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Abstract—The rise of the Internet-of-Things (IoT) and smart
homes has resulted in the increased use of ZigBee as the
communication protocol of choice in home networks, giving
ample opportunity for network monitoring and user profiling,
as a consequence, raising a major privacy concern. Yet, there
has been little exploration of the extractable information solely
from network packets, particularly Philips Hue packets.

Especially as, to the authors’ knowledge, there have been
no studies examining whether a single network key provides
enough generalization to extract data from other unknown
ZigBee networks. To address this gap, this paper proposes
StealthProfiler, a passive and real-time Proof-of-Concept (PoC)
tool designed to identify, classify, and extract devices and events
within a Philips Hue network.

As a result, the tool was successfully used to extract network
events from encrypted Zigbee networks, achieving an accuracy
of approximately 94% in identifying devices and events within
the network without decrypting network traffic.

Index Terms—Internet of Things, Home Network Monitoring,
Inference Rules, Data Exfiltration, User Profiling, ZigBee

I. INTRODUCTION

In the last decade, the landscape of smart home technologies

has expanded with the ongoing development of lightweight

wireless communication protocols [1]. Importantly, Zigbee has

become a prominent protocol for the smart home Internet

of Things (IoT) devices. Devices, such as Philips Hue smart

lightbulbs, rely on Zigbee for communication between bridges

and individual devices, such as routers and end devices [2].

As smart home technology adoption grows, the potential for

privacy violations expands beyond individual devices and may

include details about user location, habits, and schedule. The

overall increasing number of smart home devices each user

has, make more data available for exfiltration, sniffing, eaves-

dropping, monitoring, and, as a consequence, more accurate

user profiling.

Exploring Zigbee protocol vulnerabilities produces critical

understanding of how smart home privacy can be improved.

A simple exploration of the communication protocol and local

network data provides enough information for user profiling.

As a result, private information, such as user behavior, lighting

schedules, appliance usage, and occupancy patterns, is ex-

posed. Therefore, there is a growing need to address potential

privacy vulnerabilities in smart home devices, empower users

with information and awareness, and safeguard their privacy.

By highlighting those vulnerabilities, the paper emphasizes

the urgency for developing robust security measures to protect

user privacy and the fast-changing smart home environment.

This paper investigates Zigbee communication within a

smart home environment and presents StealthProfiler, a

lightweight Proof-of-Concept (PoC) inference-based data

analysis tool that can be easily deployed at home. The

objectives include analyzing a real Philips Hue smart home

environment and developing a passive and real-time tool to

verify the statement that only a single network key is required

to decode any other Zigbee network without requiring decryp-

tion. Thus, this paper proposes StealthProfiler, a PoC tool

that leverages inference-based Zigbee profiling to recognize

and track Zigbee-compatible devices, commands, and events,

matching encrypted and decrypted network behaviors through

passive post-mortem and real-time analysis. As a result,

StealthProfiler demonstrates how the privacy of individuals

is easily endangered, underscoring the potential risks in smart

home environments. By exposing privacy vulnerabilities and

presenting a new method for data exfiltration from commercial

smart environments, the tool achieves an accuracy of almost

94% in profiling users.

Additionally, this approach provides users with insights

into the usage and state of these devices within the network,

facilitating the tracking of user habits and preferences while

also highlighting security and privacy threats concerning data

exfiltration and user profiling. Thus, the contributions of the

paper are:

• Detailed analysis of link layer and network (NWK) layer

Zigbee communication in the Philips Hue environment;

• Development of StealthProfiler: an inference-based pas-

sive and real-time command and event extraction tool

for data exfiltration and user profiling from any ZigBee

network without a network key.

