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Abstract—Network traffic classification and analysis are cru-
cial for maintaining computer security. Nevertheless, the rise of
encrypted traffic has made reliable threat detection increasingly
challenging, requiring more complex algorithms such as heteroge-
neous ensembles. These types of algorithms proved to be effective
in complex threat detection while maintaining high accuracy and
explainability. However, their complexity and time-consuming
development process limit their widespread adoption. Therefore,
we created a new library called Weak Indication Framework
(WIF) for the faster development of heterogeneous ensembles,
which minimizes the time between attack discovery and detection
capability. Moreover, WIF-based detectors are efficient enough
to operate on large Internet Service Provider networks—a single
detector can protect millions of users. We demonstrate the
effectiveness of the WIF library through four different detectors
(TOR, Cryptomining, IoT Malware, and Tunnel detector), each
achieving outstanding performance and quick deployment times.

Index Terms—network security, traffic analysis, threat detec-
tion, high-speed networks

I. INTRODUCTION

Network traffic classification and analysis are essential
approaches for maintaining computer security. Many intrusion
detection and prevention systems (IDS/IPS), such as Suri-
cata [1] and Zeek [2], are available for this purpose. More-
over, both are customizable, and users can develop their own
detection rules. Nevertheless, with the rise of encrypted traffic,
reliable threat detection has become as challenging as never
before. Therefore, encrypted traffic analysis (ETA) approaches
must employ more complex algorithms to maintain detection
capabilities, such as Machine Learning (ML). Nevertheless,
the accuracy and reliability of ML are not always sufficient.
Therefore, Uhřı́ček et al. [3] proposed a novel approach to
heterogeneous ensemble.

These ensembles do not rely on a single detector but use
a combination of various and simple heterogeneous detectors
(modalities), each working on different principles—we denote
them as weak indicators. The output of these weak indicators is
then combined together for final detection. The use of multiple
weak indicators then results in better detection performance,
robustness, and explainability.

The main disadvantage of the weak indication principle is
the complexity and timelines of developing novel detectors.
Instead of designing a single monolithic detector, we must
design multiple of them and then develop a results-fusion
function. Therefore, we are presenting a Weak Indication
Framework (WIF) to accelerate the development of heteroge-

neous ensembles and shorten the deployment time of emerging
threat detectors.

WIF is a novel library containing the essential primitive
blocks that can be reused in the detection pipelines. Apart
from multiple classifiers (such as regular expression, Machine
Learning, blocklist, and more) and results-fusion functions,
WIF also has storage capabilities to store detection context for
a longer time period. Despite the fact that WIF was developed
for high-performance deployments such as Internet Service
Provider (ISP) networks or data centers, it can also be easily
used to protect smaller networks. The library has been released
under an open-source license and is available on our GitHub1.
Moreover, to showcase the usage of the WIF library, we have
developed four different network threat detectors that utilize
the weak-indication approach.

The rest of the paper is organized as follows: Section II
provides an overview of related work and existing meth-
ods. Section III describes the proposed library. Section IV
introduces possible use cases of the proposed library with
performance evaluation. Section V concludes the paper.

II. RELATED WORK

There are many approaches aiming for high-accurate net-
work threat detection. We can divide the approaches into two
distinctive categories: Network Traffic Analysis methods that
mainly utilize Machine Learning and IDS/IPS that rely mainly
on a set of rules provided by the operators.

A. Network Traffic Analysis

Many ETA methods had been developed, categorized by
Pacheco et al. [4] into Payload inspection, Statistical-based
techniques, Behavioral techniques, and ML techniques. How-
ever, this field is dominated by Machine Learning, mainly due
to the current vast usage of encryption. As also mentioned by
Pacheco et al. [4], ML is highly suitable for this task.

However, Possebon et al. [5] write that as such, a single
detection and classification process is unlikely to be effective.
Therefore, they emphasized the usage of meta-learning and
ensemble techniques. The experiments described by Possebon
et al. [5] focus on several supervised classifiers and meta-
learning techniques for a combination of their outputs.

According to Buczak et al. [6], a weak learner is ”one
that consistently generates better predictions than random”.

1https://github.com/CESNET/WIF
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Then, ensemble methods use multiple weak learners to create
a stronger one, with more reliable predictions. This is achieved
by combining multiple hypotheses to form a better one than
the best hypothesis alone. A weak learning algorithm can be
trained to combine weighted results of weak learners. These
methods can be used for attack detection (DoS, scanning),
botnet detection, and anomaly detection [6].

Aceto et al. [7] proposed a Multi-Classification System
(MCS) consisting of state-of-the-art (base) classifiers and an
intelligent combination of their results. They created a robust
system that is able to overcome the deficiencies of a single
classifier and improve the overall outcome of the classification.
It was shown that MCS achieved a 9.5% performance gain
over the best base classifier.

