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Abstract—Identifying the fault device is one of the important
tasks for network operators so that operators can immediately
take action for the fault device in a communication network.
Many methods have been developed to automate the identification
of the fault device, and these methods assume only a single cause,
such as hardware failure, which generates alarms. However,
alarms are generated simultaneously due to multiple events (i.e.,
failure, construction work, and notification for operators) in a
production communication network. This paper addresses the
challenge of identifying fault devices in communication networks,
which is complicated by the simultaneous occurrence of alarms
from multiple events. We introduce a method utilizing alarm
clustering to improve the accuracy of fault device identification by
effectively distinguishing between these mixed alarms. Our eval-
uation was conducted using dataset in a real-world production
environment more than one month and demonstrated significant
enhancements in identifying faulty devices.

Index Terms—Identifying fault device, Alarm clustering, Net-
work management, Bayesian Network

I. INTRODUCTION

In recent decades, communication networks have been used
in various fields, such as business, healthcare, and education.
Therefore, to prevent prolonged failures in communication
networks, which can significantly impact daily life activities,
many studies and products have focused on identifying fault
device [1]–[10] using generated alarms.

Those studies and products assume that multiple failures
rarely occur simultaneously in a communication network, and
they assume that only alarms related to a single failure are
generated at the time of a failure. However, these assumptions
may not hold in a production environment. Although multiple
failures may not frequently occur, alarms are generated by not
only failures but also construction work and notification for
operators due to the customer’s operation, such as rebooting a
switch placed in the customer’s building, which can be mixed
for the following reasons. First, the alarms are not generated
only when an event occurs but continue to be generated
for a certain period, such as during construction work or
until a hardware failure is recovered [11]. Therefore, alarms
due to multiple events are mixed, although events did not
occur simultaneously. Second, since construction work (e.g.,
adding or deleting devices) is performed frequently, alarms
related to construction work and failure may be mixed due to
failures during construction. Third, alarms due to operations
by customers frequently are generated if a large number
of customers use that communication network, which may
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Fig. 1. Example of how alarms generated in a actual network

overlap the alarms due to failure or construction work. As
a result, the assumption of the existing methods and products
does not hold, which deteriorates the estimation accuracy.

Fig. 1 shows an actual example of how alarms occurred
in a certain communication network operated by NTT. The
horizontal axis represents duration, the vertical axis represents
each device in the communication network, and the red
box indicates that the device has generated alarms due to
a failure, while the blue box indicates that the device has
generated alarms by other events. As explained in the previous
paragraph, there are rarely simultaneous failures. However, the
alarms generated by devices 29 and 30 due to failures are
mixed up with alarms generated by construction work at device
1. As another case, the alarms generated by device 10 due to
a failure are mixed up with alarms generated by notifications
at device 30. Although previous studies have not considered
mixed alarms due to multiple causes, these events do occur in
real networks, making fault device estimation difficult.

In this paper, we propose a fault device identification
method using an alarm clustering approach to adapt the
mixed-up alarms and improve the accuracy of fault device
estimation. Specifically, we combine a Bayesian Network-
based fault device estimation method [2] with alarm clustering
method [12], which also uses a Bayesian Network and allows
us to split mixed alarms by clustering. Although various fault
device estimation methods exist, rule-based methods should
be used in practice. This is because it is hard to collect data
for training the methods since actions are taken to prevent
recurrence after a failure occurs, which means that the same
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failure rarely occurs. Therefore, we select one of the rule-based
methods as a base method [2]. When mixed-up alarms due to
multiple events are generated, the method proposed by Hata
et.al [12] enables us to assign the ID to each alarm, indicating
to which event the alarm is associated, by modeling the alarm
generation process using the Bayesian Network. This method
automatically identifies alarms with similar characteristics in
the same cluster. Therefore, by combining these methods, the
fault device can be identified in the production communication
network environment.

In this paper, we evaluate the usefulness of the proposed
method using alarms in a production environment over several
weeks. The results show that our proposed method improves
accuracy by 14% at most in the offline evaluation compared
with the baseline method and achieves very high accuracy in
the online evaluation.