The paper is organized as follows. Section II discusses the

related work, highlighting the need for a new research. Section

III introduces the design of StealthProfiler design, outlining

core components and operations. Section IV provides results

of the tool operations, its evaluation, and discussion. Finally,

Section V summarizes the contribution presented and outlines

future work.
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II. BACKGROUND AND RELATED WORK

In recent years, the demand for smart living has driven

rapid advancements in IoT devices, making them increasingly

vulnerable to sniffing and eavesdropping attacks. Zigbee, a

low-power wireless protocol commonly used in IoT devices,

has also become a target. Zigbee communication is secured

by a 128-bit network key, which encrypts messages between

devices in the network, preventing unauthorized access. How-

ever, research has demonstrated methods for sniffing and

analyzing Zigbee traffic. For instance, [3] presents a packet-

sniffing method using software-defined radio to recognize Zig-

bee protocol messages, while [4] introduces an IoT forensic

tool for real-time traffic capture in home automation plat-

forms. [5] presents ZLeaks, which identifies in-home devices

within encrypted Zigbee traffic by deducing application layer

commands and exploiting reporting patterns and intervals.

Furthermore, [6] showcases IoTSpy, a method for user activity

inference through wireless context analysis, extracting packet

sequence features to detect events and deduce user activities,

moods, lifestyle patterns, and the presence of installed IoT

devices. [7] utilizes machine learning techniques to infer

user behaviors from smart home device usage, identifying

and locating devices to deduce user activities. In contrast

to [6] and [7], [8] focuses on beneficial applications of

device monitoring. The authors propose a smart monitoring

system for campus infrastructure, where the system controls

the opening and closing of building doors and can integrate

lighting systems and appliances.

[9] found that eavesdropping poses significant risks to user

privacy. The authors demonstrate an approach where attackers

could intercept the key exchange by the addition of a device

to a Zigbee network, thus allowing unauthorized control

and exploitation of network events. [10], utilizes machine

learning in a multi-stage privacy attack and achieves over 90%

accuracy in identifying the states of a device and user actions

through passive network traffic sniffing. By leveraging sniff-

ing and eavesdropping, [11] demonstrates a self-replicating

worm attack in a Philips Hue network via Zigbee updates,

showing how neighboring IoT devices could infect each

other, spreading rapidly over large areas. [12] conducts replay

attacks on Philips Hue bulbs and Xbee modules, exposing

security vulnerabilities despite its built-in countermeasures.

[13] analyzes the ecosystem of Philips Hue, revealing privacy

risks from different control devices and smartphone appli-

cations. The authors show how various control techniques

influence the amount of data transmitted to the Internet. [14]

introduces ZPA, a system for privacy analysis of Zigbee-

encrypted traffic in smart homes, hence addressing privacy and

security issues. [15] proposes ChatterHub, a system enhancing

privacy management by classifying smart-home device events

through eavesdropping and machine-learning techniques.

This work was primarily inspired by ZPA [14] and Zleaks

[5]. However, this work is different on multiple dimensions,

as summarized in Table I. First, ZPA relies on machine

learning for decryption, while Zleaks and this work utilize

inference rules, which is a more lightweight approach for IoT

devices. Second, Zleaks has a broad focus on Zigbee devices,

including, but not limited to Philips Hue. However, this work

focuses exclusively on the Philips Hue, allowing for a deeper

analysis. Third, Zleaks relies on hard-coded data and frame

lengths, while this approach uses JSON files to extract these

lengths dynamically. Thus, providing improved testing effi-

ciency and flexibility without affecting identification accuracy.

Such an approach is favorable, as it reduces the possibility

of errors when a new JSON file lacks certain package types.

Additionally, saving packet type combinations with frame and

data lengths in a CSV file highlights missing packet types,

mitigating this concern further.

TABLE I: Comparison of the ZPA, Zleaks and StealthProfiler

ZPA [14] Zleaks [5] StealthProfiler
Machine Learning � × ×
Inference Rules × � �
Periodic Reporting Patterns × � ×
Dynamic System � × �
Philips Hue × � �
Other Manufacturers � � ×
In-Depth Analysis × × �
Broad Analysis � � ×
Network Key Extraction � × �
Privacy Risks � � �
Real-time Tracking × × �

Lastly, the most important distinction between ZPA, Zleaks,

and StealthProfiler is the use of a single network key to decode

any other network. This has been largely unexplored in previ-

ous works and allows any Philips Hue user unhindered access

to decode other ZigBee networks. StealthProfiler addresses

this significant research gap.