Several heterogeneous systems for ETA were proposed.
Uhřı́ček et al. [3] proposed Botnet Analysis (BOTA) for
detection of IoT-based malware. The BOTA system utilizes
eight weak classifiers whose output is fed to a rule-based
combination with 100% recall achieved. Furthermore, Plný
et al. [8] proposed a heterogeneous system for the detection
of cryptomalware and cryptomining in general. Three weak
classifiers are combined together via a sophisticated meta-
classifier.

However, traffic can change over time, such as the appear-
ance of a new application or a change in the behavior of
an existing application, as described by Pacheco et al. [4].
Moreover, only a change in distribution can cause ML models
to worsen. Therefore, it might be necessary to retrain the
model over time. Pešek et al. [9] proposed a system for
continuous monitoring of deployed ML models and automatic
retraining when the accuracy of the model drops. Therefore,
the accuracy of deployed models is kept even over long
periods.

B. IDS/IPS

Suricata IDS [1] is an open-source IDS with a high-
performance and signature-based detection system. Moreover,
it can be customized by Lua scripts. However, only basic
scripts are supported, and more advanced detection methods
cannot be implemented in this way.

Snort [10] is an open-source IPS, currently developed under
Cisco. Similarly to Suricata, it also uses rule sets to look
for suspicious traffic. In addition, Lua scripts can be used
to extend Snort’s functionality. But again, scripts are rather
simple and do not allow the implementation of more complex
detection methods.

Zeek [2] is an open-source network analysis framework
for network security monitoring. It can be extended with
user-defined scripts written in Zeek’s own Turing-complete
language. Therefore, support for new detection methods is
possible. However, script performance might be insufficient
for high-speed networks.

Cejka et al. [11] proposed a system for both online and
offline network flow processing and analysis called NEMEA.
The system consists of stand-alone modules for detection,
traffic filtration, reporting etc. Moreover, libtrap and libunirec
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Fig. 1: Composition of the Weak Indication Framework

are libraries for used for module interconnection. The users
can deploy only specified modules and interconnect them any
way they want. In addition, NEMEA aims at operation on ISP-
level networks. However, detectors for this framework must be
developed from scratch.

We did not identify any existing tool that would support
the implementation of robust and complex detection methods
while maintaining sufficient performance. However, the devel-
opment of a highly tailored detector for the specified task is
needed in most cases.

III. WEAK INDICATION FRAMEWORK

Weak Indication Framework (WIF) is a C++ library pro-
viding the most commonly used methods for network traffic
analysis and threat detection. It uses a modular design and
supports the development of heterogeneous classification and
detection methods.

A. Design

Weak Indication Framework consists of several groups of
objects, as depicted in Figure 1. Each group serves a specific
purpose: classifiers provide methods for ETA, combinators
provide methods for combination of weak indicators, reporters
are used for additional information output, data storage con-
tains types for data representation, and finally utils contain
additional functionality used by other parts of the library, but
are made available to the library users as well.

Moreover, classifiers, combinators, and reporters have their
own base classes, which define a common interface for each
group. Therefore, it is easy to replace a classifier or a detector
in an existing method or to add a new one.

Classifiers and combinators are mainly used by ETA to build
and implement complex detection methods. The interconnec-
tion of such instances is fully up to the user: multiple classifiers
can be used and supplied to a combinator whose output can
be processed through a classifier again.

B. Detection Capabilities

IP blocklist-based detection is a fundamental approach for
the detection of network security threats and traffic classifica-
tion. WIF contains IpPrefixClassifier implementing
this highly efficient approach due to utilization of binary
search.

Another essential method is pattern matching. WIF provides
this method via RegexClassifier performing pattern
matching via regular expressions. Regex backend from the
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boost library2 is used to perform efficiently, up to 10 times
faster than with the backend from the standard library.

Machine Learning is currently considered state-of-the-art
when it comes to ETA, and scikit-learn library3 is arguably
the widely used tool used by researchers for this task.
ScikitMlClassifier can be used to perform classifica-
tion through basically any ML model from the scikit library.
Classification of buffers (with at least 10 000 elements) is
recommended to maintain sufficient throughput.

WIF addresses the problem of degrading ML models by the
utilization of ALF [9]. AlfClassifier creates a connec-
tion with ALF and performs ML-based classification. It can
detect a new ML model version on disk (dropped by ALF),
perform model reload, and always use an up-to-date model.
Therefore, used models are protected from degradation and
maintain steady accuracy over time.
AverageCombinator can be used to obtain an average

of weak results, SumCombinator to obtain the cumulative
sum. MajorityCombinator provides a combination by
finding the prevalent element in the supplied data. More-
over, BinaryDSTCombinator provides a combination via
Dempster-Shafer Theory [12], [13], a special theory of prob-
ability.

