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Abstract—Streaming video is an ubiquitous service used by
billions of people every day. Offering the best-in-class Quality
of Experience (QoE) is a challenge to Mobile Network Op-
erators (MNOs) which requires them to identify the obstacles
to overcome. To properly achieve this, MNOs require efficient
monitoring able to maintain this QoE at optimum levels. Machine
Learning (ML) models play an essential role in this task. This
paper introduces PenFFR, a novel approach based on Functional
Data Analysis (FDA), to identify the underlying functions between
the QoE and the features that characterize the streaming videos
thus enabling to predict future values. The experimental results
show that the performance of the prediction is on par for one
metric with Deep Learning-based methods and even better for
another metric. To facilitate the understanding of our method
and enable hands-on application, the code is made available [1].

Index Terms—Functional data analysis, function-on-function
regression, Quality of Experience, QoE prediction, Video stream-
ing

I. INTRODUCTION

With the rise in popularity and usage of video streaming

services and platforms triggered by larger available mobile

network bandwidths and new devices with high resolution

screens, we have been witnessing a huge increase in data traffic

over mobile networks [2] and forecast confirm this trend for

the coming years [3]. Surveys show that these services now

represent a significant share of the time spent online with

more than 33% of people above 18 spending at least an hour

a day in average on an online video service 1. In a context

of competitive markets, consumers are naturally expecting a

high-quality streaming experience. As a consequence, MNOs

face the challenge of ensuring the best QoE possible for

their users, to keep their promise on service experience and

avoid churn. QoE is a measure of overall customer satisfaction

with factors that encompass the whole service. In the case of

streaming video, such factors include video playback quality

(both objective and subjective) and buffering times. Delivering

a good QoE for streaming video services requires therefore

the possibility to know and master those factors. However

MNOs generally do not have access to the factors that directly

influence QoE, unless they are also application providers.

These are located in service platforms or on users’ devices,

but MNOs only have access to network metrics like jitter,

1https://www.statista.com/statistics/611750/millennial-time-spent-with-
online-video/

throughput, delay or packet loss rate. From these metrics

and indicators representative of network performance, it be-

comes wishable for MNOs to infer the quality level of end-

user perception that they cannot measure directly. MNOs are

increasingly turning to ML techniques to model QoE from

network data, thanks to the availability of massive amounts

of data, as well as the increased maturity of ML tools and

models and associated computing facilities. In the specific case

of video streaming services, these models can predict QoE

by analyzing vast amounts of data generated from network

usage patterns, video streaming metrics from the devices and

user feedback. The predictive capabilities of ML theoretically

enable operators to proactively manage network resources,

optimize streaming quality, and preemptively address potential

issues before they affect the user experience. But there are

challenges to overcome, related either to the high variability

over time while streaming of factors such as network through-

put, video bit rate and display size, or to different optimization

strategies of streaming services (maximizing video quality

versus minimizing rebuffering events). In this paper we apply

our PenFFR (for Penalized Function-on-Function Regressor)

method. It is a statistical method based on the FDA paradigm

that enables to identify the underlying function in the data and

allows, here, to compute the QoE from the input data. Section

II provides a state of the art on QoE and methods to compute

or predict it as well as on FDA. Section III describes PenFFR.

Then, Section IV describes the dataset used for the evaluation

of the method and the transformations performed on the data.

Results of these experiments are then detailed, compared to

several baselines and analyzed in Section V.

II. STATE OF THE ART

The integration of ML models for predicting QoE is now

a relatively mature field of study [4]. Modelling of QoE was

initially based on psycho-physic, by a replication of human

perception (vision, hearing) and opinion building. Such models

were very explanatory, with building blocks corresponding

to well known physical or mental processes. With ML, the

models become independent from psycho-physics and can rely

therefore on more sources of information [5]. They also benefit

of the flexibility, modularity and scalability of ML techniques.

Most QoE models require access to the audio or video signals,

which is most of the time very challenging, and cannot be
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used for network-centric operations. This is why a few recent

studies addressed alternative approaches, where information

from the end-users’ devices or the network could be envisaged

as input for QoE prediction. In the field of voice quality, a

good example of such models is the ITU-T Recommendation

P.565.1 also know as sQLEAR [6]. It is using a combination of

regression algorithms, namely a Random Forest (RF) regressor

and support vector regressor. As far as we are aware, no similar

model for video quality of streaming services exists, but some

work on video QoE can be mentioned [7], [8] as basis for

further development of models. The link between QoE and

measurements by network operators is also a topic of study

[9]. The development of such models relies on training with

a large amount of data representative of network equipment

behaviour and performance. The collection of such data is

a huge task. Some solutions are proposed based on network

simulators [10] or automated monitoring solutions [11]. There

are several challenges faced by designers of such network-

based QoE prediction models. The biggest one lies in the

heterogeneity of data source in terms of data nature (radio,

IP, etc.), source location (access, core, device) and time series

structure (real time, average overt time, etc.).