III. STEALTHPROFILER

StealthProfiler is a passive and real-time monitoring tool

for Philips Hue network monitoring and data exfiltration. The

tool focuses on identifying device types and capturing on/off
and level/color control commands.

A. Initial Network Decoding

To identify devices and commands independently of the

network encryption, an initial mapping between the encrypted

and decrypted network communication had to be constructed.

Consequently, the network key of the Zigbee network had to

be retrieved. By sniffing during the addition of new light to the

network, the transport and network keys were captured. Thus,

allowing the decryption of all packets within that network

and facilitating the mapping to the unencrypted network

capture. Subsequently, the network captures could be analyzed

simultaneously, enabling the mapping of network commands

and events between the two.

B. Targeted Philips Hue Commands

The commands targeted by StealthProfiler encompass var-

ious Philips Hue network operations, each identified by a

specific Philips Hue network identifier, including on/off, col-
or/level control, read attributes, and route record/request. Due

to the many commands available for Philips Hue devices,

the on/off commands were selected for their prevalence, and
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Fig. 1: SteathProfiler Core and Modes

level/color control commands were chosen as they are specific

to Philips Hue networks. In addition, broadcast messages were

thoroughly investigated to distinguish them from others.

C. Architecture

The core components included the Packet Extractor, Com-
mand Extractor, Filter, Identifier, and Analyzer, as depicted

in Figure 1. In comparison, the Runner orchestrates the tool’s

execution and mode, and the Tracker component is only used

during real-time mode to ensure the correct execution of the

capture strategy.

1) Runner: The backbone of StealthProfiler, orchestrating

the execution of all components in either real-time or pas-

sive tracking mode. In real-time mode, the Runner initiates

Tracker to start a 90s network sniffing session to capture

ZigBee packets. Followed by the Command Extractor and

Packet Extractor to identify devices. consequently, the Filter
is applied, and real-time tracking commences (see Section

III-C6). The Analyzer component receives all the previous

components’ output and identifies network events based on a

set of inference rules (see Section III-C5), which distinguish

network events and commands from each other, thus inferring

user behavior, such as turning on a light. Passive mode omits

the initial 90s sniffing phase. Instead, the component analyzes

the PCAP file provided by the user, following the component

execution sequence of Command Execution, Packet Extractor,

Filter, Identifier, and Analyzer.

2) Command Extractor: Its core objective is to extract

crucial data from two JSON files generated by the tool from

the same input network package capture. One JSON file is

decrypted using the network key, while the other remains

encrypted. The comparison of both JSON files allows the

correlation of the decrypted commands and frame lengths with

their respective data lengths, which are only accessible from

the encrypted capture. The component generates three CSV

files: data.csv, containing packet frame numbers, lengths, and

data lengths, command.csv, storing frame numbers, lengths,

and commands and command_data.csv, which combines both

by frame number.

Firstly, extract_command_from_packets handles the extrac-

tion of commands and their frame lengths from the decrypted

JSON file Secondly, the extract_data_from_packets function

retrieves data lengths from the encrypted JSON file. The

commands and frame lengths are then mapped to the cor-

responding data lengths, yielding data_command.csv.

The Zigbee NWK and Zigbee Cluster Library (ZCL) layers

serve as primary sources for command mapping. Additionally,

the component is adaptable and capable of extracting data

from various JSON files. Thus, the user can easily regenerate

or directly change them. Offering flexibility to cover other

networks, even beyond ZigBee. If only the encrypted network

is available, then only the Zigbee Network (NWK) layer

is accessible. Nevertheless, the command extraction process

remains the same, requiring only the frame length and data

length to extract the commands.

3) Packet Extractor: Streamlines the analysis of PCAP

files by condensing the captured data into a CSV format. Its

primary objective is to extract essential information, such as

frame time and length, source, and destination, from network

packets. These extracted attributes serve various analytical

purposes. For instance, the frame time provides temporal

context, indicating when events occurred. Meanwhile, frame

length, source, destination, and data length aid in device iden-

tification and event categorization. The destination Personal

Area Network (PAN) plays a crucial role by facilitating the

organization of packets based on their PAN ID. This segmen-

tation ensures that packets are grouped logically, enhancing

the clarity and manageability of the data. Furthermore, the

extracted frame number attribute is used for analysis, while

the sequence number is used to eliminate duplicates.

