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Abstract— Future carrier networks for 6G are expected to 

verify performance across heterogeneous networks integrating 

multiple technologies. This integration requires effective 

verification of network performance under unpredictable 

conditions. In response, a node modeling method has been 

proposed for digitally evaluating the performance of actual 

network nodes. However, creating accurate node models is 

challenging due to the high cost and difficulty of collecting 

extensive real-world data under various environmental 

conditions. Therefore, the objective of this study is to improve 

the performance of actual network nodes using limited real-

world datasets. We investigate the potential of natural language 

processing technologies to improve the accuracy of router 

performance estimation. In this paper, we propose a Feature 

Name Decoration (FND) method using Large Language Models 

(LLMs) to predict actual router metrics. The FND can help 

clarify the relationships between specific features, such as router 

settings and traffic conditions, and their impact on router 

metrics. The results show that the proposed FND improves the 

estimation accuracy of actual router performance metrics, 

including throughput, packet loss rate, and packet delay. 

Keywords— Router metrics prediction, Feature Name 

Decoration, Large language models  

I. INTRODUCTION

The development of 6th-generation (6G) networks will be 

driven by rapid technological advances, leading to a paradigm 

shift towards advanced heterogeneous networks that 

incorporate multiple technologies [1]. This transition includes 

5th-generation (5G) networks, unmanned aerial vehicles, 

vehicle-to-vehicle communications, and satellite networks. 

The integration of these elements into 6G networks introduces 

a variety of operational scenarios that require network 

configurations to meet their mobility and connectivity needs. 

This diversity, in turn, introduces challenges of unprecedented 

complexity and scale. Therefore, future carrier networks will 

need to verify interoperability and performance across 

different networks to address this challenge effectively.  

To address the need for effective network performance 

verification, a node modeling method using machine learning 

techniques has been introduced to digitally evaluate network 

node performance [2]. This approach enables network 

operators to design long-term network planning to evaluate 

whether operator-designed network settings meet service 

requirements in advance. The node modeling is based on 

training datasets, including node settings, traffic conditions, 

and corresponding network metrics. This training is essential 

for understanding network node behavior and accurately 

estimating real-world node performance. However, the 

accuracy of node modeling requires extensive labeled training 

datasets from real networks. This leads to increasing the cost 

to collect extensive data from real networks with different 

traffic patterns. Thus, improving the accuracy for limited real-

world datasets remains a critical issue. 

To address this issue, it is essential to leverage not only 

data obtained from the real network, but also knowledge from 

other sources outside the network to improve the accuracy of 

router metric predictions. One promising candidate to assist in 

this task is the application of natural language technology. In 

the field of natural language processing, large-scale language 

models (LLMs) are rapidly evolving. LLMs are trained on 

large amounts of text data to learn the patterns, structures, and 

nuances of human language. This training enables them to 

perform tasks such as text generation, translation, and other 

language-related tasks with a high level of proficiency. In 

addition, LLMs have been shown to be effective at performing 

out-of-domain tasks, including domain shifts [3]. This 

capability is valuable in real-world scenarios where labeled 

data is sparse. Their flexibility enables the LLMs to quickly 

adapt to new tasks that involve reasoning, especially when 

guided by well-designed prompts. However, a key issue is 

their reliance on pre-trained natural language processing 

(NLP) knowledge, which limits their adaptability to new or 

evolving information [4], such as the network domain task in 

this study. 

Given the above background, we propose a Feature Name 

Decoration (FND) method that utilizes the LLM to improve 

the accuracy of router performance predictions for limited 

real-world datasets. The FND method leverages both the 

operator's knowledge and the LLM's NLP understanding 

capabilities. 

To the best of our knowledge, there are few or no existing 

studies that use an LLM to predict actual network node 

metrics. This study focuses on router modeling as a 

fundamental step, as routers will continue to play a key role in 

connecting heterogeneous networks in the future. 

II. RELATED WORK

In this study, the objective is to estimate router metrics 

based on node settings and traffic conditions in tabular data 

with limited datasets. Historically, tree-based techniques [5] 

have been the traditional approach for estimation with tabular 

data. However, these methods struggle with limited datasets, 

primarily due to the risk of overfitting. An alternative strategy 

for limited data is deep reinforcement learning [6], which is 
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trained in simulated environments for real-world applications. 

However, large differences between simulators and actual 

environments lead to the learning of incorrect policies, which 

degrades performance. For example, carrier networks require 

network capacity over 100 Gbps. In contrast, simulators, 

constrained by computational time, can only manage a few 

Gbps using standard server resources [7]. This limitation leads 

to inaccurate policies and reduced performance. Meanwhile, a 

transfer learning approach [8] has been proposed to improve 

the estimation accuracy for the behavior in the real-world in 

limited datasets by pre-training on simulation domains and 

fine-tuning, e.g., network traffic prediction [9]. However, 

parameter adjustments for transfer and fine-tuning require a 

detailed analysis of task types and similarities, which 

increases the operational cost of model development [10].  