With the emergence of new generations of networks, we can

collect information at very high frequencies in various places.

It has become necessary to develop new tools for exploiting

and analysing this ever increasing volume of data. This is one

of reason why FDA has become very popular and useful in

a constantly growing number of applications : medical [12],

economics [13] and commerce [14], . . . . FDA is a branch

of statistics that deals with data that can be represented as

functions. Unlike traditional data analysis, which focuses on

discrete observations, FDA involves analyzing data that is

inherently continuous, such as curves, surfaces, and shapes.

Extension of linear regression to the functional setting has

therefore naturally become a major area of research in

FDA. While the literature is too vast to cover here, the

recommended references for this field are [15]–[18], which

provide excellent introduction to FDA. A broad overview of

Functional Linear Regression (FLR) methods is provide in

[19] and [20]. In mobile network context, [21] use FDA to

detect future malfunctions, capacity degradation, accessibility

and call drops anomalies for Long-Term Evolution (LTE)

networks. As it shown in [22], FDA can be use not only to

handle the diversity both in terms of the situations that must

be faced and the data used to reach conclusions, but also

optimized and improve the scalability of solutions in network

management task (e.g. anomaly detection).

III. THE PENFFR FUNCTIONAL LINEAR MODEL

This section introduces our PenFFR process for the es-

timation of the functional linear model. The code of its

implementation in the R language has been made available

open-source on GitHub [1].

A. Problem statement

Predicting the continuous QoE of video streaming is the

problem of estimating a linear relationship between Key

Performance Indicators (KPIs) and the subjective QoE per-

ceived by the end-user of the video streaming service. This

relationship has the following form:

{
Yi(t), X

1
i (t), . . . ,X

p
i (t) , t ∈ [0,T]

}
, i = 1, . . . , n ,

where Yi(t) is the QoE of the ith-session at time t and the

p input variables (Xl
i(t))1≤l≤p are assumed to be the QoE’s

KPIs at the same time t. We assume that all these functions

belong to the separable Hilbert space L2
(
[0; T]

)
.

We focus on the concurrent model defined by Model (1):

Yi(t) = β0(t) +

p∑

l=1

βl(t)X
l
i(t) + εi(t)

= Xi(t)
⊤β(t) + εi(t) , (1)

where β(t) =
(
β0(t), β1(t), . . . , βp(t)

)⊤
are the

unknown functional parameters and are assumed to be

square integrable; Xi(t) =
(
1, X1

i (t), . . . , X
p
i (t)

)⊤

the

design matrix; εi(t) is the model error and is a sample of

centered random variables with variance σ2
i , specific to the

ith individual (cf. [15], Chapter 13); εi(t) and Xi(t) are

assumed to be uncorrelated. The noise functions εi(t) can

be rigorously defined using white noise theory as presented

in [23]. In our context, we will only use the fact that when

sampled at various times from a finite set T , the vector

(εi(t))t∈T can be expressed as a sum of a vector with i.i.d.

components and a vector with prescribed covariance matrix,

i.e. a vector with constant components in the simplest case.

B. Recovering the functional nature of data

In practice, we do not properly observe a continuous curve

for each realization of both response variable Yi(t) and

covariate variables Xℓ
i(t). We only have access to a set of noisy

observations at a finite number of points on a grid. As a result,

the functional data can be presented as a numerical vector. In

order to recover the continuous form, which generally belongs

to an infinite dimensional space (e.g. Hilbert separable space

L2([0, T ])), one efficient way to proceed is by expanding

the considered functions in a functional basis. It can be a

polynomial, splines, Fourier, wavelets . . . basis depending on

the shape and variations of the variable. The advantage of this

approach is the fact that by truncating the series at a given

level q
ℓ
, we obtain an approximation of the function Xℓ

i(t) in

a q
ℓ

dimensional space. In mathematical terms, given a basis

{Bℓ
j(t)}j≥1, the function Xℓ

i(t) will be expressed as:

Xℓ
i(t) =

q
ℓ∑

j=1

xℓ
ij B

ℓ
j(t),
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with xℓ
ij the basis coefficients. Assume that we have n

realizations
(
Xℓ

i(t)
)
1≤i≤n

whose values on an observation grid

are given by:
{
(Xℓ

i1, t
ℓ
i1), (X

ℓ
i2, t

ℓ
i2), . . . , (X

ℓ
imi

, tℓimi
)
}
1≤i≤n

,

where Xℓ
ij is the value of the curve Xℓ

i(t) at timestamp tℓij .