Upon user input, the Packet Extractor determines

which network should be analyzed further, forwarding the

pan_ID.csv to the Identifier and Filter components.

4) Identifier: The Identifier component receives the output

pan_ID.csv from the Packet Extractor and identifies the var-

ious ZigBee devices in the given PAN. It compiles lists con-

taining combinations of commands, frames, and data lengths,

which serve as reference points for identifying packets in the

subsequent Filter and Analyzer components.

The packets under consideration include route record, route
request, and read attribute response. For example, it was ob-

served that the route record and request packets predominantly

originate from the Zigbee coordinator. Consequently, these

packets serve as key indicators for identifying the coordinator

within the network. Furthermore, the read attribute response
command is commonly associated with ZigBee End Devices

(ZED), which can be inferred from their inherent behavior of

continuously reporting their attributes to the coordinator. This

process enables the identification of devices based on their

transmitted packets. The Identifier component then organizes

the devices into lists according to their respective device types

and records the coordinator’s network address in a text file,

zc.txt, which is subsequently utilized in the Analyzer.
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5) Filter: While the Packet Extractor is responsible for

preparing the CSV file for device identification, the main task

of the Filter component is refining the file for event analysis.

Therefore, its primary task is to process the extracted data

per PAN originating from the Packet Extractor component

and output a filtered CSV file containing only Zigbee Home

Automation (ZHA) commands and the inference rules, allow-

ing their identification as ZigBee events. Inference rules, refer

to patterns or logical relationships that are established based

on the observed behavior of network packets. These rules

allow for the deduction of one event or packet type based on

the occurrence of another. For example, an inference rule is

formed by recognizing that a read attributes response packet

consistently follows a read attributes packet in the opposite

direction, seen in Figure 2. This predictable sequence can be

used to infer the nature of certain packets, even when they

are difficult to distinguish due to similar characteristics.

(a) Uninterrupted

(b) Interrupted

Fig. 2: Read Attribute Packet Sequence

As a result, the Filter component outputs

filtered_pan_ID.csv containing only filtered ZHA packets,

their sequence, and the commands within, enabling event

detection but not device identification, as other packet types

are also utilized for the latter.
6) Tracker: The Tracker ensures timely execution of real-

time network monitoring by initiating Tshark1 to capture 255

packets—an ideal number for analysis without significant de-

lay. This strategy reduces the impact of background analysis,

minimizes packet duplication, and enhances the clarity of the

analytical process.
7) Analyzer: The Analyzer component recognizes the on,

off, color, and level control events based on the provided

filtered_pan_ID.csv, the zc.txt, and command_and_data.csv.

It combines packet attributes, such as distinct frame and data

lengths, with the respective commands. These attribute and

command combinations serve as reference points for incoming

packets, enabling the Analyzer to match a packet with the

corresponding event. For example, in 1, a broadcast packet

signaling an on command, corresponding with the Lights turn
on event, is compared against incoming packets.

if event[0] == ’on broadcast’ and dst in
broadcast_addresses: # 47, 11
print(’User turned light on at ’ + row[’Time’] +

dst)

Listing 1: Check On Packet

1https://www.wireshark.org/docs/man-pages/tshark.html

However, a color control packet, can only be distinguished

from a read attribute packet through the application of in-

ference rules, which check the packet sequence. If the next

packet is a read attribute response packet, the original packet

is a read attribute packet. If not, it is a color control packet.

Furthermore, it’s important to consider the direction of

packet flow. Specifically, event commands consistently orig-

inate from the coordinator. For example, the color control
packet may be misconstrued as a ZCL Groups: Get Group
Membership response packet. To distinguish the two packets,

the packet source must be determined; if the source is the

same as the coordinator, then it is color control packet and

indicates a color change event. Upon event recognition, it is

recorded along with its timestamp and corresponding network

address.