To reduce the complexity and better understand the 

relationship between each task, one strategy is to use an LLM 

[3,4] that has extensive natural language knowledge. One 

approach using the LLM is to generate synthetic data for the 

target domain to augment algorithm training [11]. Although 

the LLM is promising for tasks with coarse control factors, it 

remains challenging for tasks that require fine-grained control, 

such as numerical data generation. Approaches that integrate 

LLMs into tabular data estimation effectively use their 

extensive linguistic knowledge and meta-information from 

column names [12, 13]. The fine-tuning technique has been 

adapted to tabular data estimation based on generative 

language models [12]. Meanwhile, TabLLM [13] refines pre-

trained language models to estimate results for tabular datasets. 

However, the effectiveness of these refined LLMs depends on 

various factors such as the task description, the sequence of 

training examples, the hyperparameters, and the learning 

algorithm itself [14]. Therefore, these approaches require 

careful selection of training data and fine-tuning of the model, 

both of which are important for robust performance, which 

results in higher operational costs.  

Our work differs from previous studies by avoiding the 

complex fine-tuning process. The novelty of our proposed 

method lies in the integration of the operator’s knowledge 

accumulated by network operators into the LLM, which 

enhances the feature names with their insights. 

III. PROBLEM FORMULATION

The objective of this study is to improve the estimation 

accuracy of actual router performance metrics, specifically 

packet throughput (Pth), packet loss rate (Ploss), and packet 

delay (Pdelay). We investigate the effectiveness of decorating 

feature names for router metrics with the LLM to establish the 

relationships between specific features, such as router settings 

and traffic conditions, and their impact on router metrics. We 

use a tabular dataset where each row represents a single 

dataset that serves as a distinct data point. Then, each column 

contains the features, including router settings, traffic 

conditions, and corresponding router metrics as labeled data. 

Here, these datasets are represented as (�, �) = { (�	, 
	)}	�

� , 

where �	 is the i-th observation described by a set of j features 

represented by ��	

, �	

�, … , �	
��, and 
	  denotes the 

corresponding router metrics. Each feature name, represented 

as a column name, is defined as � = {�
, … , ��}. These ��

labels typically correspond to natural language expressions 

such as “Number of physical ports”. Then, ��  is combined 

with �	
�
 to form a linguistic input to the LLM. The LLM then 

generates embeddings for the corresponding linguistic input. 

The embeddings are vector representations that facilitate the 

model's understanding, including the feature relationships. 

Here, the generated embeddings are defined as �. Finally, a 

predictor for the router metrics is generated as follows: 


� (�) = �(�)(�) , where the function �(�)  represents the 

regression model for the actual router metrics � ={Pth, Ploss, 

and Pdelay}, 
� (�) denotes each estimated metric for �. 

IV. ROUTER METRICS PREDICTION USING LLM 

Fig. 1 shows the architecture of the proposed actual router 

performance estimator using an LLM. The proposed method 

is characterized by using FND to clarify the relationships 

between the router metrics. Specifically, it integrates the 

operator's knowledge of router settings and hardware 

processes, which are related to performance metrics, into the 

LLM to improve both the understanding and accuracy of 

metric estimation. This approach surpasses traditional 

regression methods that rely solely on numerical inputs by 

using the natural language processing capabilities of LLMs to 

interpret the relationships between features and router metrics. 

The specific procedure of the proposed method is outlined in 

the following five steps, which are detailed in Algorithm 1.

1) Collecting training datasets for router metrics 

The algorithm starts by collecting training datasets of 

router metrics from an actual router. To obtain the router 

Fig. 1. Architecture of the proposed router metrics predictor using an LLM.  

2024 20th International Conference on Network and Service Management (CNSM)



th, loss delay

used to measure these metrics while changing the router 

settings and the amount of input traffic. As a result, we obtain 

tabular data consisting of router settings, traffic conditions, 

and the corresponding router metrics with their feature names. 

2) Feature name decoration 

The proposed Feature Name Decoration (FND) employs 

an enhancement technique that enriches the descriptive 

quality of feature names in tabular data. Based on the 

knowledge of network operators, the FND refines feature 

names to more accurately convey their roles and effects. This 

knowledge provides the relationships between router 

configurations and input traffic, as well as their influence on 

router metrics, to facilitate a finer mapping of feature 

interactions and router performance. For example, “Number 

of IP entries” is modified to “Number of IP entries that affect 

packet processing delay on the router,” following the FND 

methodology. By incorporating these insights into feature 

names, FND helps LLMs generate embeddings that 

incorporate the interrelationships of each feature observed in 

network operations. In the proposed method, FND is assumed 

to have a predetermined modifier for each feature. 