The contributions of this paper are as follows.
• We pointed out that alarms due to multiple events are

mixed up in the production environment using actual
data, which is not considered in the previous papers.
Since alarms caused by several events might overlap and
deteriorate the estimation accuracy of existing methods,
the method applicable to the alarms due to multiple events
has to be developed.

• We proposed a fault device identification method that
improves the estimation accuracy by splitting mixed
alarms into alarms for each event.

• The proposed method was evaluated using a prepared
dataset based on events collected from a production
environment and a real-time online dataset in a production
environment for more than a month total, while most of
the existing papers use simulation datasets. The results
show that the proposed method improves estimation ac-
curacy compared with the baseline method.

II. RELATED WORK

A. Identifying Fault Device

Methods to estimate the fault device have been extensively
studied and can be categorized into rule-based and data-driven
methods. However, rule-based methods should be used in
practice since it is hard to collect data for training the methods
since actions are taken to prevent recurrence after a failure
occurs, which means that the same failure rarely occurs.

In the rule-based methods, Gestalt [1] is a fast estimation
calculation algorithm for a network with more than a thousand
routers. Matsuo et al. [2] proposed modifying the causal model
so that the causal model can adapt to rare failures. G-RCA [3],
Leila et al. [4], NetMedic [5], and Paramvir et al. [13] prepare
templates that abstract causal dependencies between the fault
device and observation data such as CPU usage, memory
usage, traffic volumes, and syslog messages. The reason for us-
ing the various kinds of data is to reduce the overlooking of the
fault device. Once the templates are prepared, the causal model
can be constructed by inputting the communication network
topology. Researchers [6]–[8] have proposed constructing a

causal model using a certain assumption. Shrink [6], Score [7]
construct a causal model between routers and interface alarms
from the topology data. If an interface in a router fails, alarms
regarding interface down are generated from a fault router and
adjacent routers. Thus, these methods can localize the fault
router using generated alarms. MicroRCA [8] localizes the
fault container on Kubernetes (K8s) by constructing a causal
model based on the requests between containers.

However, those existing methods do not explicitly consider
the situation in mixed-up alarms due to multiple events being
inputted to them, which deteriorates the estimation accuracy.

B. Alarm Correlation Method

Several alarm correlation methods have been developed,
which analyze the correlation among occurred alarms and
extract root-cause alarms to support the operator’s investiga-
tion by presenting the root-cause alarm [14]–[18]. The paper
proposed by Bouloutas et al. [14] developed a representation of
the network devices connection using graphs and identifying
fault locations based on the occurrence of alarms on these
graphs. Authors [15] abstracted and modeled the occurrence
of alarms in the microservice application using Bayesian
networks. MAYOR proposed in [16] grouping the alarms so
that a set of grouped alarms represents a unique event based on
the calculated generation interval after all of the alarms occur
due to a certain event. Kim et al. [17] proposed a correlation
based on identifying the root-cause alarm and the fault device
method. The method proposed in [18] extracts the subsequence
of previous alarms related to the current alarm.

In contrast to the existing method, the proposed method with
the method [12] clusters alarms in terms of events, taking into
account the previous occurred alarms instead of extracting a
root-cause alarm from generated alarms, since alarms have
to be analyzed every a certain window size (e.g., every two
minutes) in communication network operation. Also, although
existing alarm correlation methods rely on topology informa-
tion, this information is often updated manually, which can
lead to errors. Hata et al. [12] proposes a method that does not
rely on topology information by abstracting event mechanisms.

Furthermore, most of the existing studies are based on
simulations or open datasets, while this paper evaluates the
baseline method and the proposed method on data in produc-
tion communication networks, both online and offline. It is
valuable to check the practicality of these methods.