IV. RESULTS AND EVALUATION

This Section centers around the three main phases: setup,

data collection, and data inspection, which iteratively inform

each other for StealthProfiler’s real-time and passive Zigbee

traffic analysis. Additionally, testing outcomes will be dis-

cussed before an overall evaluation of the prototype is given.

Lastly, the challenges and vulnerabilities of the Philips Hue

network were explored.

A. Data Collection

Data collection began with sniffing while executing various

commands over a 15-45 minute period to determine the

data gathering rate. However, a 24-hour sniffing period was

considered; within 30 minutes, thousands of packets were

captured, many being read attributes and their responses,

which were not interesting. Tshark, Wireshark’s command-

line tool, can run longer and is suitable for real-time tracking

but harder to analyze directly.

Sniffing started in Setup 3 to understand the Philips Hue

network and test the approach, then moved to Setup 1 for a

realistic smart home setting, which was more complex and

unpredictable. After several iterations and feedback from data

evaluation, Setup 2 was used to test StealthProfiler and its

final assumptions.

B. Data Inspection and Inference Rules

Data evaluation involved analyzing packets based on as-

sumptions to inform subsequent data collection rounds. In the

first round, packets were evaluated by comparing encrypted

and decrypted data to assess information visibility. Thou-

sands of packets were analyzed alongside Zleaks, revealing

consistent frame and data lengths across packet types, such

as unicast on commands. Subsequently, inference rules were

developed to differentiate encrypted packets. For instance, the

unicast off command has the same frame and data length as a

read attribute packet, only distinguishable through the packet

sequence, defined and checked through inference rules. For

example, a read attributes response, sent from an end device

to the bridge, consistently follows a read attributes packet

with opposite directional flow, establishing an inference rule.
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(a) Setup 1 (b) Setup 2 (c) Setup 3

Fig. 3: Experimental Topologies

C. Testing and Outcomes

This section delves into the testing phase, examining the

outcomes and evaluating the results obtained, also highlighting

successes and areas for improvement.

1) Experimental Setup: Three setups were designed to

test StealthProfiler and evaluate the assumption that a single

network key is sufficient to decrypt any other Zigbee network.

Each setup included a Philips Hue bridge, routers, and various

ZEDs operating on different Zigbee channels for minimal

interference and easier management.

• Setup 1 includes one bridge, sixteen light devices, and

several sensors and switches (not considered in testing). It

mirrors a real-world smart home configuration, covering

the first floor (living room, dining room, kitchen, and

corridors) and the second floor (bedrooms). It operates

on default channel 11, making it unpredictable and

challenging. Figure 3 (a) shows the topology diagram.

• Setup 2 includes one bridge, six light devices, and

assorted sensors and switches, disregarded in testing.

It also mirrors a real-world smart home configuration,

covering the basement, and operates on channel 20.

• Setup 3 as depicted in Figure 3 (c) determines the testing

setup, featuring one bridge and two light devices. This

arrangement is characterized by its clarity, predictability,

and ease of manipulation. It utilizes channel 15 to facil-

itate easier experimentation due to its relative isolation.

During analysis, commands were issued to two devices per

setup. Events from devices outside this scope were excluded.

The Identifier was tested with a total of 27 devices. Three

devices in Setup 3, 7 in Setup 2, and 17 in Setup 1. Any

other devices, like sensors and switches, were excluded from

consideration. Each setup was tested twice each in real-time

and passive mode, with two rounds of testing per setup. Round

1 involved executing commands, while Round 2 involved

monitoring the network without issuing commands to see

if the prototype would identify commands that were not

given. The real-time mode was tested an additional three

times per setup due to its higher fragility, due to the reduced

data available from sniffing for only 90 s compared to the

21 min in passive mode. Testing was conducted under optimal

conditions, with restarts for failed commands to ensure all

lights were reachable, though occasional sniffing disruptions

occurred.

D. Device Identification Results

The detection in the ideal case of all coordinators indi-

cates that identifying coordinators is reliable, achieving a

100% success rate. Additionally, detecting 159 out of 168

ZEDs, approximately 95%, showcases a robust performance.

