2024 20th International Conference on Network and Service Management (CNSM)

Resource-Efficient Implementation of Multiple
Concurrent Tree-Based Models in P4 Switches
using Feature Sharing

Oleg Karandin'*, Aleix Lahoz Torres2, Nicola Di Cicco', Francesco Musumeci!, Massimo Tornatore’
LDepartment of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
2Escola Tecnica d’Enginyeria de Telecomunicacié de Barcelona, Universitat Politecnica de Catalunya, Spain
*Corresponding author: oleg.karandin @polimi.it

Abstract—Machine Learning (ML) models have found nu-
merous applications in the automation of complex network
management tasks. More recently, thanks to the introduction
of new solutions for data-plane programmability (as the P4 pro-
gramming language), it has become possible for programmable
switches to execute ML-models directly in the data plane, with
the great advantage that decisions can now be taken at packet-
rate, without the involvement of the control plane. Existing works
have shown that tree-based ML models, such as Random Forest,
can be implemented on P4 switches, despite strict constraints
on the available computational and memory resources. However,
the (common, and practical) case when multiple models must
be concurrently implemented to perform different tasks is still
under-investigated. Assigning separate, dedicated resources (i.e.,
stages in the packet-processing pipeline) to each model can
be very inefficient. In this study we propose a new resource-
efficient data-plane implementation of multiple concurrent tree-
models that share input features. We focus on the problems of
DDoS-attack detection and application-traffic identification and
demonstrate high accuracy in both problems while saving up to
40% of the required processing stages.

Index Terms—Programmable switch, P4, In-network ML,
Random Forest

I. INTRODUCTION

Communication networks are quickly evolving to support
new services with demanding bandwidth, latency and secu-
rity requirements. This evolution largely capitalizes on novel
technologies for network automation that leverage monitoring
data to effectively re-implement traditional management tasks,
such as network resource allocation and network security that
have been traditionally performed via heuristic algorithms,
based on rigid rules, hand-crafted for a specific problem based
on the domain knowledge of network experts. The recent
growth in availability of network monitoring data and of in-
network computational resources has paved the way for the
deployment of Machine Learning (ML)-based solutions for
automated network management that can more flexibly adapt
to network changes as data is collected and processed.

As of today, ML models are typically trained and executed
in the control plane. This means that, as shown in Fig. 1a, the
switch collects the telemetry data describing, e.g, a packet/flow
behavior, in the data plane and then sends the data to the
controller. In turn, the controller performs the inference using
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a pre-trained ML-model and returns the decision (e.g., to
forward or drop the packet) back to the switch. However,
round-trip between the switch and the controller (and possibly
further delays due to resource contention at the controller)
limit the reaction speed, which is a critical parameter in
modern switches with multi-Tb/s throughputs.

To achieve a fully data-driven network management, ML-
inference must be performed at packet-rate, directly in the
data plane (see Fig. 1b). This has been recently enabled by
the programmable switches that allow to define custom packet
processing logic and that can implement simple ML models
[1]-[7]. However, implementation of ML models in the data
plane is non-trivial as packet-rate processing imposes low-
delay requirement that dramatically limit the type and the
number of operations that can be performed on each packet.

P4 (Programming Protocol-independent Packet Processors)
[8], [9] is a platform-independent data-plane programming
language that allows to run the same program on hardware and
virtual switches and on smartNICs. P4 supports integer addi-
tions and bit-shifts and match-action (M/A) operations (i.e.,
M/A Table [Key] — > call Action, where Action is a simple
function). Packets in the programmable switch pass through
a pipeline of processing stages (known as M/A stages), each
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Fig. 1. a) ML-model is trained and executed at the controller. b) ML-model
is trained at the controller and executed at the switch.
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Fig. 2. Feature-based mapping of a) Single tree-based model and b) Two tree-based models with independent or joint feature-to-code mapping

equipped with memory to store M/A tables and Arithmetic
Logical Units (ALUs) used to execute the corresponding
Actions. The previously-mentioned delay constraint limits the
number of M/A stages, while each stage also has a limited
amount of memory and ALUs.

Tree-based ML-models, such as Random Forest (RF), are
considered as the most suitable models for predictions on
tabular data [10], while they also have a simple structure
and can satisfy P4-constraints without any modifications to
training and inference processes. However, constraints on the
computational and memory resources pose a limit on the
number of trees in the forests and tree depth, as well as
the number of input features, therefore affecting the potential
of RFs in terms of prediction accuracy and generalization
capability. For these reasons, research efforts on more efficient
tree-model implementations are needed. For example, instead
of traversing the decision tree layer by layer, the recently
proposed feature-based approach [3] (described in details in
Section II) first maps the values of input features to the
corresponding region of the feature space and then determines
which label was assigned to that region during model-training.
With this approach RFs can be implemented with a number of
M/A stages that is dependent on the number of features and
the number of trees, regardless the tree depth.