III. PROPOSED METHOD

The proposed method consists of the alarm clustering
method, which splits the mixed-up alarms for each event
(e.g., failure, construction work, notification for operators due
to customer’s operation) and the fault device identification
method to be adapted to alarms due to multiple events simul-
taneously occurred in a production environment. Here, since
information about construction work (e.g., when and in which
device construction work will take place) is known in advance,
alarms due to construction work can be filtered. However, if
all alarms from devices under construction are turned off, it
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will be impossible to confirm whether the devices are not in
an unexpected state due to construction. In addition, partial
filtering requires time and expert knowledge to determine
in advance what alarms should be filtered out, making it
impractical for each construction project.

This section first explains the alarm clustering and the fault
device identification methods. Note that since both methods
are already published, most of the parts in Sections III-A
and III-B are coming from original papers [2], [12]. Then, we
explain how both methods are used and the effect of combining
both methods.

A. Alarm Clustering Method

Alarm clustering method [12] used in this paper correlates
alarms on an event-by-event basis using a Bayesian Network
that considers characteristics of alarms such as alarm type,
time of occurrence, and location. In addition, by estimating
the relationship between previous alarms and current alarms
considering characteristics, the method calculates correlation
among alarms even when only some alarms have yet to occur.
This capability is important for network operators to take
action immediately.

We describe how to abstract and model alarm generation
in the communication network. A communication network
consists of logical and physical connections.When a failure
occurs at a transmission device in the physical layer, the
following alarms occur.

• EQP alarm: indicating a hardware failure of the transmis-
sion device

• Section alarm: indicating an optical multiplex section
error

• Optical alarm: indicating an error in the path between
transmission devices

• Path alarm: indicating a path error between IP devices
• Linkdown alarm: indicating a connection error between

IP devices
• Protocol alarm: indicating a routing protocol error

If an abnormality occurs in the transmission device, section
alarms and other alarms listed above are considered to occur
continuously. Thus, this method models the alarm generation
mechanism using a Bayesian Network.

Figure 2 represents a constructed model of alarm generation
mechanism using the Bayesian Network. Each node in the
figure is a random variable that takes 0 or 1. Regarding the
ALM nodes, if a certain alarm (e.g., section alarm) occurs,
the corresponding node (e.g., Section ALM) takes 1. The
remaining nodes, T (·, ·) and L(·, ·), are used for characterizing
the time of occurrence and location, respectively. A node
T (·, ·) indicates the difference in occurrence time between
alarms, where it (e.g., T (Sec,Opt)) takes 1 if a current
alarm (e.g., optical alarm) is generated after previous alarm
(e.g., Section alarm) within a certain time interval (e.g., 5
seconds). Similarly, a node L(·, ·) indicates the difference of
location, where it (e.g., L(Sec,Opt)) takes 1 if a current alarm
is generated at the same location (e.g., same device, same
prefecture). These settings are based on the assumption that

alarms can be inferred to be caused by the same event if the
occurrence times and location are close. This is because since
devices generate alarms in real-time once anomalies occur in
devices, the occurrence times of alarms for the same event
tend to be close to each other. Similarly, because devices
connected to each other detect anomalies and generate alarms,
the locations of alarms for the same event tend to be close to
each other. Then, conditional probability is defined between
nodes using expert knowledge or hyperparameter tuning.

When the alarm occurs, the probability of the occurrence
of the current alarm is calculated from the prior probability
and conditional probability, using the information on previous
alarms as evidence in the Bayesian Network. If the probability
is greater than a threshold, the current alarm is assigned the
same clustering ID as the previous alarms; otherwise, a new
cluster ID is assigned. For example, an EQP ALM occurs at
Tokyo-device01 four seconds after a Section ALM occurs at
Tokyo-device02. The probability can be calculated as follows.

P (EQPALM = 1|L(EQP, Sec) = 1, T (EQP, Sec) = 1)
(1)

This method can assign cluster IDs to alarms in real-time
by sequentially calculating the probability of alarms using
previous alarms when an alarm appears, which allows alarms
to be split by event.

B. Localizing the Fault Device Method

We explain how to construct the causal model using the
Bayesian Network to identify the fault device in the commu-
nication network.