3) Serializing tabular data 

To prepare input data for LLM, tabular data is converted 

to a natural language format through a process known as 

serialization [13]. We introduce the serialization function 

SL(��
�
, ��

�
), which takes the decorated j-th feature name ��

�

generated by FND(��) and the corresponding feature value at 

the i-th data point ��
�
 as inputs to generate a serialized text �� . 

Specifically, ��  is generated by inserting “is” between the 

decorated feature name and its value, forming a structure such 

as “<decorated feature name> is <feature value>”. This 

process generates statements equal to the number of features, 

and these statements are then concatenated line by line to form 

input prompts for the LLM.  

4) Computing embeddings via LLM

In this step, the LLM leverages advanced language 

understanding capabilities to interpret the serialized text and 

transform it into the embeddings � , which are vector 

representations of the textual feature relationships. These 

embeddings provide a richer input to the regressor than 

traditional numerical data formats alone, allowing it to analyze 

and exploit natural language-derived relationships. 

Consequently, the use of these embeddings allows the 

regressor to analyze data containing natural language-derived 

feature relationships, potentially improving estimation 

accuracy. In this study, the LLM is used as a black box, with 

no modifications to the pre-trained default parameters.  

5) Training the router metrics predictor using 

embeddings from LLM 

Finally, the actual router performance regressor �(
)  is 

trained using �  and the measured router metrics as the 

dependent variable �. This regressor estimates Pth, Ploss, and 

Pdelay, which are evaluated by the coefficient of determination 

[15], 
� =1­ ∑(�� − ���)
� ∑(�� − ��)

�⁄ , where ���  and ��  are the 

estimated value for the i-th observation and the mean 

measured value of the actual router metric �, respectively. R2

= 1 means that the model fits the datasets perfectly. 

V. EVALUATION & RESULTS

We evaluated the accuracy of actual router performance 

estimation using the proposed FND with LLM and compared 

it to regression models both without and with LLM. 

A. Experimental setup 

1) Data collection conditions for training datasets

First, to generate tabular data, we collected actual router 

metrics data under specific experimental conditions using 

four types of virtual routers. These routers include Cisco CSR 

1000V [16], Juniper vMX [17], Vector Packet Processor [18], 

and Kamuee router [19], all running on an x86-based server 

equipped with Xeon E5-2697 18-core 2.30 GHz CPUs and 

192 GB RAM with 8 SFP+ ports. We measured the 

performance of these routers in the packet forwarding process 

in a laboratory environment to acquire training datasets under 

the conditions listed in Table I. These conditions were 

designed to evaluate the impact of traffic aggregation on the 

relationship between router settings and traffic conditions, 

focusing on the increase in packet processing delay and 

packet losses due to queue overflow. The Keysight Ixia 

platform, equipped with 8 SFP+ ports, was used to generate 

the traffic. Traffic was sent to a single output port at a constant 

rate from each port with a fixed IP packet size. The 

TABLE I . EXPERIMENTAL CONDITIONS
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parameters, including IP packet size, the number of physical 

ports, and average rate, were varied within the ranges shown 

in Table I. A total of 930 samples were collected from these 

routers. In this scenario, we measured Ploss (per second), Pdelay

(maximum per second), and Pth (bits per second) for each 

router setting and traffic condition. The training datasets 

include two main components, router settings and traffic 

conditions. Router settings include the number of physical 

ports, IP entries, allocated CPU cores, and memory allocation 

size. Traffic conditions include IP packet size, the number of 

IP traffic flows, and average rate per IP traffic flow.  

2) LLM conditions 

We used two models from the HuggingFace library, BERT 

[20] and DistilBERT [21], to evaluate the impact of LLM 

parameter size on router performance estimation. BERT is a 

well-established model featuring 12 transformer layers with 

768 hidden dimensions, and a total of 110 million parameters. 

DistilBERT is a simpler model maintaining the same hidden 

dimensions but has only 6 layers with a total of approximately 

66 million parameters. This selection allows us to explore how 

variations in model complexity affect the router performance 

estimation. The feature names used in our study are shown in 

Table II. This table compares two types of expressions, the 

“Normal expression” used as standard input for the LLM and 

our “Proposed expression” with the FND. 

3) Training conditions for regression models 

We evaluated the accuracy of estimating actual router 

performance using three methods: the regression models

without LLM, those with LLM, and the model with FND 

(ours). We used PyCaret [22] to develop the regression models. 