For each i, we want to recover the trajectory Xℓ
i(.) based on

the information that:

xlij = Xℓ
i(t

ℓ
ij) + εij , with εij an unobserved Gaussian noise.

For example, in the case of a cubic B-spline basis [15], the

above expression in functional basis {Bl
j(t)}j≥1 truncated at

q
l

becomes:

Xℓ
i(t) =

q
ℓ∑

j=1

xℓ
ij B

ℓ
j(t) = xℓ

i1 + xℓ
i2 t+ xℓ

i3 t
2 + xℓ

i4 t
3

+

q
ℓ
−4∑

j=1

xℓ
i(4+j) (t− τj)

3
+ , (2)

where τj are the nodes, f(t)+ = max(f(t), 0) the positive

part of f(t) and the parameters (xl
ij)0≤j≤q

l
−1 with respect to

the truncated cubic B-spline basis
{
1, t, t2, t3, (t−τ1)

3
+, (t−

τ2)
3
+, . . . , (t − τq−4)

3
+

}
. For any realization i the mi obser-

vations on the discrete grid tℓi1, . . . , t
ℓ
imi

, we can write the

matrix/vector form as:

Xℓ
i =

(
Xℓ

i(t
ℓ
i1) . . . Xℓ

i(t
ℓ
imi

)
)⊤

:=Tℓ
i x

ℓ
i ,

where Ti is the matrix of truncated B-spline basis in tℓij .

Therefore, the problem is to recover the functional basis

coefficients which is equivalent to solving the minimization

problem:

min
xℓ
i

∥Xℓ
i − Tℓ

i x
ℓ
i∥

2.

C. The model estimation

Given the shape and fluctuations of the studied data, de-

scribed in Section IV, which does not have a high variability

between successive observations or any periodicity, a B-

splines basis is appropriate to process the data efficiently.

So, parameters of Model (1) are estimated by expanding the

functional covariates and parameters onto a common B-spline

basis. So we decompose the covariates and the parameters as:

Xl
i(t) =

q
xl∑

j=1

xl
ij B

l
j(t) = Bl(t)⊤xl

i , (3)

βl(t) =

q
βl∑

j=1

blj φ
l
j(t) = φl(t)⊤bl , (4)

where Bl(t) =
(
B1

j (t), . . . , B
q
xl

j (t)
)⊤

is the qxl -dimensional

vector of basis function for the covariate Xl(t) and

xl
i = (xl

i1, . . . , x
l
iq

xl
) the corresponding basis coefficients.

Following the same pattern, {φl(t), bl} are the basis functions

and basis coefficient for βl(t).

Under this assumption, the matrix terms elements of Model

(1) become:

Xi(t) =




1 0 . . . 0
0 B1(t)⊤ . . . 0
...

...
. . .

...

0 0 . . . Bp(t)⊤







1
x1
i

...

x
p
i


 = B(t)xi.

β(t) =




φ0(t)⊤ 0 . . . 0
0 φ1(t)⊤ . . . 0
...

...
. . .

...

0 0 . . . φp(t)⊤







b0

b1

...

bp


 = Φ(t) b .

Using the above expressions, Model (1) becomes:

Yi(t) = x⊤
i B(t)

⊤Φ(t) b+ εi(t) = Ri(t)
⊤b+ εi(t) (5)

The form of Model (5) is a classical linear regression

expression with Ri(t) = Φ(t)⊤B(t)xi the design matrix and

b the parameters to be estimated. We can also include some

non-functional KPIs to this model.