The causal model represents which devices are affected
(i.e., whether alarms occur) when a certain device fails.
When alarms occur, the fault device is identified using the
causal model. The causal model consists of device nodes and
observation-data nodes, where both nodes are random vari-
ables, edges, prior probabilities, and conditional probabilities.
Device nodes represent the status of routers and servers in
the communication network. Observation-data nodes represent
the status of data collected from the communication network,
such as CPU and memory usage, traffic volumes, and syslog
messages. Note that this paper uses only alarms as data
inputted to observation-data nodes. Thus, j-th observation-
data node represents whether j-th device generates alarm or
not during a certain time window, and the number of device
nodes and observation-data nodes is the same.

Let xi and yj be random variables that represent the status
of the i-th device and whether the j-th device generates alarms.
Then, we define X = (x1, x2, . . . , xN ) , xi ∈ {0, 1} and
Y = (y1, y2, . . . , yN ) , yj ∈ {0, 1}, where N is the number of
devices, 0 means normal, and 1 means abnormal. For instance,
if xi = 1, i-th device is fault. Also, if j-th device generates
alarms, the status of yj takes 1; otherwise, 0.

The prior probabilities represent how much each device
tends to be normal or abnormal status. We define the prior
probabilities to equipment nodes as follows.

P (X|α) = ΠN
i=1P (xi|α) = ΠN

i=1 (1− α)
1−xi αxi , (2)
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Fig. 4. Example of the causal model

where α is constant value that is a hyperparameter of prior
probabilities.

The edges and conditional probabilities represent causal
dependencies and the degree of the causal dependencies,
respectively. If device i has a causal dependency with the j-th
device, we add an edge ei,j between xi and yj .

How to add the edges depends on methods. In this paper,
we set an assumption that alarms are generated by the fault
device and the devices connected to the device when a failure.
Thus, the edge ei,j is set if the i-th and j-th devices are
connected. Figures 3 and 4 show examples of how the causal
model is constructed, where we omit several device nodes and
observation-data nodes due to space limitations. For instance,
since router A connects to router B, C, and D, the there are
edges from x1, which represents the status of router A, to
y1, y2, y3, and y4, which represent the status of router A, B,
C, and D. This means that if the router A becomes abnormal
status, alarms will be generated from router A, B, C, and D.

Let E be a set of all edges between X and Y , and ϕi,j be a
parameter that represents the index of an edge ei,j as follows.

ϕi,j =

{
1 (ei,j ∈ E)
0 (otherwise) . (3)

Then, we define the conditional probabilities between X and
Y as follows.

P (Y |X,β,Φ)
= ΠM

j=1Π
N
i=1 (1− β)

δ(xi=yj)ϕi,j βδ(xi ̸=yj)ϕi,j , (4)

where β is constant value that is a hyperparameter of prior
probabilities, δ is a delta function, and Φ is a set of parameter
ϕi,j .

Finally, when the observation-data nodes Y are given, the
statuses of each device node X̃ are formulated as below using
Equations (2), and (4),

X̃ = arg max
X

P (X|Y, β,Φ, α) = arg max
X

1

C
ΠM

j=1Π
N
i=1ψi,j ,

(5)

where ψi,j = (1− β)
δ(xi=yj)ϕi,j βδ(xi ̸=yj)ϕi,j (1− α)

1−xi αxi

and C is a constant value for normalization, and under the
condition that each xi flips independently. Equation (5) is
solved by the belief propagation inference algorithm.
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Fig. 5. Overview of implemented system and effect of the proposed method

C. Overview and Effect of Proposed Method

To evaluate our proposed method, we implemented a system
that collects alarms from a certain production communication
network, inputs the collected alarms into the alarm clustering
method, and inputs alarms in each cluster into the identifying
fault device method.