Moreover, to automate multiple network management tasks,
in general, multiple ML models must be concurrently executed
at the data plane. For example, network-operators could largely
benefit from the concurrent implementation of attack detection
and application-traffic identification. In this context, given
the aforementioned memory and computational constraints,
it would be desirable to share some operations, such as
computing features and/or performing inference, across model
performing the different tasks, instead of implementing each

model independently, i.e., using dedicated computational re-
sources. In this work, for the first time in literature to the
best of our knowledge, we investigate the implementation
of multiple concurrent ML models at the data plane. We
extend the feature-based implementation to multiple tree-based
models that share input features and map the values of input
features to the corresponding region in the feature space
simultaneously for multiple models and than determine the
label that was assigned to that region by each individual model.
It is realistic to assume that models can use the same features,
as only a limited number of features is available on the switch,
e.g., the statistics of the number of packets and inter-arrival
time. We demonstrate that by using the proposed approach
concurrent on-switch DDoS-detection and application-traffic
identification can be performed with sufficient accuracy while
using up to 40% fewer M/A stages (hence, with lower delay).
The rest of the paper is organized as follows. Section
IT describes state-of-the-art of how tree-based models are
implemented using P4. Section III describes the proposed
approach for a resource-efficient implementation of multiple
concurrent tree-based models in P4. In Section IV we numer-
ically evaluate the number of M/A stages used to implement
concurrent on-switch DDoS-detection and application-traffic
identification and the accuracy achieved by both tasks.

II. BACKGROUND AND RELATED WORKS
A. Related Works

Many recent works describe the implementation of super-
vised [5] and unsupervised [6] ML models in programmable
switches [1]. The structure of the tree-based models makes
them the easiest for implementing in P4, and authors in [7]
even propose to use knowledge distillation and implement
more complex models as simple binary decision trees.
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Tree-based models (e.g., RFs) are supervised ML algorithms
with a tree-like structure that can be used for both classification
and regression [11]. Leaf nodes correspond to the decisions
(e.g., class labels), while internal nodes correspond to the
decision rules, where each rule compares the value of one
feature with a threshold that was optimized during training.
Inference for a data point starts at the root and proceeds down
the tree, branching left or right at each layer depending on the
feature value, till it arrives at one leaf, where the data point
is associated with the label.

Two main approaches to implement tree-based models in
P4 switches have been proposed in literature: depth-based [2]
and feature-based mapping [3], while authors in [4] propose a
hybrid approach. Depth-based mapping hierarchically encodes
each layer of each tree into the corresponding M/A table.
The P4 program then sequentially traverses the tables, till
it arrives to the layer of each tree that holds a class label.
A constraint on the number of M/A stages limits the total
number of layers (depth) of the trees. Feature-based mapping
assigns a binary code to every feature interval created by the
thresholds used across all the trees. One bit of the encoded
feature defines if it is smaller or greater than the corresponding
threshold-value. Concatenated feature encodings generate a
codeword that describes a region of the feature-space and
hence corresponds to an output class.

B. Feature-Based Encoding

In Fig. 2a we show an example of the feature-based im-
plementation of a model with 2 trees and 2 features (red and
blue). The P4 program first uses feature-to-code M/A tables to
assign a code to the value of each input feature. Each feature is
processed exactly once even if used across multiple layers of
different trees. Finally, the program uses a codeword-to-label
M/A table to associate a codeword with the label in each tree.

In the example of Fig. 2a, each feature is used with two
thresholds across the two trees: red feature with thresholds 2
and 5, and blue feature with thresholds 3 and 4, thus both
features are encoded with 2 bits. For example, for the red
feature the first bit is O (respectively, 1) for values smaller
(larger) than 2, while the second bit is O (respectively, 1) for
values smaller (larger) than 5. The codeword-to-label M/A
table uses ternary encoding (i.e., with an * used to match
both 0 and 1) and contains one entry for each tree leaf. For
example, the leftmost leaf with label O in Tree 1 is reached if
the red feature is larger than 2, and the blue feature is larger
than 3, thus the first bits in the encoding of each feature must
be equal to 1, while the second bits that correspond to the
other two thresholds are irrelevant (i.e., can be 0 or 1), and
are thus represented with an *, and the final codeword obtained
through the encoding process would be 1:x1x.