D. Confidence interval

Confidence interval found their origins in compilation works

of Gosset and Fisher done in [24]. It is the most common

tool to quantify uncertainty associated to predictions, i.e.,

the value predicted by a ML system can significantly differ

from the actual value due to high variability. However, if the

ML system can estimate a range that encompasses the actual

value with a high probability, the method used to generate

the confidence interval can determine an interval between

the lowest and highest potential outcomes, enabling a more

informed decision-making. Following this target, conformal

prediction is a framework in ML and statistics that provides

a principled way to assign confidence measures to predictions

made by ML models. They provides prediction regions that

come with a guarantee of validity. In conformal prediction,

the goal is to construct prediction regions such that, with a

specified confidence level, they contain the true value of the

target variable for any new input instance. These prediction

regions can take various forms depending on the type of

prediction task and the underlying assumptions of the model.

In regression tasks, they may be intervals or quantiles. For a

given labelled dataset {(xi, yi), 1 ≤ i ≤ n} where xi represent

the covariates and yi the response, the conformal prediction

method performs the following steps [25]:

• Split the dataset into two disjoint subsets : a train subset

noted A1 and a calibration subset A2 ;

• Fit a ML model f to learn the relationship between

covariates and response. The specific model can vary

widely, including linear regression, decision trees, neural

networks, quantile regression, etc.

• Compute Ei the absolute residuals on calibration set:

Ei = |yi − f(xi)|, ∀i ∈ A2.
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• Then for a given level τ , compute

Q1−τ (A2) := (1− τ)(1 +
1

|A2|
)th quantile of (Ei)i.

• Finally, the prediction interval C(xn+1) of a new point

xn+1 is given by:

C(xn+1) =
[

f(xn+1)−Q1−τ (A2) ; f(xn+1) +Q1−τ (A2)
]

(6)

One of the key properties of conformal prediction is its

validity guarantee. It ensures that the observed error rate of

the prediction intervals matches the specified confidence level.

IV. DATASET AND DATA ANALYSIS

This section introduces the dataset used for our experiments,

then provides some insights on the data it contains. It is then

used in the experiments described in Section V.

A. The LIVE-NFLX-II dataset

One challenge when using novel methods is to find

appropriate data. There a few datasets for QoE prediction

[26], [27] but almost all of them are built to predict a single

scalar value, the Mean Opinion Score (MOS) score of the

whole video. For example a dataset for the QoE prediction

of video streaming will contains only a single scalar value

for the QoE of each video, or each portion of video. To

the best of our knowledge the only dataset that contains

values for QoE at every timestep or frame of a video is

the LIVE-NFLX-II [28]. LIVE-NFLX-II is a QoE dataset

made at The University of Texas at Austin’s LIVE subjective

testing lab using realistic adaptive streaming pipeline model

that contains four main modules: an encoding module, a

video quality module, a network transmission module and a

client-based video playout module. This streaming pipeline

is designed to recreate a complete end-user QoE through 3

streaming dimensions: encoding, network throughput and the

selected Adaptive Bitrate Streaming (ABR) algorithm. To

have a look at every of those dimensions, LIVE-NFLX-II

dataset is based on 15 video contents, 7 actual network traces

and 4 adaptive algorithms, yielding 420 video streams in

total. Each of the 15 videos belong to a content genre: action,

documentary, sports, animation and video games. Each of

these genres has different dynamics of the content of the

video as well as different types of content of each frame.

Concerning the network throughput, The 7 network traces

were manually selected from the HSDPA dataset [29] which

is widely used to compare adaptation algorithms, each of

these traces allows to simulate specific network conditions.

For the ABR algorithm, 4 representative adaptive algorithms

are selected to cover the large design space of adaptation

algorithms. Each sample in the dataset is a stream of one

of the 15 videos, encoded one of the 4 adaptive algorithms

and steamed over one of the 7 network conditions. The

dataset also provide a subjective continous-time evaluation

of each frame of each of these samples by a subset of at

least 22 human subjects among a group of 65. In total there

are 9750 QoE evaluation available in the dataset. We refers

reader to [28] for more detailed description of the dataset

and the protocol followed for the evaluation by human subject.

B. Data analysis and data engineering

The collected data of LIVE-NFLX-II consists of 420 dis-

torted videos, each of them viewed by at least 22 subjects.

Each of the 65 subjects made 150 evaluation. Overall they

have 65 × 150 = 9750 continuous z-normalized scores to

study the subjective QoE. Fig. 1 shows the distribution of

the MOS scores of the overall 420 distorted videos which

has a non surprisingly normal form (after a z-normalized

transformation). Figure 2 shows for each frame (along the x-

axis, from the first frame of the video to the last) the perceived

MOS on the y-axis and there is one line for each of the 420

samples, the figure does not show a specific trend.