Figure 5 illustrates the implemented system’s overview and
how the proposed method treats alarms and estimates the fault
devices. This system consists of a system manager container,
an alarm clustering container, and an identifying fault device
container using Docker and Fluentd. When multiple events
(e.g., events at router C and D) occur, mixed-up alarms
are generated. The system manager container forwards these
alarms to the alarm clustering container and the identifying
fault device container every two minutes. Here, the window
size was set to 2 minutes based on the advice from network
operators. In this case, if all the alarms are input into the
identifying fault device container, it is unclear whether routers
D and C are estimated as fault devices. However, using our
proposed method, the alarms cluster into the event, which
means that in this case, the alarms are split into alarms due to
failure at router C (cluster id 1) and router D (cluster id 2).
Then, the fault device identification method is executed twice
using alarms with cluster IDs 1 and 2, respectively.

IV. EXPERIMENTED COMMUNICATION NETWORK AND
DATASET INFORMATION

In this paper, we implemented our proposed method in a
certain production communication network operated by NTT
as described in Section III-C. This communication network
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consists of more than 1,000 devices and is subject to construc-
tion work and minor failures at any time. In our evaluation, we
selected less than 200 devices that play a crucial role among
all devices as the first step of our project.

While collecting the dataset, failures such as interface down
and package restart occurred during construction work such.
Here, failures and construction work rarely occur on the same
device more than once. Thus, it is difficult to determine the
fault devices and alarms using a data-driven method.

A. Dataset for Offline Evaluation

We prepared data for the offline evaluation in approximately
six weeks, from mid-January to March 2023. During the six
weeks, construction work and failures occurred 52 times. It
should be noted, however, that the actual number of alarms
is much higher than 52 because each event generated many
alarms for several minutes to several hours. During this period,
there were alarms caused by the customer’s operation and
mixed-up alarms caused by construction work and failures,
as shown in Figure 1. To evaluate the proposed method, the
network operator labeled each alarm as to which event it
belongs to and the fault device for each event.

In the experiments, data was prepared as follows, as illus-
trated in Figure 6.

1) 52 events were divided into 17 events for hyperparameter
tuning and 35 events for evaluation. Here, the 17 events
for parameter tuning were not taken from the front in
chronological order but were extracted so that there would
be no bias by considering the contents of events (e.g.,
failures and construction work).

2) Then, the time information in each alarm included in each
event for evaluation was edited so that the time between
the last alarm by a certain event and the first alarm by the
next event was set to 20 minutes. This was done to fill
in the gaps in evaluation events since several events were
extracted for hyperparameter tuning or to fill in the gaps
during the six weeks when no events occurred so that
events occur at 20-minute intervals. However, the types
of alarms generated by the event and the order in which
alarms are generated within each event have not changed.
Therefore, alarms in this dataset also precisely reproduce
the alarms in a production environment.

3) Then, for each event, these alarms were segmented into
2-minute intervals, and these segmented alarms were used
as input for the proposed and baseline methods.

B. Dataset for Online Evaluation

For the online evaluation, we constructed an evaluation
environment in which alarms generated on the production
environment are forwarded to the system implementing the
proposed method in real-time, and the analysis results are
output to a network management system. The evaluation was
conducted using online datasets 1 and 2, which are 22 cases
during four weeks from mid-November to mid-December in
2023 and 10 cases of construction work and failures that
occurred during February 2024, respectively.
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⋯
⋯

⋯
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Fig. 6. How to prepare the offline dataset

V. EVALUATION

To demonstrate the usefulness of the proposed method,
offline and online evaluations were conducted using data from
a communication network provided by NTT.

Regarding evaluation metrics, the homogeneity score and
Adjusted Rand Index (ARI), are used for alarm clustering
method. The homogeneity score represents the degree to
which each data belongs to the correct cluster. If labels of
all alarms in a certain cluster indicate the same cluster, the
homogeneity score is 1 (complete homogeneity). ARI is one
of the evaluation metrics for clustering, which calculates the
ratio of how many pairs sampled from each cluster match per
all of the pairs.

For the fault device identification method, we used two
original matrices PMA and MA, by modifying accuracy. This
is to incorporate the fact that the number of fault devices is
very small compared to the total number of devices and that, in
network operations, missed fault devices can lead to prolonged
failures. PMA metric is defined as follows.