Assuming that one M/A stage is used for one feature-to-
code or codeword-to-label mapping, the number of required
M/A stages is the sum of the number of features and trees,
independent from the number of layers in each tree. However,
the size of the tables increases with tree depth, so it is limited
by the constraint on the memory available per M/A stage.
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Fig. 3. M/A stages used for feature-to-code and codeword-to-label mapping
for different numbers of trees, models and features, with joint and independent
feature-mapping
ITII. FEATURE-SHARING FOR RESOURCE-EFFICIENT
IMPLEMENTATION OF MULTIPLE TREE-BASED MODELS

A. Feature-based mapping of multiple tree-based models

Feature-based mapping allows to process each feature once
not only among different trees of the same model (as shown
in Fig. 2a), but also among different trees of different models,
as long as they use the same features. In Fig. 2b we show two
classifiers X (with 2 trees) and Y (with 1 tree), that use the
same 2 features and solve a binary (0/1) and a ternary (A/B/C)
classification problem, respectively. If mapped independently,
the two models will be executed in 7 M/A stages, while if
feature-to-code mapping is performed jointly, only 5 M/A
stages are needed. As a result, we can either reduce the
inference delay, or we can leverage the saved M/A stages to
improve prediction accuracy (e.g., by using more features or
trees) or perform other operations in the switch. Using the
same features in different models is a realistic assumption, as
only a limited number of features is available on the switch,
mainly the statistics of the number of packets and inter-arrival
time. Note that the different models can share only a subset
of features, e.g., if certain features are more important for one
specific model than for the others.

Assuming that models share all features, in Fig. 3 we
show how many M/A stages are used by models in different
configurations using the following formulas:

Nlndependent = Nmodels X (Ntrees + Nfeatures) (l)

stages
Joint
Nijores = Nmodels X Ntrees + Nfeatures (2)

stages

The number of M/A stages required by a single model
(red diamonds) grows linearly with the number of features.
Implementing the second model independently requires a
large number of extra M/A stages (orange and blue circles),
while significantly fewer M/A stages are needed with a joint
implementation (orange and blue squares).

In this work we assume that one M/A stage is used to store
one M/A table, independently of the table size. In practice,
based on the amount of memory per M/A stage, multiple small
tables can be stored in a single M/A stage, while large tables
are stored across multiple M/A stages. As sharing of feature-
mapping M/A stages between multiple models will increase
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Fig. 4.

a) Accuracy, b) Fl-score and c) number of M/A stages vs. number of features for independent and joint feature-mapping and for Application

Identification and DDoS Detection (3 trees per model); d-e) F1-score for Application Identification (d), and DDoS Detection (e) vs. number of M/A stages for
independent and joint feature-mapping (3 trees per model); f) Fl-score vs. the number of M/A stages with 3 and 5 trees per model and joint feature-mapping.

the size of both feature-to-code and codeword-to-label M/A
tables, we must ensure that M/A stages that we save with
joint feature-mapping do not get consumed by larger tables.

Algorithm 1 Joint feature-selection algorithm

Require: F': full set of features, N: desired Ne of features,
Data;: dataset for problem i, i = 1.M

1: while |F| > N do

2 fori=1..Mdo

3 Model; = train(Datal"*™)

4: I; = PFI(Model;, Datayetidation)

5: end for

6 I = CombineImportance(Iy, ..., Ipr)

7 f = MinElement(I)

8 F=F\f

9: end while

B. Joint feature-selection algorithm

To select the shared set of features used by multiple
models we propose an algorithm based on recursive feature
elimination (RFE) [12] that is summarized in Algorithm 1.
We start with a full set of features and iteratively eliminate the
feature that has the smallest contribution to the classification
performance (e.g., accuracy or Fl-score) across the models.
To estimate the contribution of the feature to the model clas-
sification performance we use permutation feature importance
(PFI) [11] which is a decrease in a given model quality metric
(e.g., accuracy or F1-score) when the values of a single feature
in the validation dataset are randomly shuffled. Low value
of PFI means that randomization of the feature value does
not decrease model quality metric, hence the feature is not
important. To assess the feature importance for all the different

models globally, we sum per-model PFI values to find the PFI
across the models and eliminate the feature with the smallest
total PFI at each iteration of the algorithm.

