• Digital Twins and their Monitoring and Telemetry – for
real-time status sync’ of DTs and building new ML
models based on production data. This may use separate
data collectors outside of the Data Platform.

• AI Gym – or similar sandbox platforms and environments
for exploration and validation; working with a sanitised
copy of production data for development purposes.

Here, an additional set of couple of key differences and
customisation requirements need to be considered:

1) The sources of data are industrial CPSoS and other B2B
integration systems.

2) The corporate data platform must integrate with the
Digital Twin solution bi-directional (feed-forward and
feedback nature).

3) Edge AI platforms have very limited capabilities com-
pared to cloud platforms, they need specialized deploy-
ment automation.
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Fig. 6. A DevOps pipeline for Arrowhead-capable CPS – Note: OTA: ”Over-the-Air” - CCA: ”Continous Configuration Automation” - IaC: ”Infrastructure
as Code” - DA: ”Development Automation” [24]

Fig. 7. Reference MLOps Engineering Toolchain for industrial use cases

4) Industrial ML projects require specialized and isolated
sandboxes for development.

5) Continuous Training and Continuous Deployment prac-
tices are not possible due to the strict waterfall-like
engineering standards; a strict promotion process is
needed between non-production and production.

6) In-production testing is mostly not feasible (e.g., blue-
green testing) for industrial cases due to the CPSoS
nature.

7) The test and validation automation stack must include
or mock CPSoS upstream services.

These requirements facilitate the concept of ”AI gyms” that
need to be a non-production sandbox allowing ML developers
to work with sanitized production and DT data, while not

being able to verify and validate their work end-to-end. Here,
ML engineers can execute the initial phases of modelling
and implementation, focus on the model serving (and systems
integration work) ahead. This AI gym needs to be able to (i)
simulate various parts of the CPSoS and DT, (ii) emulate the
underlying hybrid infrastructure and (iii) run the nightly V&V
automation stack, if it exists.

These requirements also mandate a deployment automation
stack that is overseen manually and can deploy ML applica-
tions together with the changes in other elements of the CPSoS
(hence merging the concepts of Figure 7 with Figure 6). Future
work is to bring these together from solution architecture
perspective, i.e. bridging the deployment automation stacks
of the various domains into one DevOps pipeline.
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V. CONCLUSIONS

As MLOps techniques get widely applied throughout all
ICT domains, their adoption to Industry 4.0 and 5.0 use-
cases gets compelling as well. The main reason that industrial
production adopt the newest technologies slower than the IT
sector lays in the physical nature of the production (i.e.,
safety), and in the tight optimization criteria of production
performance (i.e., long ROI). Besides, there is a push against
the industrial players to reduce time-to-market for innovations
by utilizing the latest technologies, such as ML in Digital
Twins. Due to this push, responsible AI and explainable AI are
to be included in the requirement mix. The MLOps techniques
have to be extended for industrial usage, where the process
models and toolchains take into account these needs.

In our paper, we created two views for MLOps extensions
for the industry. One is the Olympics model for MLOps-
couples CPS Engineering, which extends the ”infinity loop”
model of MLOps with tasks related to Digital Twins, and
with a cycle of the System Engineering process. Besides,
the second model is the MLOps Engineering Toolchain for
industrial applications, extending the data engineering view-
point of MLOps with data sources, infrastructural tasks and
also, the Digital Twins and their monitoring and telemetry.
These models are planned to be serving as a basis for the
EU KDT project AIMS5.0 (Artificial Intelligence in Manu-
facturing leading to Sustainability and Industry5.0), where 53
partners work together in 20+ industrial use-cases.

Although digital supply chain (DSC) management is not the
focus of these scenarios, the concepts described in this paper
can and should be extended with the DSC dimension [27].
One of the future works for our study is to extend it toward
supply chain management (SCM) utilization. There are various
application areas of AI in DSC, as surveyed in [28]. The
requirements and challenges set by SCM applications require
further extensions of our models presented in this paper.
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