EFD(k) =

{
1

(
xi = 1,∀ i ∈ FDk, xi = 0,∀ i ∈ NDk

)
0 (otherwise)

(6)

PMA =

∑K
k=1EFD(k)

K
, (7)

where FDk and NDk represent the set of index of fault
devices and non-fault devices in k-th execution, respectively,
and K is the total number of execution of identifying fault
device method. Thus, PMA represents ratio of perfect match
of estimation results per the number of execution. Similarly,
MA metric is defined as follows.

EFD′(k) = 1
(xi = 1∀i ∈ FDk ∪Ak,
xi = 0∀i ∈ NDk\Ak)

0 (otherwise)
(8)

MA =

∑K
k=1EFD

′(k)

K
, (9)

where Ak is any two indices not in FDk. Thus, MA allows
up to two normal devices to be mis-estimated as fault devices.
This is because although missing fault devices is unacceptable,
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a few misestimated fault devices have little impact on network
operations.

In this evaluation, we set a fault device identification method
without alarm clustering as a baseline, i.e, identifying fault
device using all alarms for two minutes at once.

A. Alarm Investigation

Since we pointed out that alarms due to multiple events
can be mixed in a production environment in Section I, we
checked whether such alarms occur using an online dataset.
First, we calculated the duration of alarm occurrence due to
each event in the online dataset by measuring the time from
the first alarm occurrence due to a certain event until the alarm
due to that event stopped occurring. Due to a small number
of long-duration construction works, the median duration was
approximately one hour, and the average duration was about
one day. This means that an event does not necessarily
generate an alarm only at the moment of event occurrence.
On the other hand, alarms cease to occur after about one
hour, and multiple events are unlikely to occur frequently
within an hour, indicating that mixed alarm cases do not occur
frequently. However, as the average duration is one day, it is
quite possible that alarms due to multiple events (e.g., one
day of construction work and failure) may occur, resulting in
a mix-up.

In the online dataset, 110 cases of mixed alarms due to
multiple events within 2 minutes over approximately two
months were recorded.

B. Offline Evaluation

We evaluate our proposed method using a dataset from mid-
January to March 2022. In this dataset, the alarm clustering
method was executed 589 times during 35 events.

The homogeneity score and ARI for the alarm clustering
method were 1.0 and 0.995, respectively. Since the homo-
geneity score is 1.0, alarms caused by multiple events were
not mixed in a cluster. This result is useful because it is very
important to eliminate the mixing of alarms in actual network
operations and the fault device identification method. By
checking the clustered alarms, we found that the alarm clus-
tering method cleanly split alarms generated by the customer’s
operation and alarms caused by failures and construction work.
On the other hand, the ARI of 0.995 indicates that alarms due
to a certain event were not overly split. These results show that
the alarm clustering method can appropriately divide alarms
into events in the production communication network.

Table I shows the proposed and baseline method results
for the offline dataset. In the table, numbers in parentheses
indicate the number of EFD for PMA or EFD′ for MA
and total cases. Here, the number of executions of the fault
device identification method was higher than that of the alarm
clustering method. This is because if the alarms are divided
into multi clusters (e.g., 2 clusters in the case Figure 5), the
fault device identification method will be executed for each
cluster (e.g., two times in the case Figure 5). If only a single
event has occurred, the proposed method is the same as the

TABLE I
THE RESULTS OF OFFLINE EVALUATION

Baseline Proposed

Offline dataset PMA 0.89 (525/589) 0.96 (921/951)
MA 0.97 (576/589) 0.98 (938/951)

Offline dataset
only m-clusters

PMA 0.82 (335/352) 0.96 (685/714)
MA 0.96 (386/352) 0.98 (701/714)

TABLE II
EFFECT OF ALARM CLUSTERING METHOD

Proposed
Correct Incorrect

Baseline Correct 289 0
Incorrect 34 29

baseline method since a single cluster ID is assigned to all
alarms. Therefore, to check the effect of the alarm clustering
method more precisely, we extracted only the cases where
alarms are divided into multiple clusters and summarized the
results as only m-clusters row.