Mean Opinion Score (MOS)

 

−2 −1 0 1 2

0
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0
.1

0
.2

0
.3

0
.4

0
.5

density
mean
median

Fig. 1: Mean Opinion Score (MOS) distribution
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Fig. 2: Mean Opinion Score (MOS) curves

Figure 3 shows for each frame (along the x-axis) the

distribution of the value of the QoE in a boxplot. The darker

section in the middle represent the 50% around the median

value. The green line show the median values of QoE for

each frame (the y-axis on the left). The red line shows the

total number of videos that have that many frame (the y-axis

on the right), all videos are composed of at least 625 frames,
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Fig. 3: Boxplots of MOS for each frame, red line is the total

number of videos

but not all of them have the same number of frames. This

figure, like Figure 2, does not show a general trend except for

the very first frames where the perceived quality for all videos

is within a small interval. For further frames the distribution

of the perceived QoE is similar.

The rest of this section details the features used and trans-

formations applied to them. To understand the behavior of

end-user quality, key metrics are collected on top of playout

bitrate, number of rebuffers, rebuffering time across adaptive

algorithms. Others several well-known Quality of Service

(QoS) metrics are used for our model for QoE prediction. The

main metrics in the dataset are the Peak Signal to Noise Ratio

(PSNR), the Spatio Temporal Reduced Reference Entropic

Differencing scores (ST-RRED), the Structural SIMilarity in-

dex measure score (SSIM), the MultiScale SSIM (MS-SSIM),

the Video Multi-Method Assessment Fusion (VMAF) and the

throughput traces. Since we are trying to fit a linear Gaussian

model whose variables are assumed to follow this distribution

we applied x 7→ log(x) and x 7→ log(1 − x) transformations

respectively for metrics whose distribution was either skewed

to the left or to the right, to obtain a more or less normal

distribution. Fig. 4 shows an example, for the MS-SSIM

metric, of the histograms before and after this transformation.
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(a) Original data
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Fig. 4: MS-SSIM scores and its logarithm transformation

V. EXPERIMENTS AND RESULTS

This section first details the experimental protocol followed

to apply the model detailed in Section III on the dataset

described in Section IV. It then gives the results and compare

them to three types of baseline, one from the original work

that introduced the dataset, a more basic baseline based on a

RF model and another FDA method called pffr [30].

A. Baseline

We compare the results of our PenFFR model, described in

Section III, to the two prediction algorithms presented in [31].

The first of these models is based on AutoRegressive (AR)

Neural Networks (NNs) (G-NARX) and the other based on

recurrent NNs (G-RNN). These 2 models were trained using

VMAF measurements with frame as the continuous-time

Video Quality Assessment (VQA) feature. They also included

two other continuous-time features: a per-frame boolean

variable indicating the presence of rebuffering and another

indicating the time elapsed since the last rebuffer. G-NARX

used 8 input delays and 8 feedback delays. G-RNN used

5 layer delays. Those results from [28] are used here as a

baseline to compare with our methods. The experience were

not reproduced and we compare our results to the result of

this paper.

We also compare our FDA-based PenFFR method and these

two algorithms to a FDA-based pffr method and a RF model.

To train the RF model, the per-frame metrics described in

Section IV-B are used. For each of them, statistical features

are computed : maximum, minimum, total, quartiles, standard

deviation, mean, skewness and kurtosis. The output of the

RF model is the mean value of continuous QoE z-scores

of distorted videos. When all the features are computed, a

grid search is performed for the hyper-parameters of the RF

model: the maximum depth of trees, and the number of trees.

Once the best values for the hyper-parameters are found, an

initial RF model is trained using all the features.

Figure 5 shows the pipeline of the 5 different models:

PenFFR, pffr, G-NARX and G-RNN and RF. All models rely

of course on the same input data. Additional statitical feature

are added in the case of the RF model as detailed above.

It is important to understand that each of these methods has

a different format of output. The RF model in the baseline

outputs a single scalar value for each of the n videos (the

mean MOS). Both G-NARX and G-RNN output n vectors

(one for each video) of values, i.e. the MOS for each frame.

Finally the proposed PenFFR method computes a function for

each of the videos that allow to compute the MOS for any

frame f .