However, it is important to note that this success rate may

be affected by the occasional unreachability of light devices

during testing, which could result in the non-transmission of

packets. Similarly, the detection of 174 out of 189 ZR devices,

around 92%, demonstrates good results. The discrepancies are

most likely caused by the sporadic unreachability of light

devices during testing.

The weakest results were observed in the detection of

routers. This is likely attributed to the requirement in the

approach for every device to send a link status packet during

testing for successful detection. Factors such as intermittent

connection loss or device range limitations may render routers

temporarily unreachable, impacting detection rates. Although

routers show clear conditions to identify them, they received

the weakest results.

Comparing the real-time and passive detection methods,

the real-time mode achieved a detection rate of 249 out of

270, approximately 92%, while the passive mode detected 105

out of 108 devices, around 97%. Although the difference is

minimal, passive detection outperformed real-time detection,

possibly due to the longer duration of sniffing, allowing for

a more significant number of packets to be captured and

more data to be analyzed. Consequently, conducting more

extensive testing in real-time mode is advisable to refine

device identification further. A short overview of the device

detection outcomes is presented in Table II.
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TABLE II: Device Detection Outcomes

Round real-time/Passive Coordinators ZEDs Routers
1 real-time 3 23 26
2 real-time 3 22 25
3 real-time 3 21 21
4 real-time 3 23 25
5 real-time 3 22 26
1 Passive 3 24 25
2 Passive 3 24 26

E. Event Detection Results

The event detection results show promise, with a detection

rate of 97% in Round 1, where 35 out of 36 events were

detected, and a perfect non-detection rate in Round 2, with

36 out of 36 non-events not detected. This leads to an overall

accuracy of 98% for both detection and non-detection (see

Table III). A few undefined occurrences were observed, par-

ticularly in Setup 1, the largest setup and likely to have more

complex interactions. These undefined occurrences could be

false identifications or caused by household activities.

TABLE III: Event Detection Outcomes

Real-time/Passive Round Correctly detected events/non-events
real-time 1 17
real-time 2 18
Passive 1 18
Passive 2 18

Regarding the comparison between real-time and passive

modes, there was minimal difference observed. One event

in real-time mode was not detected, while all events were

detected in passive mode. This missed event may be attributed

to the brief pause after capturing 255 packets in real-time

mode, during which the system writes the file and resumes

capturing. Commands issued during these milliseconds could

potentially be overlooked, presenting quite a big limitation.

Passive mode detected more events that shouldn’t have

been detected, particularly color control events. This may be

linked to the identification of packets with similar frames, data

lengths, and directions originating from the bridge. Despite

efforts to differentiate these packets, no definitive rules were

found to entirely distinguish color control packets from all

other packet types with the same frame and data length

combination, likely due to skipped packets. Nevertheless,

since the results were not overwhelmed with skipped packets,

tolerating these discrepancies is deemed acceptable.

F. Analysis

StealthProfiler was analyzed with respect to precision, re-

call, and accuracy evaluation metrics. The testing resulted

in 389 True Positives (TP), 3 False Positives (FP), 25 False

Negatives (FN), and 36 True Negatives.

1) Evaluation Metrics: Recall focuses on the proportion of

true positive predictions among all actual positive instances.

The recall value calculated is 94%, indicating a high propor-

tion of relevant cases being identified.

TP

TP + FN
=

389

389 + 25
≈ 0.940

Precision focuses on not labeling a negative sample as

positive. The precision value is around 99%, suggesting that

StealthProfiler has high precision in correctly identifying

positive samples.

TP

TP + FP
=

389

389 + 3
≈ 0.992

Accuracy provides an overall assessment of correctness,

considering both true positive and true negative predictions.

The accuracy value is rounded to 94%, indicating a high level

of correctness in the predictions.