Reporters can be used to send additional data from WIF-
based detectors. UnirecReporter sends data to output
unirec [11] interface. For example, AlfClassifier uses
UnirecReporter to send needed data for the ALF.

C. Internals

Firstly, data must be prepared. WIF has its own structure for
data representation called FlowFeatures. It can hold only
supported types and a pre-defined number of values. This type
can be passed to classify() method of classifier objects.
However, source indexes to the FlowFeatures object must
be initialized by setSourceFeatureIDs() before the
first call of classify(). Classifier then only works with the
set indexes of FlowFeatures object. This is important since
we only want RegexClassifier to work with indexes
holding std::string or ScikitMlClassifier to only
use selected fields holding double as ML features.

The intended use is that data is received in a loop,
transformed into a FlowFeatures object, and run through
classifiers and combinators. In the end, either an alert is
sent, or original data is sent out together with a new field(s)
representing the classification output. FlowFeatures ob-
ject should maintain its composition: same features on
the same indexes throughout the process. That way,
setSourceFeatureIDs() is called only once at the start,
and then FlowFeatures can be passed periodically to the
classifiers.

Classification results can be either binary (true/false; for
example, the presence of an IP address on a blocklist) or
a vector of numbers (array of probabilities for each class,

2https://boost.org
3https://scikit-learn.org

1 std::vector<WIF::IpPrefix> blocklist;
2 blocklist = load("blocklist.txt");
3 IpPrefixClassifier clf(blocklist);
4 clf.setSourceFeatureIDs({
5 SRC_IP_ID,
6 DST_IP_ID
7 });
8 // Processing loop
9 UnirecRecordView rec;

10 while (rec = inputIfc.receive()) {
11 auto flow = recordToFlowFeatures(rec);
12 auto result = clf.classify(flow);
13 if (result.get<double>() > 0) {
14 signalWarning();
15 }
16 }

Listing 1: Example of blocklist-based detection via WIF

from ML). Therefore, the return type of the classify()
method is our own ClfResult class, which can hold either a
double or std::vector<double>. Each classifier must
define what value is stored in the ClfResult upon return
and what its meaning is.

Combinators work with a vector of doubles. Their method
combine() takes std::vector<double> and returns a
single double value. No method must be called prior to
the first call of combine(). All the initialization must be
performed in the combinator’s constructor.

D. Example

Listing 1 demonstrates how a simple blocklist-based de-
tector would be implemented with the utilization of WIF.
Firstly, a blocklist is loaded (line 2) and a new instance of
IpPrefixClassifier is created and initiliazed (line 3).
Method setSourceFeatureIDs() on the line 4 tells the
classifier which fields should be processed. We propose to use
the NEMEA system for receiving flows, specifically libtrap
and libunirec. Records from the input unirec interface are
received in a loop and transformed to WIF’s internal data
storage object (called FlowFeatures, line 11). Classifica-
tion is performed on the line 12. If the result is positive, a
method is called for signaling that blocklisted communication
was detected (line 14).

IV. USE CASES

We designed and implemented several detectors based on
the new WIF library to demonstrate its usefulness. Detectors
were based on the Weak Indication Framework and NEMEA
libraries for interconnecting the modules.

Figure 2 depicts high-level schemes of the implemented
detectors. The green color indicates a component from the
WIF and, therefore, a reused code that would have to be
implemented otherwise.

A. Cryptomining Detector (DeCrypto)

Cryptomining detector showcase the usage of ML and
regex-based traffic classification. It is based on our previous
work described in [8]. We reimplemented this detector in C++
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Fig. 2: Developed WIF-based detectors showcasing usability across various use-cases

rather than Python with the use of WIF. The scheme is depicted
on Figure 2a. Basically, the whole module is composed of
WIF components apart from the final meta classifier, which
performs the fusion of weak indications and provides a final
prediction.

Furthermore, the detector can utilize ALF. When a special
CLI argument is set, the Cryptomining detector will send
additional data required by ALF to the secondary unirec
interface and will use retrained models, to prevent model
aging. This setup is currently being evaluated on the national
CESNET3 network.

B. Tor Detector (TorDer)

Tor detector demonstrates a blocklist-based classifi-
cation. It is composed of a single WIF component:
IpPrefixClassifier. It is depicted on Figure 2b. Both
Tunnel and IoT Malware detectors would perform detection
of Tor communication, therefore a stand-alone module was
implemented which serves as a prerequisite to the other two.

Moreover, the detector can track modification changes of the
blocklist source file. When a file change is detected, a reload is
performed to obtain the newest version. Therefore, the detector
uses up-to-date blocklists without the need to restart.