PyCaret facilitates the selection of an appropriate model and 

the adjustment of the hyperparameters. Using PyCaret, we 

selected the two best performing models on the given datasets, 

eXtreme Gradient Boosting (XGBoost) [5] and Gradient 

Boost Regressor (GBR) [23]. We configured XGBoost and 

GBR with a maximum depth of 9, 200 estimators, and a 

learning rate of 0.001. These processes were performed using 

an Nvidia Tesla P100 card with 16 GB of memory. The ��

was evaluated for each model using 10-fold cross validation. 

The mean and standard deviation of the estimation errors are 

computed for each of the 10-fold cross-validation runs. 

B. Accuracy of predicting actual router metrics  

Table III shows the �� results, including both mean and 

standard deviation for ��� , �loss , and �delay  (standard 

deviations are shown in parentheses). The regression models, 

GBR and XGBoost, without LLM exhibit �� values of 0.87 

and 0.88 for ���, 0.79 and 0.82 for �loss, and 0.50 and 0.63 for 

�delay, respectively. The improvements in estimation accuracy 

for �delay are modest because it is affected by fluctuations such 

as packet jitter. Alternatively, the integration of LLM in both 

the GBR and XGBoost models shows improvements in �� for 

all metrics compared to the models without the LLMs. This 

improvement is attributed to the LLM's capability to capture 

the feature relationships of the router metrics. In this scenario, 

no significant differences in accuracy are observed between 

different LLMs or regressor models. To highlight a subtle 

difference, the combination of XGBoost with BERT performs 

relatively well. However, there is still room for improvement 

in the estimation of �delay, where �� only increases from 0.63 

to 0.78 without considering the uncertain aspects of the 

network delay. On the other hand, our proposed method 

combining FND and LLM with XGBoost provides further 

improvement, with �� from 0.90 to 0.93 for ���, from 0.87 to 

0.90 for �loss, and especially from 0.78 to 0.92 for �delay, with 

smaller standard deviations compared to XGBoost with BERT. 

For �delay, the improvement in �� reached up to 18%. These 

improvements are consistent for both BERT and DistilBERT 

models. 

Fig. 2 shows residual plots for two methods that evaluate 

actual router metrics, XGBoost with BERT and the proposed 

method, to identify model inaccuracies such as poor fits or the 

presence of outliers. The residual plots for the proposed 

method show tighter clustering around the zero line than those 

of XGBoost with BERT, indicating fewer errors. These 

improvements underscore the effectiveness of using FND to 

clarify the interactions between features, allowing for more 

accurate regression analysis. This suggests that the proposed 

method could provide an improved model that accounts for 

the relationships between the features and the router metrics, 

potentially improving accuracy over the conventional method. 

C. Future Challenges  

This study evaluated the use of LLM for a single router 

scenario. However, future scenarios will require applications 

for more complex conditions, such as end-to-end wired and 

wireless scenarios. For these complex scenarios, it is 

important to evaluate the applicability of small-scale LLMs, 

which can reduce the operating cost of LLMs without 

compromising performance [24]. In addition, the proposed 

TABLE III. EVALUATION RESULTS OF R2
 FOR EACH ROUTER METRIC

TABLE II . FEATURE NAME PATTERNS EVALUATED IN THIS STUDY
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FND is based on insights and knowledge gained from network 

operations. Currently, it relies on manual processes to handle 

FND tasks. However, as the number of features increases, 

manual integration of operator knowledge becomes more 

challenging and costly. Therefore, automating the FND 

process with LLMs, such as the use of DALL-E 3 in image 

captioning [25], will be essential. In addition, since the 

evaluation of this study was conducted in a laboratory 

environment to obtain the datasets, future challenges include 

dealing with noisy data, such as those collected in the field, 

and improving the generalizability of the model. 

VI. CONCLUSION

In this study, we leveraged large-scale language models 

(LLMs) and introduced feature name decoration (FND) 

techniques in regression analysis to improve the accuracy of 

actual router performance estimation. The core of our 

approach is the combination of FND and the LLM to 

effectively clarify the relationships between features and 

router metrics. Using actual router data, we demonstrated that 

the proposed method improves the coefficient of 

determination (R2) in the estimation accuracy of actual router 

performance metrics, including throughput, packet loss rate, 

and packet delay. The improvement in R2 reached up to 18%. 
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 Fig. 2. Residual plots for the predicted ��� in (a) and (b), the predicted �loss in (c) and (d), and the predicted �delay in (e) and (f). 

Plots (a), (c), and (e) use XGBoost with BERT, while (b), (d), and (f) use the proposed FND and XGBoost with BERT. 
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