In Table I, the proposed method outperforms the baseline
method by 7% in PMA for all offline datasets. When the
proposed method is compared with the baseline method, the
improvement in accuracy is smaller for MA than for PMA.
This is because MA allows two false positives. The improve-
ment of PMA and MA between the proposed and baseline
methods for multi-clustered events increases compared with
the result in the table. Especially, PMA increases 14%. This
is because the baseline method cannot accurately estimate the
fault device (i.e., PMA) by inputting all alarms at once when
multiple alarms occur, while the proposed method can estimate
each fault device by input alarms split by each event using the
alarm clustering method.

For a more detailed analysis, Table II summarizes how the
proposed methods improved the correct and incorrect cases
in the baseline method. This table aims to see if the alarms
clustering method causes cases where the correct cases in the
baseline method become incorrect in the proposed method. In
the table, correct means

∑
EDF . As shown in the table, 289

cases were correct for the proposed and baseline methods. By
using the alarm clustering method, 34 cases that were incorrect
in the baseline method became correct in the proposed method,
while no cases became incorrect in the proposed method from
correct in the baseline method.

C. Online Evaluation

We evaluated the proposed method using a system im-
plemented in the production communication network. In the
online experiment, the proposed method was executed, and the
estimated fault devices were outputted in real-time. In total,
the fault device identification method was executed 182 times
for online dataset 2 and 363 times for online dataset 2. Here, in
this evaluation, since the system implements only the proposed
method, we cannot compare the proposed method with the
baseline method.
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TABLE III
THE RESULTS OF ONLINE EVALUATION

PMA MA

online 1 Proposed (all) 0.84 (153/182) 0.91 (165/182)
Proposed (m-cluster) 0.10 (3/31) 0.48 (15/31)

online 2 Proposed (all) 0.97 (355/363) 1.0 (363/363)
Proposed (m-cluster) 0.94 (75/79) 1.0 (79/79)

Table III shows the result of the proposed method. All and
m-cluster in the parentheses represent all cases and cases when
alarms split into multi-clusters, respectively. The proposed
method for the online dataset 1 is highly accurate, especially
with MA exceeding 90%. However, when the alarms are
divided into multiple clusters, MA is about 0.5, and PMA is
0.1. This is because, for the online dataset 1, hyperparameters
of the alarm clustering method and fault device identifying
method were tuned using the offline dataset. However, trends
of alarm occurrence in online evaluation had changed signif-
icantly from the time when the offline dataset was obtained.
Specifically, configuration changes were made to partially filter
out alarms and other notifications to operators due to customer
operations. Since hyperparameters of both methods were tuned
under the assumption that these alarms would occur, PMA
and MA deteriorated.

Therefore, we re-tuned the hyperparameters using the online
dataset 1 and conducted the online evaluation again in Febru-
ary. The result is shown in dataset 2. As shown in Table III,
the proposed method achieved high accuracy and 1 for MA
metric.

These results show that even in a production environ-
ment, there is a limitation that the proposed method requires
appropriate hyperparameter tuning when the way of alarm
generation changes. However, by hyperparameter tuning, the
proposed method can appropriately split alarms caused by
multiple events into separate events and estimate the fault
device in real-time with high accuracy.

VI. CONCLUSION

This paper highlights the challenges and complexities in
accurately identifying fault devices within communication
networks, particularly when faced with mixed alarms from
multiple events such as hardware failures, construction activ-
ities, and notification of customer operations. The proposed
method leverages an alarm clustering approach that integrates
a rule-based model using Bayesian networks to effectively
distinguish between these mixed alarms, thereby enhancing the
accuracy of fault localization. The online and offline evalua-
tions of this approach in a real-world production environment
confirm a significant improvement in fault localization accu-
racy, enabling a shorter network operation when the failure
occurs.

The feature work is to expand the target devices in the
communication network since we selected key role devices
from all devices. Another feature work involves evaluating the

proposed method with other existing methods using a larger
dataset from the production environment.
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