TP + TN

TP + FP + FN + TN
=

389 + 36

389 + 3 + 25 + 36
≈ 0.938

2) Evaluation Discussion: These metrics demonstrate good

real-time and passive tracking performance, contingent on

conditions such as reachable lights, functional Philips Hue

commands, and sufficient packet capture. StealthProfiler,

while designed with a holistic and iterative approach, is lim-

ited by these dependencies. Similar challenges will affect ma-

chine learning approaches, if conditions are not met. Interde-

pendence among components and their sequential interactions

pose another limitation. For instance, Identifier must store the

coordinator in a text file for the Analyzer to function correctly.

Omitting this step compromises the Analyzer’s performance.

However, this interdependence also allows components to be

executed individually, provided all required input files are

present. Access to filtered PAN packets and Zigbee coor-

dinator information from previous runs enables independent

execution of the Analyzer, aiding interactive improvement.

Overall, StealthProfiler meets its primary objectives and

shows significant promise. Its iterative methodology and struc-

ture enhance transparency, making it accessible to newcomers

and contributors. Overall, StealthProfiler demonstrates good

performance during testing.

G. Emerging Security and Privacy Concerns

The development and testing have demonstrated the feasi-

bility and implications of real-time and passive tracking within

a Philips Hue smart home. This underscores the importance of

understanding the relationship between network architecture

and data transmission, especially in IoT devices.

Passive and active tracking is feasible. StealthProfiler

showed that Philips Hue’s smart lighting systems can be

tracked both passively and in real-time by analyzing network

packets and formulating rules based on their sequences. Using

an nRF board, Wireshark, and a network key, exposes several

security and privacy vulnerabilities in the Philips Hue ecosys-

tem. The ability to track these systems highlights profound

ethical and privacy concerns in IoT devices.

One key concern is that possessing a single network key

allows decryption of other Zigbee Philips Hue networks,

regardless of their network keys. Based on consistent frame

and data lengths for various packet types, any Philips Hue

user could potentially decrypt another user’s network.

Existing vulnerabilities in Zigbee The analysis also high-

lights other network vulnerabilities within the smart home
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environment. Gaining access to the Philips Hue network key, a

known vulnerability, remains easily exploited. StealthProfiler’s

ability to analyze Zigbee packets introduces the risk of data

interception, potentially compromising sensitive information,

such as device network addresses and user commands. The

collected sensitive information and transmitted data could then

be shared with third parties without their explicit consent,

which could lead to unauthorized access or misuse of users’

personal information by third-party entities, raising concerns

about data privacy and security.
Exploiting these vulnerabilities could grant malicious actors

control over the smart lighting system. Examining a decrypted

network JSON files can facilitate replay attacks and unautho-

rized network access. Hence, StealthProfiler could be used

for harmful actions, such as denial-of-service attacks, worms,

or disrupting other network devices, compromising the smart

home ecosystem’s stability and security.
By analyzing events like on/off, color changes, and bright-

ness adjustments, StealthProfiler inadvertently tracks users’

activities, revealing habits, routines, and occupancy patterns,

thus violating their privacy. This can lead to behavioral

profiling, revealing sensitive information about users’ daily

lives, such as presence at home, sleep patterns, and moods.

If malicious actors gain access to this information, it could

facilitate targeted break-ins, compromising physical security.
While StealthProfiler shows positive outcomes, it also re-

veals notable security and privacy vulnerabilities. Beyond

technical risks, it highlights the extent of information that can

be extracted from packet traffic in a smart home environment,

emphasizing the need for robust security measures.

V. CONCLUSION AND FUTURE WORK

StealthProfiler offers a PoC passive and real-time tool for

identifying, classifying, and extracting devices and events

from encrypted Zigbee networks, particularly focusing on

the Philips Hue smart lightbulbs. With StealthProfiler, this

paper validates the statement that possessing a single network

key can allow the decoding of any Philips Hue network and

identify a device type and various events within the network.
Therefore, uncovering significant security and privacy risks,

such as data interception, exposing sensitive data, and poten-

tial exploitation through use profiling. Additionally, it forms

the basis for long-term habit tracking, by expanding the

command recognition for long-term aggregation and pattern

recognition, in future extensions of the work. Moreover, the

integration of additional devices from other vendors and

additional messaging protocols can improve interoperability

and inter-protocol pattern recognition to gain further insights

into communication protocol security.
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