To estimate time complexity of the algorithm we note that to
select IV features out of F' by eliminating one feature at a time,
we must perform training and compute feature importance for
each of the M models F' — N times. Model training time
cannot be estimated analytically, but is expected to decrease
with the decrease of the number of features. We define it as
Trrain (i, f) for the i-th model that uses f features. Computing
the PFI metric, used in our work, requires, for each feature, to
perform inference on the validation dataset after shuffling the
values of that feature. We define inference time as 7, (4, f)
for the i-th model that uses f features. Total time can be
estimated as:

M N
Z Z Trrain(is )+ f x| Data*"4*on | x Trng(i, f) 3)
i=1 f=F

IV. ILLUSTRATIVE NUMERICAL RESULTS

To validate the proposed approach we evaluate classifica-
tion performance and number of used M/A stages for tree-
based classifiers with joint and independent feature-mapping
focusing on the concurrent implementation of DDoS-attack
detection and application-traffic identification.

For DDoS-detection we use the dataset in [13] that contains
flow-level features of legitimate and malicious traffic. We
focus on application-layer attacks and assign all flows of
Hulk-, GoldenEye-, slowloris-, Slowhttptest-attacks to one
class, whereas legitimate traffic to another class, resulting in
a binary classification problem with 10000 samples per class.

For application-traffic identification we use the dataset in
[14], [15] that contains flow-level features of traffic generated
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by different applications. In this case, we solve a multi-class
problem, where we consider the following classes: 1) Real-
time (labelled as “Skype” in the original dataset), 2) Non-
real-time (“Dropbox”), and 3) Website (“Google”), with 10000
samples per class.

Both datasets use the same set of 77 flow-level features.
Starting from the original feature-set, we discard metadata
(e.g., IP addresses, application ports, protocol number, times-
tamp) [16], cumulative features that become known at the
end of the flow-life (e.g., total flow duration, total number of
packets, etc.) and standard-deviation statistics that cannot be
easily calculated in P4. We end up with 18 features, namely,
maximum, minimum and mean values of packet-length and
inter-arrival time for total, forward and backward flows.

For each problem we train a RF classifier with at most 20
layers per tree. We use 60% of the data for training, 20%
for feature selection and 20% for testing. Reported results
are averaged across 100 random dataset-splits, where classes
proportions are always maintained as in the entire dataset.

In Fig. 4a-c we report classification accuracy, Fl-score and
number of used M/A stages for the 2 models using 3 trees
each and comparing independent and joint feature-mapping
for increasing number of features selected by the algorithm
described in Section III-B. From Fig. 4a we see that DDoS-
detection classifier reaches accuracy of 98%, whereas applica-
tion identification provides accuracy up to 88%. F1-score (see
Fig. 4b) shows similar trends as accuracy for all cases. As we
increase the number of used features, accuracy and F1-score
start to improve and then saturate when more than 5 features
are used. We can also see that classification performance
is insignificantly affected by joint feature-mapping (cross-
markers are close to circle-markers), even though both models
are constrained to use the same features. Reduction in accuracy
and Fl-score is noticeable for a small number of features and
almost disappears when more than 7 features are used. Fig.
4c demonstrates that joint feature-mapping saves up to (20-
40)% of M/A stages. Savings in M/A stages increase with the
number of used features, as number of stages used for feature-
to-code mapping grows, while 6 stages (3 trees per model) are
always used for codeword-to-label mapping (see Fig. 2).

In Fig. 4d-e we report Fl-score for the different number
of M/A stages used to implement the 2 problems (see Eq.
1, 2). We can see that the highest Fl-score reached with
joint feature-mapping is comparable to the one reached with
independent mapping, while 5-6 fewer M/A stages are used,
confirming that around 25% M/A stages can be saved at the
same classification performance.

In Fig. 4f we focus on the possible trade-offs from using
higher number of trees in the scenario with joint feature-
mapping. We report Fl-score for the different number of M/A
stages used to implement the 2 problems when 3 or 5 trees
are used in each model. We can see that at 16 M/A stages
we can achieve the same F1-score with the higher number of
trees, but use fewer features (i.e., 6 features with 5 trees vs.
10 features with 3 trees), thus saving some additional M/A
stages used to calculate features in the switch.

V. CONCLUSION

We propose joint feature-mapping for resource-efficient
implementation of multiple concurrent tree-models in P4
switches and demonstrate that different network-management
tasks (i.e., DDOS detection and application identification con-
sidered in our work) can be performed using a small number
of shared features, and up to 40% of M/A stages in the
packet processing pipeline can be saved, while maintaining
high classification accuracy.

As future work, we plan to evaluate the proposed approach
on real devices to consider M/A table size when quantifying
the number of used M/A stages, and account for increased
memory consumption associated with the sharing of feature-
mapping stages between multiple models. We will also inves-
tigate different feature-sharing scenarios (e.g., partial sharing
of features between models) and more intelligent joint feature-
selection across different models.
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