For all the 5 algorithms, the train/test split process is per-

formed based on which of the 7 network conditions was used

(cf. description in Section III) : choosing 5 types of network

conditions for training and 2 for testing each time, which

yields 300 videos (15 contents, 4 adaptors and 5 traces) for

training and 120 videos (15 contents, 4 adaptors and 2 traces)

for testing. After describing implementations details of the

methods, selecting appropriate evaluation metrics predictive

outputs to ground truth is crucial. We can use:

1) The Root Mean Square Error (RMSE) is a metric

commonly used for the evaluation of the accuracy of

predictions. It provide a quantitative measure of how
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- X1: PSNR
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Ŷ1(f) ... Ŷn(f)
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Fig. 5: Pipelines of the models

well predictions pi align with ground truth values gi.

His formula is:

RMSE =

√√√√ 1

N

N∑

i=1

(pi − gi)2

where N is the number of frames. RMSE is intuitive

and easy to interpret but sensitive to outliers.

2) The Outage Rate (OR) assess the quality of prediction

by quantifying the proportion of instances (time) where

the predicted value falls outside a predefined tolerance

range or threshold. Here we consider the 95% confidence

interval of the ground truth gi at frame i across all

videos. OR is calculated as :

OR =
1

N

N∑

i=1

1{pi−
ε
2
≤gi≤pi+

ε
2
}

where ε is the length of the confident interval.

OR should be interpreted in conjunction with other

performance metrics to provide a comprehensive assess-

ment of prediction quality.

Using these metrics allows us to compare the performance of

our model and of pffr method, the RF baseline to the G-NARX

and G-RNN models since these metrics were used in [28].

B. Results and discussion

This section introduces the results of the 5 different algo-

rithms described above. For G-NARX and G-RNN the results

are extracted from [28]. For RF, pffr and PenFFR the results

come from the experiments described in Section IV.

The RF baseline has the worst RMSE value, 150% of the G-

NARX algorithm which gives the best RMSE. The functional

PenFFR method has a RMSE of 0.289, 108% of G-NARX

and the other FDA-based method pffr has a RMSE of 0.344.

For the OR metric, the FDA-based methods offers the best

results: PenFFR with 4.72% and pffr with 4.84% of predicted

values of all frames within the 95% confidence interval, when

G-NARX reaches 7.14% and G-RNN 5.96%. RF reaches

5.6%. The results are summed up in Table I.

The proposed PenFFR method allows for at least a 25%

improvement of the OR metric over the G-NARX and G-RNN

methods while getting a 8% worse RMSE value. PenFFR also

improves upon pffr on both metrics. This method does not

only predict the values of the QoE metric but also outputs a

function that describes how the QoE metric can be computed

from the input features.

Methods RMSE OR

G-NARX [28] 0.267 7.14%

G-RNN [28] 0.276 5.96%

RF 0.402 5.6%

pffr 0.344 4.84%

PenFFR 0.289 4.72%

TABLE I: Results of RMSE and OR metrics for the 4 methods

Figure 6 shows the prediction (red line) compared to the

actual values (black dots) for two examples taken from the

test set. The example in Figure 6a reaches better values for

both the RMSE and OR metrics, while the second example

in Figure 6b reaches worst values. The purple area shows the

95% confidence interval as defined in Section III-D.

VI. CONCLUSION AND FUTURE WORKS

This paper details PenFFR, a new model based on the

FDA framework, and how to apply it for the prediction of

the QoE of streaming videos. This model allows to identify

the underlying function between an output variable (here the

QoE) and the input variable (here the characteristics of the

video) when both input and output variables are functions. In

the dataset used for the experiment, both the input and output

variables are functions of the frame within a video stream.

The experimental results show that this model can outperform

current state of the art Deep Learning models for the Outage

Rate metric with a slight degradation of the RMSE.

This initial application of FDA in a Network Management

use case could be further pursued on other datasets with

comprehensive evaluations and on the development of ad-

vanced methodologies that leverage the inherent strengths of

this expanding framework. Possible other FDA-based models

include another of our works [32] that presents, in a theoretical
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(a) Sample where results are better than average
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(b) Sample where results are worse than average

Fig. 6: Examples of prediction vs ground truth

aspect, the functional Mixture-of-Experts (MoE) dedicated to

handle heterogeneous data. We are confident that by applying

this MoE model in the task of QoE prediction for streaming

video, we will able, in a single model, to model data coming

from multiple sources of streaming applications. Ultimately,

this work could also help steering the standard on QoE

evaluation towards new continuous metrics.
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