C. Tunnel Detector (TunDer)

The Tunnel detector is an example of a method that aggre-
gates and observes weak indicators in flow data obtained ex-

ternally rather than performing the detection itself. Therefore,
flow contains all the needed information and results, and no
complex detection is required. The indicators are observed for
a specific time interval. The final combination and detection
is performed at the end of the time window.

The Tunnel detector looks for covert communication tunnels
such as Tor and Virtual Private Networks (VPNs). The scheme
is shown in Figure 2c. The user defines IP ranges that will be
observed, and the detector then aggregates weak indications
for each IP address from the defined ranges. The detector
works in 15-minute intervals by default.

Weak indicators used by this detector come from several
sources. The first is the output of the TOR detector. Then, con-
fidence levels are observed, produced by the ipfixprobe VPN
plugins4 (openvpn & wireguard). Port-based detection is
performed by looking for default values: 1194 for OpenVPN
and 51820 for WireGuard. Finally, users can provide their own
blocklist for their specific use cases.

Detection is performed at the end of the time window.
Firstly, intermediate results are obtained from each detector
resulting in True/False values. Such results are then passed
to the defined boolean rules. An alert is sent to the output
unirec interface for each satisfied rule with information about
the IP address, a string representation of the matched rule,
intermediate results, and their explanations.

4https://github.com/CESNET/ipfixprobe
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D. IoT Malware Detector (MalDer)

IoT malware detector demonstrates full-scale usage of the
WIF library. It is based on the BOTA system proposed by
Uhřı́ček et al. [3]. The detector implements a complex and
robust classification method of IoT-based malware, such as
Mirai and Gafgyt. Similar to the Tunnel detector, target IP
ranges are defined, and the detector observes IP addresses
from these ranges. Moreover, the Malware detector works in
5-minute intervals as the original BOTA system.

WIF components were successfully used for the following
indicators: detection of Command and Control communication
via ML, pattern-matching discovery of DHT and Stratum
protocols, and detection of Tor. Anomaly detectors had to
be implemented manually because WIF does not yet support
anomaly detection. However, the WIF library dramatically
eased the development of this module. It is also more efficient
and achieves higher throughputs because it is implemented in
C++.

E. Performance

The throughput of each detector was evaluated in the ex-
perimental environment on anonymized data captured directly
on the national CESNET3 network. The tests were performed
on a virtual machine running Oracle Linux 8 with a 4-core
CPU (Intel 6226R@2.90GHz) and 5.75 GB RAM in a scenario
very close to the deployment environment. Each detector was
executed 100 times and the results were averaged.

Results are summarized in the Table I. TorDer and Tun-
Der achieved very high performance and are capable of
operation on ISP-level networks without any problems. The
Cryptomining detector still achieves high performance but is
lower than the two previously mentioned. This is caused by
the increased complexity of the detector. The last evaluated
detector, MalDer, showed significantly less throughput. The
detector is far more complex than the others. Moreover, four
separate instances of anomaly detectors have a significant
impact on the throughput. Despite that, the performance is
still sufficient for deployment to ISP-level networks.

TABLE I: Single-thread performance overview

Flows per second
Detector Min Average Median Max
TorDer 395 430.58 723 882.8 725 806.45 747 508.31
DeCrypto 99 009.9 109 070.28 109 890.11 113 122.17
TunDer 641 025.64 673 755.35 679 758.31 700 934.58
MalDer 16 055.37 17 926.86 18 192.11 18 792.28

V. CONCLUSION

The rise of encrypted traffic demands increasingly complex
network security detectors, which are time-consuming to de-
velop. This paper introduced the Weak Indication Framework
(WIF), a library designed to streamline the development pro-
cess and reduce the time between the occurrence of network
threats and the deployment of detectors. WIF includes state-of-
the-art methods for (encrypted) traffic classification and threat
detection. It is implemented in C++ for high efficiency. This

allows modules built using WIF to be deployed in national
ISP-level networks with high-speed lines. WIF supports a
wide range of detection methods, from simple single-classifier
approaches to advanced methods processing multiple indica-
tors over defined periods. The library is publicly available on
GitHub1 and is free for use. Its modular design allows users
to implement custom classifiers and combinators tailored to
specific needs, integrating them seamlessly into WIF.

We demonstrated WIF’s capabilities with four distinctive
detectors: Cryptomining detector, TOR detector, and Tunnel
detector, as well as an IoT malware detector. All achieved
high flow throughput, making them suitable for deployment
in large ISP networks.

Future work includes extending the library with combination
methods such as the Behavior-Knowledge Space method [14].
We also plan to develop additional detectors for community
use.
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